Ruby  2.0.0p481(2014-05-08revision45883)
gc.c
Go to the documentation of this file.
00001 /**********************************************************************
00002 
00003   gc.c -
00004 
00005   $Author: nagachika $
00006   created at: Tue Oct  5 09:44:46 JST 1993
00007 
00008   Copyright (C) 1993-2007 Yukihiro Matsumoto
00009   Copyright (C) 2000  Network Applied Communication Laboratory, Inc.
00010   Copyright (C) 2000  Information-technology Promotion Agency, Japan
00011 
00012 **********************************************************************/
00013 
00014 #include "ruby/ruby.h"
00015 #include "ruby/st.h"
00016 #include "ruby/re.h"
00017 #include "ruby/io.h"
00018 #include "ruby/thread.h"
00019 #include "ruby/util.h"
00020 #include "eval_intern.h"
00021 #include "vm_core.h"
00022 #include "internal.h"
00023 #include "gc.h"
00024 #include "constant.h"
00025 #include "ruby_atomic.h"
00026 #include "probes.h"
00027 #include <stdio.h>
00028 #include <setjmp.h>
00029 #include <sys/types.h>
00030 #include <assert.h>
00031 
00032 #ifdef HAVE_SYS_TIME_H
00033 #include <sys/time.h>
00034 #endif
00035 
00036 #ifdef HAVE_SYS_RESOURCE_H
00037 #include <sys/resource.h>
00038 #endif
00039 #if defined(__native_client__) && defined(NACL_NEWLIB)
00040 # include "nacl/resource.h"
00041 # undef HAVE_POSIX_MEMALIGN
00042 # undef HAVE_MEMALIGN
00043 
00044 #endif
00045 
00046 #if defined _WIN32 || defined __CYGWIN__
00047 #include <windows.h>
00048 #elif defined(HAVE_POSIX_MEMALIGN)
00049 #elif defined(HAVE_MEMALIGN)
00050 #include <malloc.h>
00051 #endif
00052 
00053 #ifdef HAVE_VALGRIND_MEMCHECK_H
00054 # include <valgrind/memcheck.h>
00055 # ifndef VALGRIND_MAKE_MEM_DEFINED
00056 #  define VALGRIND_MAKE_MEM_DEFINED(p, n) VALGRIND_MAKE_READABLE((p), (n))
00057 # endif
00058 # ifndef VALGRIND_MAKE_MEM_UNDEFINED
00059 #  define VALGRIND_MAKE_MEM_UNDEFINED(p, n) VALGRIND_MAKE_WRITABLE((p), (n))
00060 # endif
00061 #else
00062 # define VALGRIND_MAKE_MEM_DEFINED(p, n) 0
00063 # define VALGRIND_MAKE_MEM_UNDEFINED(p, n) 0
00064 #endif
00065 
00066 #define rb_setjmp(env) RUBY_SETJMP(env)
00067 #define rb_jmp_buf rb_jmpbuf_t
00068 
00069 #ifndef GC_MALLOC_LIMIT
00070 #define GC_MALLOC_LIMIT 8000000
00071 #endif
00072 #define HEAP_MIN_SLOTS 10000
00073 #define FREE_MIN  4096
00074 
00075 typedef struct {
00076     unsigned int initial_malloc_limit;
00077     unsigned int initial_heap_min_slots;
00078     unsigned int initial_free_min;
00079 #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
00080     int gc_stress;
00081 #endif
00082 } ruby_gc_params_t;
00083 
00084 static ruby_gc_params_t initial_params = {
00085     GC_MALLOC_LIMIT,
00086     HEAP_MIN_SLOTS,
00087     FREE_MIN,
00088 #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
00089     FALSE,
00090 #endif
00091 };
00092 
00093 #define nomem_error GET_VM()->special_exceptions[ruby_error_nomemory]
00094 
00095 #ifndef GC_PROFILE_MORE_DETAIL
00096 #define GC_PROFILE_MORE_DETAIL 0
00097 #endif
00098 
00099 typedef struct gc_profile_record {
00100     double gc_time;
00101     double gc_invoke_time;
00102 
00103     size_t heap_total_objects;
00104     size_t heap_use_size;
00105     size_t heap_total_size;
00106 
00107     int is_marked;
00108 
00109 #if GC_PROFILE_MORE_DETAIL
00110     double gc_mark_time;
00111     double gc_sweep_time;
00112 
00113     size_t heap_use_slots;
00114     size_t heap_live_objects;
00115     size_t heap_free_objects;
00116 
00117     int have_finalize;
00118 
00119     size_t allocate_increase;
00120     size_t allocate_limit;
00121 #endif
00122 } gc_profile_record;
00123 
00124 #if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
00125 #pragma pack(push, 1) /* magic for reducing sizeof(RVALUE): 24 -> 20 */
00126 #endif
00127 
00128 typedef struct RVALUE {
00129     union {
00130         struct {
00131             VALUE flags;                /* always 0 for freed obj */
00132             struct RVALUE *next;
00133         } free;
00134         struct RBasic  basic;
00135         struct RObject object;
00136         struct RClass  klass;
00137         struct RFloat  flonum;
00138         struct RString string;
00139         struct RArray  array;
00140         struct RRegexp regexp;
00141         struct RHash   hash;
00142         struct RData   data;
00143         struct RTypedData   typeddata;
00144         struct RStruct rstruct;
00145         struct RBignum bignum;
00146         struct RFile   file;
00147         struct RNode   node;
00148         struct RMatch  match;
00149         struct RRational rational;
00150         struct RComplex complex;
00151     } as;
00152 #ifdef GC_DEBUG
00153     const char *file;
00154     int   line;
00155 #endif
00156 } RVALUE;
00157 
00158 #if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
00159 #pragma pack(pop)
00160 #endif
00161 
00162 struct heaps_slot {
00163     struct heaps_header *header;
00164     uintptr_t *bits;
00165     RVALUE *freelist;
00166     struct heaps_slot *next;
00167     struct heaps_slot *prev;
00168     struct heaps_slot *free_next;
00169 };
00170 
00171 struct heaps_header {
00172     struct heaps_slot *base;
00173     uintptr_t *bits;
00174     RVALUE *start;
00175     RVALUE *end;
00176     size_t limit;
00177 };
00178 
00179 struct heaps_free_bitmap {
00180     struct heaps_free_bitmap *next;
00181 };
00182 
00183 struct gc_list {
00184     VALUE *varptr;
00185     struct gc_list *next;
00186 };
00187 
00188 #define STACK_CHUNK_SIZE 500
00189 
00190 typedef struct stack_chunk {
00191     VALUE data[STACK_CHUNK_SIZE];
00192     struct stack_chunk *next;
00193 } stack_chunk_t;
00194 
00195 typedef struct mark_stack {
00196     stack_chunk_t *chunk;
00197     stack_chunk_t *cache;
00198     size_t index;
00199     size_t limit;
00200     size_t cache_size;
00201     size_t unused_cache_size;
00202 } mark_stack_t;
00203 
00204 #ifndef CALC_EXACT_MALLOC_SIZE
00205 #define CALC_EXACT_MALLOC_SIZE 0
00206 #endif
00207 
00208 typedef struct rb_objspace {
00209     struct {
00210         size_t limit;
00211         size_t increase;
00212 #if CALC_EXACT_MALLOC_SIZE
00213         size_t allocated_size;
00214         size_t allocations;
00215 #endif
00216     } malloc_params;
00217     struct {
00218         size_t increment;
00219         struct heaps_slot *ptr;
00220         struct heaps_slot *sweep_slots;
00221         struct heaps_slot *free_slots;
00222         struct heaps_header **sorted;
00223         size_t length;
00224         size_t used;
00225         struct heaps_free_bitmap *free_bitmap;
00226         RVALUE *range[2];
00227         struct heaps_header *freed;
00228         size_t marked_num;
00229         size_t free_num;
00230         size_t free_min;
00231         size_t final_num;
00232         size_t do_heap_free;
00233     } heap;
00234     struct {
00235         int dont_gc;
00236         int dont_lazy_sweep;
00237         int during_gc;
00238         rb_atomic_t finalizing;
00239     } flags;
00240     struct {
00241         st_table *table;
00242         RVALUE *deferred;
00243     } final;
00244     mark_stack_t mark_stack;
00245     struct {
00246         int run;
00247         gc_profile_record *record;
00248         size_t count;
00249         size_t size;
00250         double invoke_time;
00251     } profile;
00252     struct gc_list *global_list;
00253     size_t count;
00254     size_t total_allocated_object_num;
00255     size_t total_freed_object_num;
00256     int gc_stress;
00257 
00258     struct mark_func_data_struct {
00259         void *data;
00260         void (*mark_func)(VALUE v, void *data);
00261     } *mark_func_data;
00262 } rb_objspace_t;
00263 
00264 #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
00265 #define rb_objspace (*GET_VM()->objspace)
00266 #define ruby_initial_gc_stress  initial_params.gc_stress
00267 int *ruby_initial_gc_stress_ptr = &ruby_initial_gc_stress;
00268 #else
