
class BSON::Document
BSON Encodable and Decodable document

Table of Contents
1 Synopsis
2 Description
3 Supported types
4 Operators
4.1 postcircumfix:<{}>
4.2 postcircumfix:<<>>
4.3 postcircumfix:<[]>
5 Methods
5.1 new
5.2 perl
5.3 Str
5.4 autovivify
5.5 accept-hash
5.6 find-key
5.7 of
5.8 method elems
5.9 kv
5.10 pairs
5.11 keys
5.12 values
5.13 modify-array
5.14 encode
5.15 decode

unit package BSON;
class Document does Associative does Positional { ... }

Synopsis

use BSON::Document;

Document usage
my BSON::Document $d .= new;
$d<name> = 'Jose';
$d<address> = street => '24th', city => 'NY';
$d<keywords> = [<perl6 language programming>];

Automatic generating subdocuments
$d.autovivify(True);
$d<a><c><d><e> = 10;

Encoding and decoding
my Buf $b = $d.encode;
my BSON::Document $d2 .= new;
$d2.decode($b);

Description
Document storage with Hash like behavior used mainly to communicate with a mongodb server. It
can also be used as a serialized storage format. The main difference with the Hash is that this
class keeps the input order of inserted key-value pairs which is important for the use with
mongodb.

Every form of nesting with e.g. pairs is converted into a BSON::Document. Other classes are
needed to handle types such as Javascript, ObjectId and Binary. These classes are automatically
loaded when BSON::Document is loaded.

E.g.

use BSON::Document;

my BSON::Document $d .= new;
$d<javascript> = BSON::Javascript.new(:javascript('function(x){return x;}'));
$d<datetime> = DateTime.now;
$d<rex> = BSON::Regex.new(:regex('abc|def'), :options<is>);

Supported types
There are BSON specifications mentioned on their site which are deprecated or used internally
only. These are not implemented.

There are quite a few more perl6 container types like (Fat)Rat, Bag, Set etc. Now binary types are
possible it might be an idea to put these perl6 types into binary. There are 127 user definable
types in that BSON binary specification, so place enough to put it there, also because when
javascript is run on the server it would not able to cope with these types.

The types currently supported are marked with a [x]. [-] will not be implemented and [] is a future
thingy.

http://bsonspec.org/spec.html

 Encoding/Decoding a bytestream from/to perl6

 Type/sub-
Impl type BSON spec Perl6

 [x] 1 64-bit Double Num
 [x] 2 UTF-8 string Str
 [x] 3 Embedded document. BSON::Document
 [x] 4 Array document Array
 [x] 5 All kinds of binary data BSON::Binary
 [x] 5/0 Generic type
 [] 5/1 Function
 [-] 5/2 Binary old, deprecated
 [-] 5/3 UUID old, deprecated
 [x] 5/4 UUID
 [x] 5/5 MD5
 [] 5/128 Int larger/smaller than 64 bit Int
 [] 5/129 FatRat
 [] 5/130 Bag
 [-] 6 Undefined value - Deprecated
 [x] 7 ObjectId BSON::ObjectId
 [x] 8 Boolean "true" / "false" Bool
 [x] 9 int64 UTC datetime DateTime
 [x] 10 Null value Undefined type
 [x] 11 Regular expression(perl 5 like) BSON::Regex
 [-] 12 DBPointer - Deprecated
 [x] 13 Javascript code BSON::Javascript
 [-] 14 Symbol - Deprecated
 [x] 15 Javascript code with scope BSON::Javascript
 [x] 16 32 bit integers. Int
 [-] 17 Timestamp, used internally
 [x] 18 64 bit integers. Int
 [] 19 128 bit decimal floating point Rat

Operators

postcircumfix:<{}>

$d{'full address'} = 'my-street 45, new york';

postcircumfix:<<>>

$d<name> = 'Mr Foo and Mrs Bar';

postcircumfix:<[]>

use Test;
use BSON::Document;

my BSON::Document $d .= new;
$d<abc> = 10; # Key 'abc' on location 0
$d<def> = 11; # Key 'def' on location 1
$d[1] = 'Timezone of New York'; # Modify location 1 which is key 'def'
$d[100] = 'new data'; # New location 2 with generated key 'key100'.

is $d[100], $d<key100>, "Location 100 is same as pointed by 'key100'";
is $d.find-key('key100'), 2, 'Index is 2 instead of 100';
is $d[100], $d[2], "Location 100 is same as pointed by index 2";
is $d.find-key(100), 'key100', 'Check $d[100] to be key100';

Modify or create locations using an index into the document. When locations exist, data at that
location is overwritten by the new data. Non-existent locations are set as the next free location in
the document and a key is generated using the index prefixed with 'key' (depending on autovivify).

