
Network Working Group W. Stevens
Request for Comments: 2001 NOAO
Category: Standards Track January 1997

 TCP Slow Start, Congestion Avoidance,
 Fast Retransmit, and Fast Recovery Algorithms

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 Modern implementations of TCP contain four intertwined algorithms
 that have never been fully documented as Internet standards: slow
 start, congestion avoidance, fast retransmit, and fast recovery. [2]
 and [3] provide some details on these algorithms, [4] provides
 examples of the algorithms in action, and [5] provides the source
 code for the 4.4BSD implementation. RFC 1122 requires that a TCP
 must implement slow start and congestion avoidance (Section 4.2.2.15
 of [1]), citing [2] as the reference, but fast retransmit and fast
 recovery were implemented after RFC 1122. The purpose of this
 document is to document these four algorithms for the Internet.

Acknowledgments

 Much of this memo is taken from "TCP/IP Illustrated, Volume 1: The
 Protocols" by W. Richard Stevens (Addison-Wesley, 1994) and "TCP/IP
 Illustrated, Volume 2: The Implementation" by Gary R. Wright and W.
 Richard Stevens (Addison-Wesley, 1995). This material is used with
 the permission of Addison-Wesley. The four algorithms that are
 described were developed by Van Jacobson.

1. Slow Start

 Old TCPs would start a connection with the sender injecting multiple
 segments into the network, up to the window size advertised by the
 receiver. While this is OK when the two hosts are on the same LAN,
 if there are routers and slower links between the sender and the
 receiver, problems can arise. Some intermediate router must queue
 the packets, and it’s possible for that router to run out of space.
 [2] shows how this naive approach can reduce the throughput of a TCP
 connection drastically.

Stevens Standards Track [Page 1]

RFC 2001 TCP January 1997

 The algorithm to avoid this is called slow start. It operates by
 observing that the rate at which new packets should be injected into
 the network is the rate at which the acknowledgments are returned by
 the other end.

 Slow start adds another window to the sender’s TCP: the congestion
 window, called "cwnd". When a new connection is established with a
 host on another network, the congestion window is initialized to one
 segment (i.e., the segment size announced by the other end, or the
 default, typically 536 or 512). Each time an ACK is received, the
 congestion window is increased by one segment. The sender can
 transmit up to the minimum of the congestion window and the
 advertised window. The congestion window is flow control imposed by
 the sender, while the advertised window is flow control imposed by
 the receiver. The former is based on the sender’s assessment of
 perceived network congestion; the latter is related to the amount of
 available buffer space at the receiver for this connection.

 The sender starts by transmitting one segment and waiting for its
 ACK. When that ACK is received, the congestion window is incremented
 from one to two, and two segments can be sent. When each of those
 two segments is acknowledged, the congestion window is increased to
 four. This provides an exponential growth, although it is not
 exactly exponential because the receiver may delay its ACKs,
 typically sending one ACK for every two segments that it receives.

 At some point the capacity of the internet can be reached, and an
 intermediate router will start discarding packets. This tells the
 sender that its congestion window has gotten too large.

 Early implementations performed slow start only if the other end was
 on a different network. Current implementations always perform slow
 start.

2. Congestion Avoidance

 Congestion can occur when data arrives on a big pipe (a fast LAN) and
 gets sent out a smaller pipe (a slower WAN). Congestion can also
 occur when multiple input streams arrive at a router whose output
 capacity is less than the sum of the inputs. Congestion avoidance is
 a way to deal with lost packets. It is described in [2].

 The assumption of the algorithm is that packet loss caused by damage
 is very small (much less than 1%), therefore the loss of a packet
 signals congestion somewhere in the network between the source and
 destination. There are two indications of packet loss: a timeout
 occurring and the receipt of duplicate ACKs.

Stevens Standards Track [Page 2]

RFC 2001 TCP January 1997

 Congestion avoidance and slow start are independent algorithms with
 different objectives. But when congestion occurs TCP must slow down
 its transmission rate of packets into the network, and then invoke
 slow start to get things going again. In practice they are
 implemented together.

 Congestion avoidance and slow start require that two variables be
 maintained for each connection: a congestion window, cwnd, and a slow
 start threshold size, ssthresh. The combined algorithm operates as
 follows:

 1. Initialization for a given connection sets cwnd to one segment
 and ssthresh to 65535 bytes.

 2. The TCP output routine never sends more than the minimum of cwnd
 and the receiver’s advertised window.

 3. When congestion occurs (indicated by a timeout or the reception
 of duplicate ACKs), one-half of the current window size (the
 minimum of cwnd and the receiver’s advertised window, but at
 least two segments) is saved in ssthresh. Additionally, if the
 congestion is indicated by a timeout, cwnd is set to one segment
 (i.e., slow start).

 4. When new data is acknowledged by the other end, increase cwnd,
 but the way it increases depends on whether TCP is performing
 slow start or congestion avoidance.

 If cwnd is less than or equal to ssthresh, TCP is in slow start;
 otherwise TCP is performing congestion avoidance. Slow start
 continues until TCP is halfway to where it was when congestion
 occurred (since it recorded half of the window size that caused
 the problem in step 2), and then congestion avoidance takes over.