00269 static rb_objspace_t rb_objspace = {{GC_MALLOC_LIMIT}};
00270 int *ruby_initial_gc_stress_ptr = &rb_objspace.gc_stress;
00271 #endif
00272 #define malloc_limit            objspace->malloc_params.limit
00273 #define malloc_increase         objspace->malloc_params.increase
00274 #define heaps                   objspace->heap.ptr
00275 #define heaps_length            objspace->heap.length
00276 #define heaps_used              objspace->heap.used
00277 #define lomem                   objspace->heap.range[0]
00278 #define himem                   objspace->heap.range[1]
00279 #define heaps_inc               objspace->heap.increment
00280 #define heaps_freed             objspace->heap.freed
00281 #define dont_gc                 objspace->flags.dont_gc
00282 #define during_gc               objspace->flags.during_gc
00283 #define finalizing              objspace->flags.finalizing
00284 #define finalizer_table         objspace->final.table
00285 #define deferred_final_list     objspace->final.deferred
00286 #define global_List             objspace->global_list
00287 #define ruby_gc_stress          objspace->gc_stress
00288 #define initial_malloc_limit    initial_params.initial_malloc_limit
00289 #define initial_heap_min_slots  initial_params.initial_heap_min_slots
00290 #define initial_free_min        initial_params.initial_free_min
00291 
00292 #define is_lazy_sweeping(objspace) ((objspace)->heap.sweep_slots != 0)
00293 
00294 #if SIZEOF_LONG == SIZEOF_VOIDP
00295 # define nonspecial_obj_id(obj) (VALUE)((SIGNED_VALUE)(obj)|FIXNUM_FLAG)
00296 # define obj_id_to_ref(objid) ((objid) ^ FIXNUM_FLAG) /* unset FIXNUM_FLAG */
00297 #elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
00298 # define nonspecial_obj_id(obj) LL2NUM((SIGNED_VALUE)(obj) / 2)
00299 # define obj_id_to_ref(objid) (FIXNUM_P(objid) ? \
00300    ((objid) ^ FIXNUM_FLAG) : (NUM2PTR(objid) << 1))
00301 #else
00302 # error not supported
00303 #endif
00304 
00305 #define RANY(o) ((RVALUE*)(o))
00306 #define has_free_object (objspace->heap.free_slots && objspace->heap.free_slots->freelist)
00307 
00308 #define HEAP_HEADER(p) ((struct heaps_header *)(p))
00309 #define GET_HEAP_HEADER(x) (HEAP_HEADER((uintptr_t)(x) & ~(HEAP_ALIGN_MASK)))
00310 #define GET_HEAP_SLOT(x) (GET_HEAP_HEADER(x)->base)
00311 #define GET_HEAP_BITMAP(x) (GET_HEAP_HEADER(x)->bits)
00312 #define NUM_IN_SLOT(p) (((uintptr_t)(p) & HEAP_ALIGN_MASK)/sizeof(RVALUE))
00313 #define BITMAP_INDEX(p) (NUM_IN_SLOT(p) / (sizeof(uintptr_t) * CHAR_BIT))
00314 #define BITMAP_OFFSET(p) (NUM_IN_SLOT(p) & ((sizeof(uintptr_t) * CHAR_BIT)-1))
00315 #define MARKED_IN_BITMAP(bits, p) (bits[BITMAP_INDEX(p)] & ((uintptr_t)1 << BITMAP_OFFSET(p)))
00316 
00317 #ifndef HEAP_ALIGN_LOG
00318 /* default tiny heap size: 16KB */
00319 #define HEAP_ALIGN_LOG 14
00320 #endif
00321 
00322 #define CEILDIV(i, mod) (((i) + (mod) - 1)/(mod))
00323 
00324 enum {
00325     HEAP_ALIGN = (1UL << HEAP_ALIGN_LOG),
00326     HEAP_ALIGN_MASK = (~(~0UL << HEAP_ALIGN_LOG)),
00327     REQUIRED_SIZE_BY_MALLOC = (sizeof(size_t) * 5),
00328     HEAP_SIZE = (HEAP_ALIGN - REQUIRED_SIZE_BY_MALLOC),
00329     HEAP_OBJ_LIMIT = (unsigned int)((HEAP_SIZE - sizeof(struct heaps_header))/sizeof(struct RVALUE)),
00330     HEAP_BITMAP_LIMIT = CEILDIV(CEILDIV(HEAP_SIZE, sizeof(struct RVALUE)), sizeof(uintptr_t) * CHAR_BIT)
00331 };
00332 
00333 int ruby_gc_debug_indent = 0;
00334 VALUE rb_mGC;
00335 extern st_table *rb_class_tbl;
00336 int ruby_disable_gc_stress = 0;
00337 
00338 static void rb_objspace_call_finalizer(rb_objspace_t *objspace);
00339 static VALUE define_final0(VALUE obj, VALUE block);
00340 VALUE rb_define_final(VALUE obj, VALUE block);
00341 VALUE rb_undefine_final(VALUE obj);
00342 static void run_final(rb_objspace_t *objspace, VALUE obj);
00343 static void initial_expand_heap(rb_objspace_t *objspace);
00344 
00345 static void negative_size_allocation_error(const char *);
00346 static void *aligned_malloc(size_t, size_t);
00347 static void aligned_free(void *);
00348 
00349 static void init_mark_stack(mark_stack_t *stack);
00350 
00351 static VALUE lazy_sweep_enable(void);
00352 static int garbage_collect(rb_objspace_t *);
00353 static int gc_prepare_free_objects(rb_objspace_t *);
00354 static void mark_tbl(rb_objspace_t *, st_table *);
00355 static void rest_sweep(rb_objspace_t *);
00356 static void gc_mark_stacked_objects(rb_objspace_t *);
00357 
00358 static double getrusage_time(void);
00359 static inline void gc_prof_timer_start(rb_objspace_t *);
00360 static inline void gc_prof_timer_stop(rb_objspace_t *, int);
00361 static inline void gc_prof_mark_timer_start(rb_objspace_t *);
00362 static inline void gc_prof_mark_timer_stop(rb_objspace_t *);
00363 static inline void gc_prof_sweep_timer_start(rb_objspace_t *);
00364 static inline void gc_prof_sweep_timer_stop(rb_objspace_t *);
00365 static inline void gc_prof_set_malloc_info(rb_objspace_t *);
00366 
00367 
00368 /*
00369   --------------------------- ObjectSpace -----------------------------
00370 */
00371 
00372 #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
00373 rb_objspace_t *
00374 rb_objspace_alloc(void)
00375 {
00376     rb_objspace_t *objspace = malloc(sizeof(rb_objspace_t));
00377     memset(objspace, 0, sizeof(*objspace));
00378     malloc_limit = initial_malloc_limit;
00379     ruby_gc_stress = ruby_initial_gc_stress;
00380 
00381     return objspace;
00382 }
00383 #endif
00384 
00385 #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
00386 static void free_stack_chunks(mark_stack_t *);
00387 
00388 void
00389 rb_objspace_free(rb_objspace_t *objspace)
00390 {
00391     rest_sweep(objspace);
00392     if (objspace->profile.record) {
00393         free(objspace->profile.record);
00394         objspace->profile.record = 0;
00395     }
00396     if (global_List) {
00397         struct gc_list *list, *next;
00398         for (list = global_List; list; list = next) {
00399             next = list->next;
00400             xfree(list);
00401         }
00402     }
00403     if (objspace->heap.free_bitmap) {
00404         struct heaps_free_bitmap *list, *next;
00405         for (list = objspace->heap.free_bitmap; list; list = next) {
00406             next = list->next;
00407             free(list);
00408         }
00409     }
00410     if (objspace->heap.sorted) {
00411         size_t i;
00412         for (i = 0; i < heaps_used; ++i) {
00413             free(objspace->heap.sorted[i]->bits);
00414             aligned_free(objspace->heap.sorted[i]);
00415         }
00416         free(objspace->heap.sorted);
00417         heaps_used = 0;
00418         heaps = 0;
00419     }
00420     free_stack_chunks(&objspace->mark_stack);
00421     free(objspace);
00422 }
00423 #endif
00424 
00425 void
00426 rb_global_variable(VALUE *var)
00427 {
00428     rb_gc_register_address(var);
00429 }
00430 
00431 static void
00432 allocate_sorted_heaps(rb_objspace_t *objspace, size_t next_heaps_length)
00433 {
00434     struct heaps_header **p;
00435     struct heaps_free_bitmap *bits;
00436     size_t size, add, i;
00437 
00438     size = next_heaps_length*sizeof(struct heaps_header *);
00439     add = next_heaps_length - heaps_used;
00440 
00441     if (heaps_used > 0) {
00442         p = (struct heaps_header **)realloc(objspace->heap.sorted, size);
00443         if (p) objspace->heap.sorted = p;
00444     }
00445     else {
00446         p = objspace->heap.sorted = (struct heaps_header **)malloc(size);
00447     }
00448 
00449     if (p == 0) {
00450         during_gc = 0;
00451         rb_memerror();
00452     }
00453 
00454     for (i = 0; i < add; i++) {
00455         bits = (struct heaps_free_bitmap *)malloc(HEAP_BITMAP_LIMIT * sizeof(uintptr_t));
00456         if (bits == 0) {
00457             during_gc = 0;
00458             rb_memerror();
00459             return;
00460         }
00461         bits->next = objspace->heap.free_bitmap;
00462         objspace->heap.free_bitmap = bits;
00463     }
