class Numeric
Numeric is the class from which all higher-level numeric classes should inherit.
Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as Integer are implemented as immediates, which means that each Integer is a single immutable object which is always passed by value.
a = 1 1.object_id == a.object_id #=> true
There can only ever be one instance of the integer 1, for example. Ruby ensures this by preventing instantiation. If duplication is attempted, the same instance is returned.
Integer.new(1) #=> NoMethodError: undefined method `new' for Integer:Class 1.dup #=> 1 1.object_id == 1.dup.object_id #=> true
For this reason, Numeric should be used when defining other numeric classes.
Classes which inherit from Numeric must implement coerce, which returns a two-member Array containing an object that has been coerced into an instance of the new class and self (see coerce).
Inheriting classes should also implement arithmetic operator methods (+, -, * and /) and the <=> operator (see Comparable). These methods may rely on coerce to ensure interoperability with instances of other numeric classes.
class Tally < Numeric def initialize(string) @string = string end def to_s @string end def to_i @string.size end def coerce(other) [self.class.new('|' * other.to_i), self] end def <=>(other) to_i <=> other.to_i end def +(other) self.class.new('|' * (to_i + other.to_i)) end def -(other) self.class.new('|' * (to_i - other.to_i)) end def *(other) self.class.new('|' * (to_i * other.to_i)) end def /(other) self.class.new('|' * (to_i / other.to_i)) end end tally = Tally.new('||') puts tally * 2 #=> "||||" puts tally > 1 #=> true
What’s Here¶ ↑
First, what’s elsewhere. Class Numeric:
-
Inherits from class Object.
-
Includes module Comparable.
Here, class Numeric provides methods for:
Querying¶ ↑
-
finite?: Returns true unlessselfis infinite or not a number. -
infinite?: Returns -1,nilor +1, depending on whetherselfis-Infinity<tt>, finite, or <tt>+Infinity. -
integer?: Returns whetherselfis an integer. -
negative?: Returns whetherselfis negative. -
nonzero?: Returns whetherselfis not zero. -
positive?: Returns whetherselfis positive. -
real?: Returns whetherselfis a real value. -
zero?: Returns whetherselfis zero.
Comparing¶ ↑
-
<=>: Returns:-
-1 if
selfis less than the given value. -
0 if
selfis equal to the given value. -
1 if
selfis greater than the given value. -
nilifselfand the given value are not comparable.
-
-
eql?: Returns whetherselfand the given value have the same value and type.
Converting¶ ↑
-
%(aliased asmodulo): Returns the remainder ofselfdivided by the given value. -
-@: Returns the value ofself, negated. -
abs(aliased asmagnitude): Returns the absolute value ofself. -
abs2: Returns the square ofself. -
angle(aliased asargandphase): Returns 0 ifselfis positive, Math::PI otherwise. -
ceil: Returns the smallest number greater than or equal toself, to a given precision. -
coerce: Returns array[coerced_self, coerced_other]for the given other value. -
conj(aliased asconjugate): Returns the complex conjugate ofself. -
denominator: Returns the denominator (always positive) of theRationalrepresentation ofself. -
div: Returns the value ofselfdivided by the given value and converted to an integer. -
divmod: Returns array[quotient, modulus]resulting from dividingselfthe given divisor. -
fdiv: Returns theFloatresult of dividingselfby the given divisor. -
floor: Returns the largest number less than or equal toself, to a given precision. -
i: Returns theComplexobjectComplex(0, self). the given value. -
imaginary(aliased asimag): Returns the imaginary part of theself. -
numerator: Returns the numerator of theRationalrepresentation ofself; has the same sign asself. -
polar: Returns the array[self.abs, self.arg]. -
quo: Returns the value ofselfdivided by the given value. -
real: Returns the real part ofself. -
rect(aliased asrectangular): Returns the array[self, 0]. -
remainder: Returnsself-arg*(self/arg).truncatefor the givenarg. -
round: Returns the value ofselfrounded to the nearest value for the given a precision. -
to_int: Returns theIntegerrepresentation ofself, truncating if necessary. -
truncate: Returnsselftruncated (toward zero) to a given precision.
Other¶ ↑
Public Instance Methods
Returns self modulo other as a real number.
Of the Core and Standard Library classes, only Rational uses this implementation.
For Rational r and real number n, these expressions are equivalent:
r % n r-n*(r/n).floor r.divmod(n)[1]
See Numeric#divmod.