 Slow start has cwnd begin at one segment, and be incremented by
 one segment every time an ACK is received. As mentioned earlier,
 this opens the window exponentially: send one segment, then two,
 then four, and so on. Congestion avoidance dictates that cwnd be
 incremented by segsize*segsize/cwnd each time an ACK is received,
 where segsize is the segment size and cwnd is maintained in bytes.
 This is a linear growth of cwnd, compared to slow start’s
 exponential growth. The increase in cwnd should be at most one
 segment each round-trip time (regardless how many ACKs are
 received in that RTT), whereas slow start increments cwnd by the
 number of ACKs received in a round-trip time.

Stevens Standards Track [Page 3]

RFC 2001 TCP January 1997

 Many implementations incorrectly add a small fraction of the segment
 size (typically the segment size divided by 8) during congestion
 avoidance. This is wrong and should not be emulated in future
 releases.

3. Fast Retransmit

 Modifications to the congestion avoidance algorithm were proposed in
 1990 [3]. Before describing the change, realize that TCP may
 generate an immediate acknowledgment (a duplicate ACK) when an out-
 of-order segment is received (Section 4.2.2.21 of [1], with a note
 that one reason for doing so was for the experimental fast-
 retransmit algorithm). This duplicate ACK should not be delayed.
 The purpose of this duplicate ACK is to let the other end know that a
 segment was received out of order, and to tell it what sequence
 number is expected.

 Since TCP does not know whether a duplicate ACK is caused by a lost
 segment or just a reordering of segments, it waits for a small number
 of duplicate ACKs to be received. It is assumed that if there is
 just a reordering of the segments, there will be only one or two
 duplicate ACKs before the reordered segment is processed, which will
 then generate a new ACK. If three or more duplicate ACKs are
 received in a row, it is a strong indication that a segment has been
 lost. TCP then performs a retransmission of what appears to be the
 missing segment, without waiting for a retransmission timer to
 expire.

4. Fast Recovery

 After fast retransmit sends what appears to be the missing segment,
 congestion avoidance, but not slow start is performed. This is the
 fast recovery algorithm. It is an improvement that allows high
 throughput under moderate congestion, especially for large windows.

 The reason for not performing slow start in this case is that the
 receipt of the duplicate ACKs tells TCP more than just a packet has
 been lost. Since the receiver can only generate the duplicate ACK
 when another segment is received, that segment has left the network
 and is in the receiver’s buffer. That is, there is still data
 flowing between the two ends, and TCP does not want to reduce the
 flow abruptly by going into slow start.

 The fast retransmit and fast recovery algorithms are usually
 implemented together as follows.

Stevens Standards Track [Page 4]

RFC 2001 TCP January 1997

 1. When the third duplicate ACK in a row is received, set ssthresh
 to one-half the current congestion window, cwnd, but no less
 than two segments. Retransmit the missing segment. Set cwnd to
 ssthresh plus 3 times the segment size. This inflates the
 congestion window by the number of segments that have left the
 network and which the other end has cached (3).

 2. Each time another duplicate ACK arrives, increment cwnd by the
 segment size. This inflates the congestion window for the
 additional segment that has left the network. Transmit a
 packet, if allowed by the new value of cwnd.

 3. When the next ACK arrives that acknowledges new data, set cwnd
 to ssthresh (the value set in step 1). This ACK should be the
 acknowledgment of the retransmission from step 1, one round-trip
 time after the retransmission. Additionally, this ACK should
 acknowledge all the intermediate segments sent between the lost
 packet and the receipt of the first duplicate ACK. This step is
 congestion avoidance, since TCP is down to one-half the rate it
 was at when the packet was lost.

 The fast retransmit algorithm first appeared in the 4.3BSD Tahoe
 release, and it was followed by slow start. The fast recovery
 algorithm appeared in the 4.3BSD Reno release.

5. Security Considerations

 Security considerations are not discussed in this memo.

6. References

 [1] B. Braden, ed., "Requirements for Internet Hosts --
 Communication Layers," RFC 1122, Oct. 1989.

 [2] V. Jacobson, "Congestion Avoidance and Control," Computer
 Communication Review, vol. 18, no. 4, pp. 314-329, Aug. 1988.
 ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z.

 [3] V. Jacobson, "Modified TCP Congestion Avoidance Algorithm,"
 end2end-interest mailing list, April 30, 1990.
 ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail.

 [4] W. R. Stevens, "TCP/IP Illustrated, Volume 1: The Protocols",
 Addison-Wesley, 1994.

 [5] G. R. Wright, W. R. Stevens, "TCP/IP Illustrated, Volume 2:
 The Implementation", Addison-Wesley, 1995.

Stevens Standards Track [Page 5]

RFC 2001 TCP January 1997

Author’s Address:

 W. Richard Stevens
 1202 E. Paseo del Zorro
 Tucson, AZ 85718

 Phone: 520-297-9416

 EMail: rstevens@noao.edu
 Home Page: http://www.noao.edu/˜rstevens

Stevens Standards Track [Page 6]