00464 }
00465 
00466 static void
00467 link_free_heap_slot(rb_objspace_t *objspace, struct heaps_slot *slot)
00468 {
00469     slot->free_next = objspace->heap.free_slots;
00470     objspace->heap.free_slots = slot;
00471 }
00472 
00473 static void
00474 unlink_free_heap_slot(rb_objspace_t *objspace, struct heaps_slot *slot)
00475 {
00476     objspace->heap.free_slots = slot->free_next;
00477     slot->free_next = NULL;
00478 }
00479 
00480 static void
00481 assign_heap_slot(rb_objspace_t *objspace)
00482 {
00483     RVALUE *p, *pend, *membase;
00484     struct heaps_slot *slot;
00485     size_t hi, lo, mid;
00486     size_t objs;
00487 
00488     objs = HEAP_OBJ_LIMIT;
00489     p = (RVALUE*)aligned_malloc(HEAP_ALIGN, HEAP_SIZE);
00490     if (p == 0) {
00491         during_gc = 0;
00492         rb_memerror();
00493     }
00494     slot = (struct heaps_slot *)malloc(sizeof(struct heaps_slot));
00495     if (slot == 0) {
00496        aligned_free(p);
00497        during_gc = 0;
00498        rb_memerror();
00499     }
00500     MEMZERO((void*)slot, struct heaps_slot, 1);
00501 
00502     slot->next = heaps;
00503     if (heaps) heaps->prev = slot;
00504     heaps = slot;
00505 
00506     membase = p;
00507     p = (RVALUE*)((VALUE)p + sizeof(struct heaps_header));
00508     if ((VALUE)p % sizeof(RVALUE) != 0) {
00509        p = (RVALUE*)((VALUE)p + sizeof(RVALUE) - ((VALUE)p % sizeof(RVALUE)));
00510        objs = (HEAP_SIZE - (size_t)((VALUE)p - (VALUE)membase))/sizeof(RVALUE);
00511     }
00512 
00513     lo = 0;
00514     hi = heaps_used;
00515     while (lo < hi) {
00516         register RVALUE *mid_membase;
00517         mid = (lo + hi) / 2;
00518         mid_membase = (RVALUE *)objspace->heap.sorted[mid];
00519         if (mid_membase < membase) {
00520             lo = mid + 1;
00521         }
00522         else if (mid_membase > membase) {
00523             hi = mid;
00524         }
00525         else {
00526             rb_bug("same heap slot is allocated: %p at %"PRIuVALUE, (void *)membase, (VALUE)mid);
00527         }
00528     }
00529     if (hi < heaps_used) {
00530         MEMMOVE(&objspace->heap.sorted[hi+1], &objspace->heap.sorted[hi], struct heaps_header*, heaps_used - hi);
00531     }
00532     heaps->header = (struct heaps_header *)membase;
00533     objspace->heap.sorted[hi] = heaps->header;
00534     objspace->heap.sorted[hi]->start = p;
00535     objspace->heap.sorted[hi]->end = (p + objs);
00536     objspace->heap.sorted[hi]->base = heaps;
00537     objspace->heap.sorted[hi]->limit = objs;
00538     assert(objspace->heap.free_bitmap != NULL);
00539     heaps->bits = (uintptr_t *)objspace->heap.free_bitmap;
00540     objspace->heap.sorted[hi]->bits = (uintptr_t *)objspace->heap.free_bitmap;
00541     objspace->heap.free_bitmap = objspace->heap.free_bitmap->next;
00542     memset(heaps->bits, 0, HEAP_BITMAP_LIMIT * sizeof(uintptr_t));
00543     pend = p + objs;
00544     if (lomem == 0 || lomem > p) lomem = p;
00545     if (himem < pend) himem = pend;
00546     heaps_used++;
00547 
00548     while (p < pend) {
00549         p->as.free.flags = 0;
00550         p->as.free.next = heaps->freelist;
00551         heaps->freelist = p;
00552         p++;
00553     }
00554     link_free_heap_slot(objspace, heaps);
00555 }
00556 
00557 static void
00558 add_heap_slots(rb_objspace_t *objspace, size_t add)
00559 {
00560     size_t i;
00561     size_t next_heaps_length;
00562 
00563     next_heaps_length = heaps_used + add;
00564 
00565     if (next_heaps_length > heaps_length) {
00566         allocate_sorted_heaps(objspace, next_heaps_length);
00567         heaps_length = next_heaps_length;
00568     }
00569 
00570     for (i = 0; i < add; i++) {
00571         assign_heap_slot(objspace);
00572     }
00573     heaps_inc = 0;
00574 }
00575 
00576 static void
00577 init_heap(rb_objspace_t *objspace)
00578 {
00579     add_heap_slots(objspace, HEAP_MIN_SLOTS / HEAP_OBJ_LIMIT);
00580     init_mark_stack(&objspace->mark_stack);
00581 
00582 #ifdef USE_SIGALTSTACK
00583     {
00584         /* altstack of another threads are allocated in another place */
00585         rb_thread_t *th = GET_THREAD();
00586         void *tmp = th->altstack;
00587         th->altstack = malloc(rb_sigaltstack_size());
00588         free(tmp); /* free previously allocated area */
00589     }
00590 #endif
00591 
00592     objspace->profile.invoke_time = getrusage_time();
00593     finalizer_table = st_init_numtable();
00594 }
00595 
00596 static void
00597 initial_expand_heap(rb_objspace_t *objspace)
00598 {
00599     size_t min_size = initial_heap_min_slots / HEAP_OBJ_LIMIT;
00600 
00601     if (min_size > heaps_used) {
00602         add_heap_slots(objspace, min_size - heaps_used);
00603     }
00604 }
00605 
00606 static void
00607 set_heaps_increment(rb_objspace_t *objspace)
00608 {
00609     size_t next_heaps_length = (size_t)(heaps_used * 1.8);
00610 
00611     if (next_heaps_length == heaps_used) {
00612         next_heaps_length++;
00613     }
00614 
00615     heaps_inc = next_heaps_length - heaps_used;
00616 
00617     if (next_heaps_length > heaps_length) {
00618         allocate_sorted_heaps(objspace, next_heaps_length);
00619         heaps_length = next_heaps_length;
00620     }
00621 }
00622 
00623 static int
00624 heaps_increment(rb_objspace_t *objspace)
00625 {
00626     if (heaps_inc > 0) {
00627         assign_heap_slot(objspace);
00628         heaps_inc--;
00629         return TRUE;
00630     }
00631     return FALSE;
00632 }
00633 
00634 static VALUE
00635 newobj(VALUE klass, VALUE flags)
00636 {
00637     rb_objspace_t *objspace = &rb_objspace;
00638     VALUE obj;
00639 
00640     if (UNLIKELY(during_gc)) {
00641         dont_gc = 1;
00642         during_gc = 0;
00643         rb_bug("object allocation during garbage collection phase");
00644     }
00645 
00646     if (UNLIKELY(ruby_gc_stress && !ruby_disable_gc_stress)) {
00647         if (!garbage_collect(objspace)) {
00648             during_gc = 0;
00649             rb_memerror();
00650         }
00651     }
00652 
00653     if (UNLIKELY(!has_free_object)) {
00654         if (!gc_prepare_free_objects(objspace)) {
00655             during_gc = 0;
00656             rb_memerror();
00657         }
00658     }
00659 
00660     obj = (VALUE)objspace->heap.free_slots->freelist;
00661     objspace->heap.free_slots->freelist = RANY(obj)->as.free.next;
00662     if (objspace->heap.free_slots->freelist == NULL) {
00663         unlink_free_heap_slot(objspace, objspace->heap.free_slots);
00664     }
00665 
00666     MEMZERO((void*)obj, RVALUE, 1);
00667 #ifdef GC_DEBUG
00668     RANY(obj)->file = rb_sourcefile();
00669     RANY(obj)->line = rb_sourceline();
00670 #endif
00671     objspace->total_allocated_object_num++;
00672 
00673     return obj;
00674 }
00675 
00676 VALUE
00677 rb_newobj(void)
00678 {
00679     return newobj(0, T_NONE);
00680 }
00681 
00682 VALUE
00683 rb_newobj_of(VALUE klass, VALUE flags)
00684 {
00685     VALUE obj;
00686 
00687     obj = newobj(klass, flags);
00688     OBJSETUP(obj, klass, flags);
00689 
00690     return obj;
00691 }
00692 
00693 NODE*
00694 rb_node_newnode(enum node_type type, VALUE a0, VALUE a1, VALUE a2)
00695 {
00696     NODE *n = (NODE*)rb_newobj();
00697 
00698     n->flags |= T_NODE;
00699     nd_set_type(n, type);
00700 
00701     n->u1.value = a0;
00702     n->u2.value = a1;
00703     n->u3.value = a2;
00704 
00705     return n;
00706 }
00707 
00708 VALUE
00709 rb_data_object_alloc(VALUE klass, void *datap, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree)
00710 {
00711     NEWOBJ(data, struct RData);
00712     if (klass) Check_Type(klass, T_CLASS);
00713     OBJSETUP(data, klass, T_DATA);
00714     data->data = datap;
00715     data->dfree = dfree;
00716     data->dmark = dmark;
00717 
00718     return (VALUE)data;
00719 }
00720 
00721 VALUE
00722 rb_data_typed_object_alloc(VALUE klass, void *datap, const rb_data_type_t *type)