Examples:
r = Rational(1, 2) # => (1/2) r2 = Rational(2, 3) # => (2/3) r % r2 # => (1/2) r % 2 # => (1/2) r % 2.0 # => 0.5 r = Rational(301,100) # => (301/100) r2 = Rational(7,5) # => (7/5) r % r2 # => (21/100) r % -r2 # => (-119/100) (-r) % r2 # => (119/100) (-r) %-r2 # => (-21/100)
Numeric#modulo is an alias for Numeric#%.
static VALUE
num_modulo(VALUE x, VALUE y)
{
VALUE q = num_funcall1(x, id_div, y);
return rb_funcall(x, '-', 1,
rb_funcall(y, '*', 1, q));
}
Returns self.
static VALUE
num_uplus(VALUE num)
{
return num;
}
Unary Minus—Returns the receiver, negated.
static VALUE
num_uminus(VALUE num)
{
VALUE zero;
zero = INT2FIX(0);
do_coerce(&zero, &num, TRUE);
return num_funcall1(zero, '-', num);
}
Returns zero if self is the same as other, nil otherwise.
No subclass in the Ruby Core or Standard Library uses this implementation.
static VALUE
num_cmp(VALUE x, VALUE y)
{
if (x == y) return INT2FIX(0);
return Qnil;
}
Returns the absolute value of self.
12.abs #=> 12 (-34.56).abs #=> 34.56 -34.56.abs #=> 34.56
Numeric#magnitude is an alias for Numeric#abs.
static VALUE
num_abs(VALUE num)
{
if (rb_num_negative_int_p(num)) {
return num_funcall0(num, idUMinus);
}
return num;
}
Returns square of self.
static VALUE
numeric_abs2(VALUE self)
{
return f_mul(self, self);
}
Returns 0 if the value is positive, pi otherwise.
static VALUE
numeric_arg(VALUE self)
{
if (f_positive_p(self))
return INT2FIX(0);
return DBL2NUM(M_PI);
}
Returns the smallest number that is greater than or equal to self with a precision of digits decimal digits.
Numeric implements this by converting self to a Float and invoking Float#ceil.
static VALUE
num_ceil(int argc, VALUE *argv, VALUE num)
{
return flo_ceil(argc, argv, rb_Float(num));
}
Returns self.
Raises an exception if the value for freeze is neither true nor nil.
Related: Numeric#dup.
static VALUE
num_clone(int argc, VALUE *argv, VALUE x)
{
return rb_immutable_obj_clone(argc, argv, x);
}
Returns a 2-element array containing two numeric elements, formed from the two operands self and other, of a common compatible type.
Of the Core and Standard Library classes, Integer, Rational, and Complex use this implementation.
Examples:
i = 2 # => 2 i.coerce(3) # => [3, 2] i.coerce(3.0) # => [3.0, 2.0] i.coerce(Rational(1, 2)) # => [0.5, 2.0] i.coerce(Complex(3, 4)) # Raises RangeError. r = Rational(5, 2) # => (5/2) r.coerce(2) # => [(2/1), (5/2)] r.coerce(2.0) # => [2.0, 2.5] r.coerce(Rational(2, 3)) # => [(2/3), (5/2)] r.coerce(Complex(3, 4)) # => [(3+4i), ((5/2)+0i)] c = Complex(2, 3) # => (2+3i) c.coerce(2) # => [(2+0i), (2+3i)] c.coerce(2.0) # => [(2.0+0i), (2+3i)] c.coerce(Rational(1, 2)) # => [((1/2)+0i), (2+3i)] c.coerce(Complex(3, 4)) # => [(3+4i), (2+3i)]
Raises an exception if any type conversion fails.
static VALUE
num_coerce(VALUE x, VALUE y)
{
if (CLASS_OF(x) == CLASS_OF(y))
return rb_assoc_new(y, x);
x = rb_Float(x);
y = rb_Float(y);
return rb_assoc_new(y, x);
}
Returns self.
# File numeric.rb, line 76 def conjugate self end
Returns the denominator (always positive).
static VALUE
numeric_denominator(VALUE self)
{
return f_denominator(f_to_r(self));
}
Returns the quotient self/other as an integer (via floor), using method / in the derived class of self. (Numeric itself does not define method /.)
Of the Core and Standard Library classes, Only Float and Rational use this implementation.
static VALUE
num_div(VALUE x, VALUE y)
{
if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
return rb_funcall(num_funcall1(x, '/', y), rb_intern("floor"), 0);
}
Returns a 2-element array [q, r], where
q = (self/other).floor # Quotient r = self % other # Remainder
Of the Core and Standard Library classes, only Rational uses this implementation.