Methods

new

multi method new (List $l = ())
multi method new (Pair $p)
multi method new (Seq $s)
multi method new (Buf $b)

Some examples to call new

my BSON::Document $d;

empty document
$d .= new;

Initialize with a Buf, Previously received from a mongodb server or
from a previous encoding
$d .= new($bson-encoded-document);

Initialize with a Seq
$d .= new: ('a' ... 'z') Z=> 120..145;

Initialize with a List
$d .= new: (a => 10, b => 11);

Initialize a new document.

perl

method perl (--> Str)

Return objects structure.

Str

method Str (--> Str)

Return type and location of the object.

autovivify

submethod autovivify (Bool $avvf = True)

By default it is set to False and will throw an exception with an message like 'Cannot modify an
immutable Any' when an attempt is made like in the following.piece of code

my BSON::Document $d .= new;
$d<a> = 10; # Throw error

To have this feature one must turn this option on like so;

my BSON::Document $d .= new;
$d.autovivify(True);
$d<a> = 10;

NOTE: Testing for items will also create the entries if they weren't there.

accept-hash

submethod accept-hash (Bool $acch = True)

By default it is set to False and will throw an exception with a message like 'Cannot use hash
values'. This is explicitly done to keep input order. When it is turned off try something like below to
see what is meant;

my BSON::Document $d .= new;
$d.accept-hash(True);
$d<q> = {
 a => 120, b => 121, c => 122, d => 123, e => 124, f => 125, g => 126,
 h => 127, i => 128, j => 129, k => 130, l => 131, m => 132, n => 133,
 o => 134, p => 135, q => 136, r => 137, s => 138, t => 139, u => 140,
 v => 141, w => 142, x => 143, y => 144, z => 145
};

say $d<q>.keys;
Outputs [x p k h g z a y v s q e d m f c w o n u t b j i r l]

find-key

multi method find-key (Int:D $idx --> Str)
multi method find-key (Str:D $key --> Int)

Search for indes and find key or search for key and return index. It returns an undefined value if
$idx or $key is not found.

use Test;
use BSON::Document;
my $d = BSON::Document.new: ('a' ... 'z') Z=> 120..145;

is $d, $d[$d.find-key('b')], 'Value on key and found index are the same';
is $d.find-key(2), 'c', "Index 2 is mapped to key 'c'";

of

method of ()

Returns type of object. NOTE: I'm not sure if this is the normal practice of such a method. Need to
investicate further

method elems

method elems (--> Int)

Return the number of pairs in the document

kv

method kv (--> List)

Return a list of keys and values in the same order as entered.

use BSON::Document;
my $d = BSON::Document.new: ('a' ... 'z') Z=> 120..145;
say $d.kv;
Outputs: [a 120 b 121 c 122 d 123 ... x 143 y 144 z 145]

pairs

method pairs (--> List)

Return a list of pairs in the same order as entered.

keys

method keys (--> List)

Return a list of keys in the same order as entered.

use BSON::Document;
my $d = BSON::Document.new: ('a' ... 'z') Z=> 120..145;
say $d.keys;
Outputs: [a b c d ... x y z]

values

method values (--> List)

Return a list of value in the same order as entered.

use BSON::Document;
my $d = BSON::Document.new: ('a' ... 'z') Z=> 120..145;
say $d.values;
Outputs: [120 121 122 123 ... 143 144 145]

modify-array

method modify-array (Str $key, Str $operation, $data --> List)

Use as

BSON::Document $d .= new:(docs => []);
$d.modify-array('docs', 'push', (a => 1, b => 2));

Modify an array in a document afterwards. This method is necessary to apply changes because
when doing it directly like $d<docs>.push: (c = 2);> it wouldn't be encoded because the
document object is not aware of these changes.

This is a slow method because every change will trigger an encoding procedure in the
background. When a whole array needs to be entered then it is a lot faster to make the array first
and then assign it to an entry in the document e.g;

BSON::Document $d .= new;
my $arr = [];
for ^10 -> $i {
 $arr.push($i);
}
$d<myarray> = $arr;

encode

method encode (--> Buf)

Encode entire document and return a BSON encoded byte buffer.

decode

method decode (Buf $data --> Nil)

Decode a BSON encoded byte buffer to produce a document. Decoding also takes place when
providing a byte buffer to new().

Generated using Pod::Render, Pod::To::HTML, wkhtmltopdf

	class BSON::Document
	Table of Contents

	Synopsis
	Description
	Supported types
	Operators
	postcircumfix:<{}>
	postcircumfix:<<>>
	postcircumfix:<[]>

	Methods
	new
	perl
	Str
	autovivify
	accept-hash
	find-key
	of
	method elems
	kv
	pairs
	keys
	values
	modify-array
	encode
	decode