00723 {
00724     NEWOBJ(data, struct RTypedData);
00725 
00726     if (klass) Check_Type(klass, T_CLASS);
00727 
00728     OBJSETUP(data, klass, T_DATA);
00729 
00730     data->data = datap;
00731     data->typed_flag = 1;
00732     data->type = type;
00733 
00734     return (VALUE)data;
00735 }
00736 
00737 size_t
00738 rb_objspace_data_type_memsize(VALUE obj)
00739 {
00740     if (RTYPEDDATA_P(obj) && RTYPEDDATA_TYPE(obj)->function.dsize) {
00741         return RTYPEDDATA_TYPE(obj)->function.dsize(RTYPEDDATA_DATA(obj));
00742     }
00743     else {
00744         return 0;
00745     }
00746 }
00747 
00748 const char *
00749 rb_objspace_data_type_name(VALUE obj)
00750 {
00751     if (RTYPEDDATA_P(obj)) {
00752         return RTYPEDDATA_TYPE(obj)->wrap_struct_name;
00753     }
00754     else {
00755         return 0;
00756     }
00757 }
00758 
00759 static void gc_mark(rb_objspace_t *objspace, VALUE ptr);
00760 static void gc_mark_children(rb_objspace_t *objspace, VALUE ptr);
00761 
00762 static inline int
00763 is_pointer_to_heap(rb_objspace_t *objspace, void *ptr)
00764 {
00765     register RVALUE *p = RANY(ptr);
00766     register struct heaps_header *heap;
00767     register size_t hi, lo, mid;
00768 
00769     if (p < lomem || p > himem) return FALSE;
00770     if ((VALUE)p % sizeof(RVALUE) != 0) return FALSE;
00771 
00772     /* check if p looks like a pointer using bsearch*/
00773     lo = 0;
00774     hi = heaps_used;
00775     while (lo < hi) {
00776         mid = (lo + hi) / 2;
00777         heap = objspace->heap.sorted[mid];
00778         if (heap->start <= p) {
00779             if (p < heap->end)
00780                 return TRUE;
00781             lo = mid + 1;
00782         }
00783         else {
00784             hi = mid;
00785         }
00786     }
00787     return FALSE;
00788 }
00789 
00790 static int
00791 free_method_entry_i(ID key, rb_method_entry_t *me, st_data_t data)
00792 {
00793     if (!me->mark) {
00794         rb_free_method_entry(me);
00795     }
00796     return ST_CONTINUE;
00797 }
00798 
00799 void
00800 rb_free_m_table(st_table *tbl)
00801 {
00802     st_foreach(tbl, free_method_entry_i, 0);
00803     st_free_table(tbl);
00804 }
00805 
00806 static int
00807 free_const_entry_i(ID key, rb_const_entry_t *ce, st_data_t data)
00808 {
00809     xfree(ce);
00810     return ST_CONTINUE;
00811 }
00812 
00813 void
00814 rb_free_const_table(st_table *tbl)
00815 {
00816     st_foreach(tbl, free_const_entry_i, 0);
00817     st_free_table(tbl);
00818 }
00819 
00820 static int obj_free(rb_objspace_t *, VALUE);
00821 
00822 static inline struct heaps_slot *
00823 add_slot_local_freelist(rb_objspace_t *objspace, RVALUE *p)
00824 {
00825     struct heaps_slot *slot;
00826 
00827     (void)VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE));
00828     p->as.free.flags = 0;
00829     slot = GET_HEAP_SLOT(p);
00830     p->as.free.next = slot->freelist;
00831     slot->freelist = p;
00832 
00833     return slot;
00834 }
00835 
00836 static void
00837 unlink_heap_slot(rb_objspace_t *objspace, struct heaps_slot *slot)
00838 {
00839     if (slot->prev)
00840         slot->prev->next = slot->next;
00841     if (slot->next)
00842         slot->next->prev = slot->prev;
00843     if (heaps == slot)
00844         heaps = slot->next;
00845     if (objspace->heap.sweep_slots == slot)
00846         objspace->heap.sweep_slots = slot->next;
00847     slot->prev = NULL;
00848     slot->next = NULL;
00849 }
00850 
00851 static void
00852 free_unused_heaps(rb_objspace_t *objspace)
00853 {
00854     size_t i, j;
00855     struct heaps_header *last = 0;
00856 
00857     for (i = j = 1; j < heaps_used; i++) {
00858         if (objspace->heap.sorted[i]->limit == 0) {
00859             struct heaps_header* h = objspace->heap.sorted[i];
00860             ((struct heaps_free_bitmap *)(h->bits))->next =
00861                 objspace->heap.free_bitmap;
00862             objspace->heap.free_bitmap = (struct heaps_free_bitmap *)h->bits;
00863             if (!last) {
00864                 last = objspace->heap.sorted[i];
00865             }
00866             else {
00867                 aligned_free(objspace->heap.sorted[i]);
00868             }
00869             heaps_used--;
00870         }
00871         else {
00872             if (i != j) {
00873                 objspace->heap.sorted[j] = objspace->heap.sorted[i];
00874             }
00875             j++;
00876         }
00877     }
00878     if (last) {
00879         if (last < heaps_freed) {
00880             aligned_free(heaps_freed);
00881             heaps_freed = last;
00882         }
00883         else {
00884             aligned_free(last);
00885         }
00886     }
00887 }
00888 static inline void
00889 make_deferred(RVALUE *p)
00890 {
00891     p->as.basic.flags = (p->as.basic.flags & ~T_MASK) | T_ZOMBIE;
00892 }
00893 
00894 static inline void
00895 make_io_deferred(RVALUE *p)
00896 {
00897     rb_io_t *fptr = p->as.file.fptr;
00898     make_deferred(p);
00899     p->as.data.dfree = (void (*)(void*))rb_io_fptr_finalize;
00900     p->as.data.data = fptr;
00901 }
00902 
00903 static int
00904 obj_free(rb_objspace_t *objspace, VALUE obj)
00905 {
00906     switch (BUILTIN_TYPE(obj)) {
00907       case T_NIL:
00908       case T_FIXNUM:
00909       case T_TRUE:
00910       case T_FALSE:
00911         rb_bug("obj_free() called for broken object");
00912         break;
00913     }
00914 
00915     if (FL_TEST(obj, FL_EXIVAR)) {
00916         rb_free_generic_ivar((VALUE)obj);
00917         FL_UNSET(obj, FL_EXIVAR);
00918     }
00919 
00920     switch (BUILTIN_TYPE(obj)) {
00921       case T_OBJECT:
00922         if (!(RANY(obj)->as.basic.flags & ROBJECT_EMBED) &&
00923             RANY(obj)->as.object.as.heap.ivptr) {
00924             xfree(RANY(obj)->as.object.as.heap.ivptr);
00925         }
00926         break;
00927       case T_MODULE:
00928       case T_CLASS:
00929         rb_clear_cache_by_class((VALUE)obj);
00930         if (RCLASS_M_TBL(obj)) {
00931             rb_free_m_table(RCLASS_M_TBL(obj));
00932         }
00933         if (RCLASS_IV_TBL(obj)) {
00934             st_free_table(RCLASS_IV_TBL(obj));
00935         }
00936         if (RCLASS_CONST_TBL(obj)) {
00937             rb_free_const_table(RCLASS_CONST_TBL(obj));
00938         }
00939         if (RCLASS_IV_INDEX_TBL(obj)) {
00940             st_free_table(RCLASS_IV_INDEX_TBL(obj));
00941         }
00942         xfree(RANY(obj)->as.klass.ptr);
00943         break;
00944       case T_STRING:
00945         rb_str_free(obj);
00946         break;
00947       case T_ARRAY:
00948         rb_ary_free(obj);
00949         break;
00950       case T_HASH:
00951         if (RANY(obj)->as.hash.ntbl) {
00952             st_free_table(RANY(obj)->as.hash.ntbl);
00953         }
00954         break;
00955       case T_REGEXP:
00956         if (RANY(obj)->as.regexp.ptr) {
00957             onig_free(RANY(obj)->as.regexp.ptr);
00958         }
00959         break;
00960       case T_DATA:
00961         if (DATA_PTR(obj)) {
00962             if (RTYPEDDATA_P(obj)) {
00963                 RDATA(obj)->dfree = RANY(obj)->as.typeddata.type->function.dfree;
00964             }
00965             if (RANY(obj)->as.data.dfree == (RUBY_DATA_FUNC)-1) {
00966                 xfree(DATA_PTR(obj));
00967             }
00968             else if (RANY(obj)->as.data.dfree) {
00969                 make_deferred(RANY(obj));
00970                 return 1;
00971             }
00972         }
00973         break;
00974       case T_MATCH:
00975         if (RANY(obj)->as.match.rmatch) {
00976             struct rmatch *rm = RANY(obj)->as.match.rmatch;
00977             onig_region_free(&rm->regs, 0);
00978             if (rm->char_offset)
00979                 xfree(rm->char_offset);
00980             xfree(rm);
00981         }
00982         break;
00983       case T_FILE:
00984         if (RANY(obj)->as.file.fptr) {