Examples:
Rational(11, 1).divmod(4) # => [2, (3/1)] Rational(11, 1).divmod(-4) # => [-3, (-1/1)] Rational(-11, 1).divmod(4) # => [-3, (1/1)] Rational(-11, 1).divmod(-4) # => [2, (-3/1)] Rational(12, 1).divmod(4) # => [3, (0/1)] Rational(12, 1).divmod(-4) # => [-3, (0/1)] Rational(-12, 1).divmod(4) # => [-3, (0/1)] Rational(-12, 1).divmod(-4) # => [3, (0/1)] Rational(13, 1).divmod(4.0) # => [3, 1.0] Rational(13, 1).divmod(Rational(4, 11)) # => [35, (3/11)]
static VALUE
num_divmod(VALUE x, VALUE y)
{
return rb_assoc_new(num_div(x, y), num_modulo(x, y));
}
Returns true if self and other are the same type and have equal values.
Of the Core and Standard Library classes, only Integer, Rational, and Complex use this implementation.
Examples:
1.eql?(1) # => true 1.eql?(1.0) # => false 1.eql?(Rational(1, 1)) # => false 1.eql?(Complex(1, 0)) # => false
Method eql? is different from +==+ in that eql? requires matching types, while +==+ does not.
static VALUE
num_eql(VALUE x, VALUE y)
{
if (TYPE(x) != TYPE(y)) return Qfalse;
if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_eql(x, y);
}
return rb_equal(x, y);
}
Returns the quotient self/other as a float, using method / in the derived class of self. (Numeric itself does not define method /.)
Of the Core and Standard Library classes, only BigDecimal uses this implementation.
static VALUE
num_fdiv(VALUE x, VALUE y)
{
return rb_funcall(rb_Float(x), '/', 1, y);
}
Returns true if num is a finite number, otherwise returns false.
# File numeric.rb, line 41 def finite? true end
Returns the largest number that is less than or equal to self with a precision of digits decimal digits.
Numeric implements this by converting self to a Float and invoking Float#floor.
static VALUE
num_floor(int argc, VALUE *argv, VALUE num)
{
return flo_floor(argc, argv, rb_Float(num));
}
Returns Complex(0, self):
2.i # => (0+2i) -2.i # => (0-2i) 2.0.i # => (0+2.0i) Rational(1, 2).i # => (0+(1/2)*i) Complex(3, 4).i # Raises NoMethodError.
static VALUE
num_imaginary(VALUE num)
{
return rb_complex_new(INT2FIX(0), num);
}
Returns zero.
# File numeric.rb, line 63 def imaginary 0 end
Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or +Infinity.
# File numeric.rb, line 52 def infinite? nil end
Returns true if num is an Integer.
1.0.integer? #=> false 1.integer? #=> true
# File numeric.rb, line 31 def integer? false end
Returns the absolute value of self.
12.abs #=> 12 (-34.56).abs #=> 34.56 -34.56.abs #=> 34.56
Numeric#magnitude is an alias for Numeric#abs.
Returns self modulo other as a real number.
Of the Core and Standard Library classes, only Rational uses this implementation.
For Rational r and real number n, these expressions are equivalent:
r % n r-n*(r/n).floor r.divmod(n)[1]
See Numeric#divmod.
Examples:
r = Rational(1, 2) # => (1/2) r2 = Rational(2, 3) # => (2/3) r % r2 # => (1/2) r % 2 # => (1/2) r % 2.0 # => 0.5 r = Rational(301,100) # => (301/100) r2 = Rational(7,5) # => (7/5) r % r2 # => (21/100) r % -r2 # => (-119/100) (-r) % r2 # => (119/100) (-r) %-r2 # => (-21/100)
Numeric#modulo is an alias for Numeric#%.
Returns true if self is less than 0, false otherwise.
static VALUE
num_negative_p(VALUE num)
{
return RBOOL(rb_num_negative_int_p(num));
}
Returns self if self is not a zero value, nil otherwise; uses method zero? for the evaluation.
The returned self allows the method to be chained:
a = %w[z Bb bB bb BB a aA Aa AA A] a.sort {|a, b| (a.downcase <=> b.downcase).nonzero? || a <=> b } # => ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
Of the Core and Standard Library classes, Integer, Float, Rational, and Complex use this implementation.
static VALUE
num_nonzero_p(VALUE num)
{
if (RTEST(num_funcall0(num, rb_intern("zero?")))) {
return Qnil;
}
return num;
}
Returns the numerator.
static VALUE
numeric_numerator(VALUE self)
{
return f_numerator(f_to_r(self));
}
Returns an array; [num.abs, num.arg].