00985             make_io_deferred(RANY(obj));
00986             return 1;
00987         }
00988         break;
00989       case T_RATIONAL:
00990       case T_COMPLEX:
00991         break;
00992       case T_ICLASS:
00993         /* iClass shares table with the module */
00994         xfree(RANY(obj)->as.klass.ptr);
00995         break;
00996 
00997       case T_FLOAT:
00998         break;
00999 
01000       case T_BIGNUM:
01001         if (!(RBASIC(obj)->flags & RBIGNUM_EMBED_FLAG) && RBIGNUM_DIGITS(obj)) {
01002             xfree(RBIGNUM_DIGITS(obj));
01003         }
01004         break;
01005       case T_NODE:
01006         switch (nd_type(obj)) {
01007           case NODE_SCOPE:
01008             if (RANY(obj)->as.node.u1.tbl) {
01009                 xfree(RANY(obj)->as.node.u1.tbl);
01010             }
01011             break;
01012           case NODE_ARGS:
01013             if (RANY(obj)->as.node.u3.args) {
01014                 xfree(RANY(obj)->as.node.u3.args);
01015             }
01016             break;
01017           case NODE_ALLOCA:
01018             xfree(RANY(obj)->as.node.u1.node);
01019             break;
01020         }
01021         break;                  /* no need to free iv_tbl */
01022 
01023       case T_STRUCT:
01024         if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 &&
01025             RANY(obj)->as.rstruct.as.heap.ptr) {
01026             xfree(RANY(obj)->as.rstruct.as.heap.ptr);
01027         }
01028         break;
01029 
01030       default:
01031         rb_bug("gc_sweep(): unknown data type 0x%x(%p) 0x%"PRIxVALUE,
01032                BUILTIN_TYPE(obj), (void*)obj, RBASIC(obj)->flags);
01033     }
01034 
01035     return 0;
01036 }
01037 
01038 void
01039 Init_heap(void)
01040 {
01041     init_heap(&rb_objspace);
01042 }
01043 
01044 typedef int each_obj_callback(void *, void *, size_t, void *);
01045 
01046 struct each_obj_args {
01047     each_obj_callback *callback;
01048     void *data;
01049 };
01050 
01051 static VALUE
01052 objspace_each_objects(VALUE arg)
01053 {
01054     size_t i;
01055     RVALUE *membase = 0;
01056     RVALUE *pstart, *pend;
01057     rb_objspace_t *objspace = &rb_objspace;
01058     struct each_obj_args *args = (struct each_obj_args *)arg;
01059     volatile VALUE v;
01060 
01061     i = 0;
01062     while (i < heaps_used) {
01063         while (0 < i && (uintptr_t)membase < (uintptr_t)objspace->heap.sorted[i-1])
01064             i--;
01065         while (i < heaps_used && (uintptr_t)objspace->heap.sorted[i] <= (uintptr_t)membase)
01066             i++;
01067         if (heaps_used <= i)
01068           break;
01069         membase = (RVALUE *)objspace->heap.sorted[i];
01070 
01071         pstart = objspace->heap.sorted[i]->start;
01072         pend = pstart + objspace->heap.sorted[i]->limit;
01073 
01074         for (; pstart != pend; pstart++) {
01075             if (pstart->as.basic.flags) {
01076                 v = (VALUE)pstart; /* acquire to save this object */
01077                 break;
01078             }
01079         }
01080         if (pstart != pend) {
01081             if ((*args->callback)(pstart, pend, sizeof(RVALUE), args->data)) {
01082                 break;
01083             }
01084         }
01085     }
01086     RB_GC_GUARD(v);
01087 
01088     return Qnil;
01089 }
01090 
01091 /*
01092  * rb_objspace_each_objects() is special C API to walk through
01093  * Ruby object space.  This C API is too difficult to use it.
01094  * To be frank, you should not use it. Or you need to read the
01095  * source code of this function and understand what this function does.
01096  *
01097  * 'callback' will be called several times (the number of heap slot,
01098  * at current implementation) with:
01099  *   vstart: a pointer to the first living object of the heap_slot.
01100  *   vend: a pointer to next to the valid heap_slot area.
01101  *   stride: a distance to next VALUE.
01102  *
01103  * If callback() returns non-zero, the iteration will be stopped.
01104  *
01105  * This is a sample callback code to iterate liveness objects:
01106  *
01107  *   int
01108  *   sample_callback(void *vstart, void *vend, int stride, void *data) {
01109  *     VALUE v = (VALUE)vstart;
01110  *     for (; v != (VALUE)vend; v += stride) {
01111  *       if (RBASIC(v)->flags) { // liveness check
01112  *       // do something with live object 'v'
01113  *     }
01114  *     return 0; // continue to iteration
01115  *   }
01116  *
01117  * Note: 'vstart' is not a top of heap_slot.  This point the first
01118  *       living object to grasp at least one object to avoid GC issue.
01119  *       This means that you can not walk through all Ruby object slot
01120  *       including freed object slot.
01121  *
01122  * Note: On this implementation, 'stride' is same as sizeof(RVALUE).
01123  *       However, there are possibilities to pass variable values with
01124  *       'stride' with some reasons.  You must use stride instead of
01125  *       use some constant value in the iteration.
01126  */
01127 void
01128 rb_objspace_each_objects(each_obj_callback *callback, void *data)
01129 {
01130     struct each_obj_args args;
01131     rb_objspace_t *objspace = &rb_objspace;
01132 
01133     rest_sweep(objspace);
01134     objspace->flags.dont_lazy_sweep = TRUE;
01135 
01136     args.callback = callback;
01137     args.data = data;
01138     rb_ensure(objspace_each_objects, (VALUE)&args, lazy_sweep_enable, Qnil);
01139 }
01140 
01141 struct os_each_struct {
01142     size_t num;
01143     VALUE of;
01144 };
01145 
01146 static int
01147 internal_object_p(VALUE obj)
01148 {
01149     RVALUE *p = (RVALUE *)obj;
01150 
01151     if (p->as.basic.flags) {
01152         switch (BUILTIN_TYPE(p)) {
01153           case T_NONE:
01154           case T_ICLASS:
01155           case T_NODE:
01156           case T_ZOMBIE:
01157             break;
01158           case T_CLASS:
01159             if (FL_TEST(p, FL_SINGLETON))
01160               break;
01161           default:
01162             if (!p->as.basic.klass) break;
01163             return 0;
01164         }
01165     }
01166     return 1;
01167 }
01168 
01169 int
01170 rb_objspace_internal_object_p(VALUE obj)
01171 {
01172     return internal_object_p(obj);
01173 }
01174 
01175 static int
01176 os_obj_of_i(void *vstart, void *vend, size_t stride, void *data)
01177 {
01178     struct os_each_struct *oes = (struct os_each_struct *)data;
01179     RVALUE *p = (RVALUE *)vstart, *pend = (RVALUE *)vend;
01180 
01181     for (; p != pend; p++) {
01182         volatile VALUE v = (VALUE)p;
01183         if (!internal_object_p(v)) {
01184             if (!oes->of || rb_obj_is_kind_of(v, oes->of)) {
01185                 rb_yield(v);
01186                 oes->num++;
01187             }
01188         }
01189     }
01190 
01191     return 0;
01192 }
01193 
01194 static VALUE
01195 os_obj_of(VALUE of)
01196 {
01197     struct os_each_struct oes;
01198 
01199     oes.num = 0;
01200     oes.of = of;
01201     rb_objspace_each_objects(os_obj_of_i, &oes);
01202     return SIZET2NUM(oes.num);
01203 }
01204 
01205 /*
01206  *  call-seq:
01207  *     ObjectSpace.each_object([module]) {|obj| ... } -> fixnum
01208  *     ObjectSpace.each_object([module])              -> an_enumerator
01209  *
01210  *  Calls the block once for each living, nonimmediate object in this
01211  *  Ruby process. If <i>module</i> is specified, calls the block
01212  *  for only those classes or modules that match (or are a subclass of)
01213  *  <i>module</i>. Returns the number of objects found. Immediate
01214  *  objects (<code>Fixnum</code>s, <code>Symbol</code>s
01215  *  <code>true</code>, <code>false</code>, and <code>nil</code>) are
01216  *  never returned. In the example below, <code>each_object</code>
01217  *  returns both the numbers we defined and several constants defined in
01218  *  the <code>Math</code> module.
01219  *
01220  *  If no block is given, an enumerator is returned instead.
01221  *
01222  *     a = 102.7
01223  *     b = 95       # Won't be returned
01224  *     c = 12345678987654321
01225  *     count = ObjectSpace.each_object(Numeric) {|x| p x }
01226  *     puts "Total count: #{count}"
01227  *
01228  *  <em>produces:</em>
01229  *
01230  *     12345678987654321
01231  *     102.7
01232  *     2.71828182845905
01233  *     3.14159265358979
01234  *     2.22044604925031e-16
01235  *     1.7976931348623157e+308
01236  *     2.2250738585072e-308
01237  *     Total count: 7
01238  *
01239  */
01240 
01241 static VALUE
01242 os_each_obj(int argc, VALUE *argv, VALUE os)
01243 {
01244     VALUE of;
01245 
01246     rb_secure(4);
01247     if (argc == 0) {
01248         of = 0;
01249     }
01250     else {
01251         rb_scan_args(argc, argv, "01", &of);
01252     }
01253     RETURN_ENUMERATOR(os, 1, &of);
01254     return os_obj_of(of);
01255 }
01256 
01257 /*
01258  *  call-seq:
01259  *     ObjectSpace.undefine_finalizer(obj)
01260  *
01261  *  Removes all finalizers for <i>obj</i>.
01262  *
01263  */
01264 
01265 static VALUE
01266 undefine_final(VALUE os, VALUE obj)
01267 {
01268     return rb_undefine_final(obj);
01269 }
01270 
01271 VALUE
01272 rb_undefine_final(VALUE obj)
01273 {
01274     rb_objspace_t *objspace = &rb_objspace;
01275     st_data_t data = obj;
01276     rb_check_frozen(obj);
01277     st_delete(finalizer_table, &data, 0);
01278     FL_UNSET(obj, FL_FINALIZE);
01279     return obj;
01280 }
01281 
01282 /*
01283  *  call-seq:
01284  *     ObjectSpace.define_finalizer(obj, aProc=proc())
01285  *
01286  *  Adds <i>aProc</i> as a finalizer, to be called after <i>obj</i>
01287  *  was destroyed.
01288  *
01289  */
01290 
01291 static VALUE
01292 define_final(int argc, VALUE *argv, VALUE os)
01293 {
01294     VALUE obj, block;
01295 
01296     rb_scan_args(argc, argv, "11", &obj, &block);
01297     rb_check_frozen(obj);
01298     if (argc == 1) {
01299         block = rb_block_proc();
01300     }
01301     else if (!rb_respond_to(block, rb_intern("call"))) {
01302         rb_raise(rb_eArgError, "wrong type argument %s (should be callable)",
01303                  rb_obj_classname(block));
01304     }
01305 
01306     return define_final0(obj, block);
01307 }
01308 
01309 static VALUE
01310 define_final0(VALUE obj, VALUE block)
01311 {
01312     rb_objspace_t *objspace = &rb_objspace;
01313     VALUE table;
01314     st_data_t data;
01315 
01316     if (!FL_ABLE(obj)) {
01317         rb_raise(rb_eArgError, "cannot define finalizer for %s",
01318                  rb_obj_classname(obj));
01319     }
01320     RBASIC(obj)->flags |= FL_FINALIZE;
01321 
01322     block = rb_ary_new3(2, INT2FIX(rb_safe_level()), block);
01323     OBJ_FREEZE(block);
01324 
01325     if (st_lookup(finalizer_table, obj, &data)) {
01326         table = (VALUE)data;
01327         rb_ary_push(table, block);
01328     }
01329     else {
01330         table = rb_ary_new3(1, block);
01331         RBASIC(table)->klass = 0;
01332         st_add_direct(finalizer_table, obj, table);
01333     }
01334     return block;
01335 }
01336 
01337 VALUE
01338 rb_define_final(VALUE obj, VALUE block)
01339 {
01340     rb_check_frozen(obj);
01341     if (!rb_respond_to(block, rb_intern("call"))) {
01342         rb_raise(rb_eArgError, "wrong type argument %s (should be callable)",
01343                  rb_obj_classname(block));
01344     }
01345     return define_final0(obj, block);
01346 }
01347 
01348 void
01349 rb_gc_copy_finalizer(VALUE dest, VALUE obj)
01350 {
01351     rb_objspace_t *objspace = &rb_objspace;
01352     VALUE table;
01353     st_data_t data;
01354 
01355     if (!FL_TEST(obj, FL_FINALIZE)) return;
01356     if (st_lookup(finalizer_table, obj, &data)) {
01357         table = (VALUE)data;
01358         st_insert(finalizer_table, dest, table);
01359     }
01360     FL_SET(dest, FL_FINALIZE);
01361 }
01362 
01363 static VALUE
01364 run_single_final(VALUE arg)
01365 {
01366     VALUE *args = (VALUE *)arg;
01367     rb_eval_cmd(args[0], args[1], (int)args[2]);
01368     return Qnil;
01369 }
01370 
01371 static void
01372 run_finalizer(rb_objspace_t *objspace, VALUE obj, VALUE table)
01373 {
01374     long i;
01375     int status;
01376     VALUE args[3];
01377     VALUE objid = nonspecial_obj_id(obj);
01378     VALUE saved_errinfo = rb_errinfo();
01379 
01380     if (RARRAY_LEN(table) > 0) {
01381         args[1] = rb_obj_freeze(rb_ary_new3(1, objid));
01382     }
01383     else {
01384         args[1] = 0;
01385     }
01386 
01387     args[2] = (VALUE)rb_safe_level();
01388     rb_set_errinfo(Qnil);
01389     for (i=0; i<RARRAY_LEN(table); i++) {
01390         VALUE final = RARRAY_PTR(table)[i];
01391         args[0] = RARRAY_PTR(final)[1];
01392         args[2] = FIX2INT(RARRAY_PTR(final)[0]);
01393         status = 0;
01394         rb_protect(run_single_final, (VALUE)args, &status);
01395         if (status)
01396             rb_set_errinfo(Qnil);
01397     }
01398     GET_THREAD()->errinfo = saved_errinfo;
01399 }
01400 
01401 static void
01402 run_final(rb_objspace_t *objspace, VALUE obj)
01403 {
01404     RUBY_DATA_FUNC free_func = 0;
01405     st_data_t key, table;
01406 
01407     objspace->heap.final_num--;
01408 
01409     RBASIC(obj)->klass = 0;
01410 
01411     if (RTYPEDDATA_P(obj)) {
01412         free_func = RTYPEDDATA_TYPE(obj)->function.dfree;
01413     }
01414     else {
01415         free_func = RDATA(obj)->dfree;
01416     }
01417     if (free_func) {
01418         (*free_func)(DATA_PTR(obj));
01419     }
01420 
01421     key = (st_data_t)obj;
01422     if (st_delete(finalizer_table, &key, &table)) {
01423         run_finalizer(objspace, obj, (VALUE)table);
01424     }
01425 }
01426 
01427 static void
01428 finalize_list(rb_objspace_t *objspace, RVALUE *p)
01429 {
01430     while (p) {
01431         RVALUE *tmp = p->as.free.next;
01432         run_final(objspace, (VALUE)p);
01433         objspace->total_freed_object_num++;
01434         if (!FL_TEST(p, FL_SINGLETON)) { /* not freeing page */
01435             add_slot_local_freelist(objspace, p);
01436             objspace->heap.free_num++;
01437         }
01438         else {
01439             struct heaps_slot *slot = (struct heaps_slot *)(VALUE)RDATA(p)->dmark;
01440             slot->header->limit--;
01441         }
01442         p = tmp;
01443     }
01444 }
01445 
01446 static void
01447 finalize_deferred(rb_objspace_t *objspace)
01448 {
01449     RVALUE *p;
01450 
01451     while ((p = ATOMIC_PTR_EXCHANGE(deferred_final_list, 0)) != 0) {
01452         finalize_list(objspace, p);
01453     }
01454 }
01455 
01456 void
01457 rb_gc_finalize_deferred(void)
01458 {
01459     rb_objspace_t *objspace = &rb_objspace;
01460     if (ATOMIC_EXCHANGE(finalizing, 1)) return;
01461     finalize_deferred(objspace);
01462     ATOMIC_SET(finalizing, 0);
01463 }
01464 
01465 struct force_finalize_list {