static VALUE
numeric_polar(VALUE self)
{
VALUE abs, arg;
if (RB_INTEGER_TYPE_P(self)) {
abs = rb_int_abs(self);
arg = numeric_arg(self);
}
else if (RB_FLOAT_TYPE_P(self)) {
abs = rb_float_abs(self);
arg = float_arg(self);
}
else if (RB_TYPE_P(self, T_RATIONAL)) {
abs = rb_rational_abs(self);
arg = numeric_arg(self);
}
else {
abs = f_abs(self);
arg = f_arg(self);
}
return rb_assoc_new(abs, arg);
}
Returns true if self is greater than 0, false otherwise.
static VALUE
num_positive_p(VALUE num)
{
const ID mid = '>';
if (FIXNUM_P(num)) {
if (method_basic_p(rb_cInteger))
return RBOOL((SIGNED_VALUE)num > (SIGNED_VALUE)INT2FIX(0));
}
else if (RB_BIGNUM_TYPE_P(num)) {
if (method_basic_p(rb_cInteger))
return RBOOL(BIGNUM_POSITIVE_P(num) && !rb_bigzero_p(num));
}
return rb_num_compare_with_zero(num, mid);
}
Returns the most exact division (rational for integers, float for floats).
VALUE
rb_numeric_quo(VALUE x, VALUE y)
{
if (RB_TYPE_P(x, T_COMPLEX)) {
return rb_complex_div(x, y);
}
if (RB_FLOAT_TYPE_P(y)) {
return rb_funcallv(x, idFdiv, 1, &y);
}
x = rb_convert_type(x, T_RATIONAL, "Rational", "to_r");
return rb_rational_div(x, y);
}
Returns self.
# File numeric.rb, line 18 def real self end
Returns true if num is a real number (i.e. not Complex).
# File numeric.rb, line 8 def real? true end
Returns an array; [num, 0].
static VALUE
numeric_rect(VALUE self)
{
return rb_assoc_new(self, INT2FIX(0));
}
Returns the remainder after dividing self by other.
Of the Core and Standard Library classes, only Float and Rational use this implementation.
Examples:
11.0.remainder(4) # => 3.0 11.0.remainder(-4) # => 3.0 -11.0.remainder(4) # => -3.0 -11.0.remainder(-4) # => -3.0 12.0.remainder(4) # => 0.0 12.0.remainder(-4) # => 0.0 -12.0.remainder(4) # => -0.0 -12.0.remainder(-4) # => -0.0 13.0.remainder(4.0) # => 1.0 13.0.remainder(Rational(4, 1)) # => 1.0 Rational(13, 1).remainder(4) # => (1/1) Rational(13, 1).remainder(-4) # => (1/1) Rational(-13, 1).remainder(4) # => (-1/1) Rational(-13, 1).remainder(-4) # => (-1/1)
static VALUE
num_remainder(VALUE x, VALUE y)
{
VALUE z = num_funcall1(x, '%', y);
if ((!rb_equal(z, INT2FIX(0))) &&
((rb_num_negative_int_p(x) &&
rb_num_positive_int_p(y)) ||
(rb_num_positive_int_p(x) &&
rb_num_negative_int_p(y)))) {
if (RB_FLOAT_TYPE_P(y)) {
if (isinf(RFLOAT_VALUE(y))) {
return x;
}
}
return rb_funcall(z, '-', 1, y);
}
return z;
}
Returns self rounded to the nearest value with a precision of digits decimal digits.
Numeric implements this by converting self to a Float and invoking Float#round.
static VALUE
num_round(int argc, VALUE* argv, VALUE num)
{
return flo_round(argc, argv, rb_Float(num));
}
Generates a sequence of numbers; with a block given, traverses the sequence.
Of the Core and Standard Library classes,
Integer, Float, and Rational use this implementation.
A quick example:
squares = []
1.step(by: 2, to: 10) {|i| squares.push(i*i) }
squares # => [1, 9, 25, 49, 81]
The generated sequence:
- Begins with +self+.
- Continues at intervals of +step+ (which may not be zero).
- Ends with the last number that is within or equal to +limit+;
that is, less than or equal to +limit+ if +step+ is positive,
greater than or equal to +limit+ if +step+ is negative.
If +limit+ is not given, the sequence is of infinite length.
If a block is given, calls the block with each number in the sequence;
returns +self+. If no block is given, returns an Enumerator::ArithmeticSequence.