01466     VALUE obj;
01467     VALUE table;
01468     struct force_finalize_list *next;
01469 };
01470 
01471 static int
01472 force_chain_object(st_data_t key, st_data_t val, st_data_t arg)
01473 {
01474     struct force_finalize_list **prev = (struct force_finalize_list **)arg;
01475     struct force_finalize_list *curr = ALLOC(struct force_finalize_list);
01476     curr->obj = key;
01477     curr->table = val;
01478     curr->next = *prev;
01479     *prev = curr;
01480     return ST_CONTINUE;
01481 }
01482 
01483 void
01484 rb_gc_call_finalizer_at_exit(void)
01485 {
01486     rb_objspace_call_finalizer(&rb_objspace);
01487 }
01488 
01489 static void
01490 rb_objspace_call_finalizer(rb_objspace_t *objspace)
01491 {
01492     RVALUE *p, *pend;
01493     RVALUE *final_list = 0;
01494     size_t i;
01495 
01496     rest_sweep(objspace);
01497 
01498     if (ATOMIC_EXCHANGE(finalizing, 1)) return;
01499 
01500     /* run finalizers */
01501     finalize_deferred(objspace);
01502     assert(deferred_final_list == 0);
01503 
01504     /* force to run finalizer */
01505     while (finalizer_table->num_entries) {
01506         struct force_finalize_list *list = 0;
01507         st_foreach(finalizer_table, force_chain_object, (st_data_t)&list);
01508         while (list) {
01509             struct force_finalize_list *curr = list;
01510             st_data_t obj = (st_data_t)curr->obj;
01511             run_finalizer(objspace, curr->obj, curr->table);
01512             st_delete(finalizer_table, &obj, 0);
01513             list = curr->next;
01514             xfree(curr);
01515         }
01516     }
01517 
01518     /* finalizers are part of garbage collection */
01519     during_gc++;
01520 
01521     /* run data object's finalizers */
01522     for (i = 0; i < heaps_used; i++) {
01523         p = objspace->heap.sorted[i]->start; pend = p + objspace->heap.sorted[i]->limit;
01524         while (p < pend) {
01525             if (BUILTIN_TYPE(p) == T_DATA &&
01526                 DATA_PTR(p) && RANY(p)->as.data.dfree &&
01527                 !rb_obj_is_thread((VALUE)p) && !rb_obj_is_mutex((VALUE)p) &&
01528                 !rb_obj_is_fiber((VALUE)p)) {
01529                 p->as.free.flags = 0;
01530                 if (RTYPEDDATA_P(p)) {
01531                     RDATA(p)->dfree = RANY(p)->as.typeddata.type->function.dfree;
01532                 }
01533                 if (RANY(p)->as.data.dfree == (RUBY_DATA_FUNC)-1) {
01534                     xfree(DATA_PTR(p));
01535                 }
01536                 else if (RANY(p)->as.data.dfree) {
01537                     make_deferred(RANY(p));
01538                     RANY(p)->as.free.next = final_list;
01539                     final_list = p;
01540                 }
01541             }
01542             else if (BUILTIN_TYPE(p) == T_FILE) {
01543                 if (RANY(p)->as.file.fptr) {
01544                     make_io_deferred(RANY(p));
01545                     RANY(p)->as.free.next = final_list;
01546                     final_list = p;
01547                 }
01548             }
01549             p++;
01550         }
01551     }
01552     during_gc = 0;
01553     if (final_list) {
01554         finalize_list(objspace, final_list);
01555     }
01556 
01557     st_free_table(finalizer_table);
01558     finalizer_table = 0;
01559     ATOMIC_SET(finalizing, 0);
01560 }
01561 
01562 static inline int
01563 is_id_value(rb_objspace_t *objspace, VALUE ptr)
01564 {
01565     if (!is_pointer_to_heap(objspace, (void *)ptr)) return FALSE;
01566     if (BUILTIN_TYPE(ptr) > T_FIXNUM) return FALSE;
01567     if (BUILTIN_TYPE(ptr) == T_ICLASS) return FALSE;
01568     return TRUE;
01569 }
01570 
01571 static inline int
01572 is_swept_object(rb_objspace_t *objspace, VALUE ptr)
01573 {
01574     struct heaps_slot *slot = objspace->heap.sweep_slots;
01575 
01576     while (slot) {
01577         if ((VALUE)slot->header->start <= ptr && ptr < (VALUE)(slot->header->end))
01578             return FALSE;
01579         slot = slot->next;
01580     }
01581     return TRUE;
01582 }
01583 
01584 static inline int
01585 is_dead_object(rb_objspace_t *objspace, VALUE ptr)
01586 {
01587     if (!is_lazy_sweeping(objspace) || MARKED_IN_BITMAP(GET_HEAP_BITMAP(ptr), ptr))
01588         return FALSE;
01589     if (!is_swept_object(objspace, ptr))
01590         return TRUE;
01591     return FALSE;
01592 }
01593 
01594 static inline int
01595 is_live_object(rb_objspace_t *objspace, VALUE ptr)
01596 {
01597     if (BUILTIN_TYPE(ptr) == 0) return FALSE;
01598     if (RBASIC(ptr)->klass == 0) return FALSE;
01599     if (is_dead_object(objspace, ptr)) return FALSE;
01600     return TRUE;
01601 }
01602 
01603 /*
01604  *  call-seq:
01605  *     ObjectSpace._id2ref(object_id) -> an_object
01606  *
01607  *  Converts an object id to a reference to the object. May not be
01608  *  called on an object id passed as a parameter to a finalizer.
01609  *
01610  *     s = "I am a string"                    #=> "I am a string"
01611  *     r = ObjectSpace._id2ref(s.object_id)   #=> "I am a string"
01612  *     r == s                                 #=> true
01613  *
01614  */
01615 
01616 static VALUE
01617 id2ref(VALUE obj, VALUE objid)
01618 {
01619 #if SIZEOF_LONG == SIZEOF_VOIDP
01620 #define NUM2PTR(x) NUM2ULONG(x)
01621 #elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
01622 #define NUM2PTR(x) NUM2ULL(x)
01623 #endif
01624     rb_objspace_t *objspace = &rb_objspace;
01625     VALUE ptr;
01626     void *p0;
01627 
01628     rb_secure(4);
01629     ptr = NUM2PTR(objid);
01630     p0 = (void *)ptr;
01631 
01632     if (ptr == Qtrue) return Qtrue;
01633     if (ptr == Qfalse) return Qfalse;
01634     if (ptr == Qnil) return Qnil;
01635     if (FIXNUM_P(ptr)) return (VALUE)ptr;
01636     if (FLONUM_P(ptr)) return (VALUE)ptr;
01637     ptr = obj_id_to_ref(objid);
01638 
01639     if ((ptr % sizeof(RVALUE)) == (4 << 2)) {
01640         ID symid = ptr / sizeof(RVALUE);
01641         if (rb_id2name(symid) == 0)
01642             rb_raise(rb_eRangeError, "%p is not symbol id value", p0);
01643         return ID2SYM(symid);
01644     }
01645 
01646     if (!is_id_value(objspace, ptr)) {
01647         rb_raise(rb_eRangeError, "%p is not id value", p0);
01648     }
01649     if (!is_live_object(objspace, ptr)) {
01650         rb_raise(rb_eRangeError, "%p is recycled object", p0);
01651     }
01652     return (VALUE)ptr;
01653 }
01654 
01655 /*
01656  *  Document-method: __id__
01657  *  Document-method: object_id
01658  *
01659  *  call-seq:
01660  *     obj.__id__       -> integer
01661  *     obj.object_id    -> integer
01662  *
01663  *  Returns an integer identifier for +obj+.
01664  *
01665  *  The same number will be returned on all calls to +id+ for a given object,
01666  *  and no two active objects will share an id.
01667  *
01668  *  Object#object_id is a different concept from the +:name+ notation, which
01669  *  returns the symbol id of +name+.