<b>Keyword Arguments</b>
With keyword arguments +by+ and +to+,
their values (or defaults) determine the step and limit:
# Both keywords given.
squares = []
4.step(by: 2, to: 10) {|i| squares.push(i*i) } # => 4
squares # => [16, 36, 64, 100]
cubes = []
3.step(by: -1.5, to: -3) {|i| cubes.push(i*i*i) } # => 3
cubes # => [27.0, 3.375, 0.0, -3.375, -27.0]
squares = []
1.2.step(by: 0.2, to: 2.0) {|f| squares.push(f*f) }
squares # => [1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]
squares = []
Rational(6/5).step(by: 0.2, to: 2.0) {|r| squares.push(r*r) }
squares # => [1.0, 1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]
# Only keyword to given.
squares = []
4.step(to: 10) {|i| squares.push(i*i) } # => 4
squares # => [16, 25, 36, 49, 64, 81, 100]
# Only by given.
# Only keyword by given
squares = []
4.step(by:2) {|i| squares.push(i*i); break if i > 10 }
squares # => [16, 36, 64, 100, 144]
# No block given.
e = 3.step(by: -1.5, to: -3) # => (3.step(by: -1.5, to: -3))
e.class # => Enumerator::ArithmeticSequence
<b>Positional Arguments</b>
With optional positional arguments +limit+ and +step+,
their values (or defaults) determine the step and limit:
squares = []
4.step(10, 2) {|i| squares.push(i*i) } # => 4
squares # => [16, 36, 64, 100]
squares = []
4.step(10) {|i| squares.push(i*i) }
squares # => [16, 25, 36, 49, 64, 81, 100]
squares = []
4.step {|i| squares.push(i*i); break if i > 10 } # => nil
squares # => [16, 25, 36, 49, 64, 81, 100, 121]
Implementation Notes
If all the arguments are integers, the loop operates using an integer counter. If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed <i>floor(n + n*Float::EPSILON) + 1</i> times, where <i>n = (limit - self)/step</i>.
static VALUE
num_step(int argc, VALUE *argv, VALUE from)
{
VALUE to, step;
int desc, inf;
if (!rb_block_given_p()) {
VALUE by = Qundef;
num_step_extract_args(argc, argv, &to, &step, &by);
if (!UNDEF_P(by)) {
step = by;
}
if (NIL_P(step)) {
step = INT2FIX(1);
}
else if (rb_equal(step, INT2FIX(0))) {
rb_raise(rb_eArgError, "step can't be 0");
}
if ((NIL_P(to) || rb_obj_is_kind_of(to, rb_cNumeric)) &&
rb_obj_is_kind_of(step, rb_cNumeric)) {
return rb_arith_seq_new(from, ID2SYM(rb_frame_this_func()), argc, argv,
num_step_size, from, to, step, FALSE);
}
return SIZED_ENUMERATOR_KW(from, 2, ((VALUE [2]){to, step}), num_step_size, FALSE);
}
desc = num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE);
if (rb_equal(step, INT2FIX(0))) {
inf = 1;
}
else if (RB_FLOAT_TYPE_P(to)) {
double f = RFLOAT_VALUE(to);
inf = isinf(f) && (signbit(f) ? desc : !desc);
}
else inf = 0;
if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) {
long i = FIX2LONG(from);
long diff = FIX2LONG(step);
if (inf) {
for (;; i += diff)
rb_yield(LONG2FIX(i));
}
else {
long end = FIX2LONG(to);
if (desc) {
for (; i >= end; i += diff)
rb_yield(LONG2FIX(i));
}
else {
for (; i <= end; i += diff)
rb_yield(LONG2FIX(i));
}
}
}
else if (!ruby_float_step(from, to, step, FALSE, FALSE)) {
VALUE i = from;
if (inf) {
for (;; i = rb_funcall(i, '+', 1, step))
rb_yield(i);
}
else {
ID cmp = desc ? '<' : '>';
for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step))
rb_yield(i);
}
}
return from;
}
Returns the value as a complex.
static VALUE
numeric_to_c(VALUE self)
{
return rb_complex_new1(self);
}
Returns self as an integer; converts using method to_i in the derived class.
Of the Core and Standard Library classes, only Rational and Complex use this implementation.
Examples:
Rational(1, 2).to_int # => 0 Rational(2, 1).to_int # => 2 Complex(2, 0).to_int # => 2 Complex(2, 1) # Raises RangeError (non-zero imaginary part)
static VALUE
num_to_int(VALUE num)
{
return num_funcall0(num, id_to_i);
}
Returns self truncated (toward zero) to a precision of digits decimal digits.
Numeric implements this by converting self to a Float and invoking Float#truncate.
static VALUE
num_truncate(int argc, VALUE *argv, VALUE num)
{
return flo_truncate(argc, argv, rb_Float(num));
}