01670  *
01671  *  Replaces the deprecated Object#id.
01672  */
01673 
01674 /*
01675  *  call-seq:
01676  *     obj.hash    -> fixnum
01677  *
01678  *  Generates a Fixnum hash value for this object.
01679  *
01680  *  This function must have the property that <code>a.eql?(b)</code> implies
01681  *  <code>a.hash == b.hash</code>.
01682  *
01683  *  The hash value is used by Hash class.
01684  *
01685  *  Any hash value that exceeds the capacity of a Fixnum will be truncated
01686  *  before being used.
01687  */
01688 
01689 VALUE
01690 rb_obj_id(VALUE obj)
01691 {
01692     /*
01693      *                32-bit VALUE space
01694      *          MSB ------------------------ LSB
01695      *  false   00000000000000000000000000000000
01696      *  true    00000000000000000000000000000010
01697      *  nil     00000000000000000000000000000100
01698      *  undef   00000000000000000000000000000110
01699      *  symbol  ssssssssssssssssssssssss00001110
01700      *  object  oooooooooooooooooooooooooooooo00        = 0 (mod sizeof(RVALUE))
01701      *  fixnum  fffffffffffffffffffffffffffffff1
01702      *
01703      *                    object_id space
01704      *                                       LSB
01705      *  false   00000000000000000000000000000000
01706      *  true    00000000000000000000000000000010
01707      *  nil     00000000000000000000000000000100
01708      *  undef   00000000000000000000000000000110
01709      *  symbol   000SSSSSSSSSSSSSSSSSSSSSSSSSSS0        S...S % A = 4 (S...S = s...s * A + 4)
01710      *  object   oooooooooooooooooooooooooooooo0        o...o % A = 0
01711      *  fixnum  fffffffffffffffffffffffffffffff1        bignum if required
01712      *
01713      *  where A = sizeof(RVALUE)/4
01714      *
01715      *  sizeof(RVALUE) is
01716      *  20 if 32-bit, double is 4-byte aligned
01717      *  24 if 32-bit, double is 8-byte aligned
01718      *  40 if 64-bit
01719      */
01720     if (SYMBOL_P(obj)) {
01721         return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG;
01722     }
01723     else if (FLONUM_P(obj)) {
01724 #if SIZEOF_LONG == SIZEOF_VOIDP
01725         return LONG2NUM((SIGNED_VALUE)obj);
01726 #else
01727         return LL2NUM((SIGNED_VALUE)obj);
01728 #endif
01729     }
01730     else if (SPECIAL_CONST_P(obj)) {
01731         return LONG2NUM((SIGNED_VALUE)obj);
01732     }
01733     return nonspecial_obj_id(obj);
01734 }
01735 
01736 static int
01737 set_zero(st_data_t key, st_data_t val, st_data_t arg)
01738 {
01739     VALUE k = (VALUE)key;
01740     VALUE hash = (VALUE)arg;
01741     rb_hash_aset(hash, k, INT2FIX(0));
01742     return ST_CONTINUE;
01743 }
01744 
01745 /*
01746  *  call-seq:
01747  *     ObjectSpace.count_objects([result_hash]) -> hash
01748  *
01749  *  Counts objects for each type.
01750  *
01751  *  It returns a hash, such as:
01752  *      {
01753  *        :TOTAL=>10000,
01754  *        :FREE=>3011,
01755  *        :T_OBJECT=>6,
01756  *        :T_CLASS=>404,
01757  *        # ...
01758  *      }
01759  *
01760  *  The contents of the returned hash are implementation specific.
01761  *  It may be changed in future.
01762  *
01763  *  If the optional argument +result_hash+ is given,
01764  *  it is overwritten and returned. This is intended to avoid probe effect.
01765  *
01766  *  This method is only expected to work on C Ruby.
01767  *
01768  */
01769 
01770 static VALUE
01771 count_objects(int argc, VALUE *argv, VALUE os)
01772 {
01773     rb_objspace_t *objspace = &rb_objspace;
01774     size_t counts[T_MASK+1];
01775     size_t freed = 0;
01776     size_t total = 0;
01777     size_t i;
01778     VALUE hash;
01779 
01780     if (rb_scan_args(argc, argv, "01", &hash) == 1) {
01781         if (!RB_TYPE_P(hash, T_HASH))
01782             rb_raise(rb_eTypeError, "non-hash given");
01783     }
01784 
01785     for (i = 0; i <= T_MASK; i++) {
01786         counts[i] = 0;
01787     }
01788 
01789     for (i = 0; i < heaps_used; i++) {
01790         RVALUE *p, *pend;
01791 
01792         p = objspace->heap.sorted[i]->start; pend = p + objspace->heap.sorted[i]->limit;
01793         for (;p < pend; p++) {
01794             if (p->as.basic.flags) {
01795                 counts[BUILTIN_TYPE(p)]++;
01796             }
01797             else {
01798                 freed++;
01799             }
01800         }
01801         total += objspace->heap.sorted[i]->limit;
01802     }
01803 
01804     if (hash == Qnil) {
01805         hash = rb_hash_new();
01806     }
01807     else if (!RHASH_EMPTY_P(hash)) {
01808         st_foreach(RHASH_TBL(hash), set_zero, hash);
01809     }
01810     rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total));
01811     rb_hash_aset(hash, ID2SYM(rb_intern("FREE")), SIZET2NUM(freed));
01812 
01813     for (i = 0; i <= T_MASK; i++) {
01814         VALUE type;
01815         switch (i) {
01816 #define COUNT_TYPE(t) case (t): type = ID2SYM(rb_intern(#t)); break;
01817             COUNT_TYPE(T_NONE);
01818             COUNT_TYPE(T_OBJECT);
01819             COUNT_TYPE(T_CLASS);
01820             COUNT_TYPE(T_MODULE);
01821             COUNT_TYPE(T_FLOAT);
01822             COUNT_TYPE(T_STRING);
01823             COUNT_TYPE(T_REGEXP);
01824             COUNT_TYPE(T_ARRAY);
01825             COUNT_TYPE(T_HASH);
01826             COUNT_TYPE(T_STRUCT);
01827             COUNT_TYPE(T_BIGNUM);
01828             COUNT_TYPE(T_FILE);
01829             COUNT_TYPE(T_DATA);
01830             COUNT_TYPE(T_MATCH);
01831             COUNT_TYPE(T_COMPLEX);
01832             COUNT_TYPE(T_RATIONAL);
01833             COUNT_TYPE(T_NIL);
01834             COUNT_TYPE(T_TRUE);
01835             COUNT_TYPE(T_FALSE);
01836             COUNT_TYPE(T_SYMBOL);
01837             COUNT_TYPE(T_FIXNUM);
01838             COUNT_TYPE(T_UNDEF);
01839             COUNT_TYPE(T_NODE);
01840             COUNT_TYPE(T_ICLASS);
01841             COUNT_TYPE(T_ZOMBIE);
01842 #undef COUNT_TYPE
01843           default:              type = INT2NUM(i); break;
01844         }
01845         if (counts[i])
01846             rb_hash_aset(hash, type, SIZET2NUM(counts[i]));
01847     }
01848 
01849     return hash;
01850 }
01851 
01852 
01853 
01854 /*
01855   ------------------------ Garbage Collection ------------------------
01856 */
01857 
01858 /* Sweeping */
01859 
01860 static VALUE
01861 lazy_sweep_enable(void)
01862 {
01863     rb_objspace_t *objspace = &rb_objspace;
01864 
01865     objspace->flags.dont_lazy_sweep = FALSE;
01866     return Qnil;
01867 }
01868 
01869 static void
01870 gc_clear_slot_bits(struct heaps_slot *slot)
01871 {
01872     memset(slot->bits, 0, HEAP_BITMAP_LIMIT * sizeof(uintptr_t));
01873 }
01874 
01875 static size_t
01876 objspace_live_num(rb_objspace_t *objspace)
01877 {
01878     return objspace->total_allocated_object_num - objspace->total_freed_object_num;
01879 }
01880 
01881 static void
01882 slot_sweep(rb_objspace_t *objspace, struct heaps_slot *sweep_slot)
01883 {
01884     size_t empty_num = 0, freed_num = 0, final_num = 0;
01885     RVALUE *p, *pend;
01886     RVALUE *final = deferred_final_list;
01887     int deferred;
01888     uintptr_t *bits;
01889 
01890     p = sweep_slot->header->start; pend = p + sweep_slot->header->limit;
01891     bits = GET_HEAP_BITMAP(p);
01892     while (p < pend) {
01893         if ((!(MARKED_IN_BITMAP(bits, p))) && BUILTIN_TYPE(p) != T_ZOMBIE) {
01894             if (p->as.basic.flags) {
01895                 if ((deferred = obj_free(objspace, (VALUE)p)) ||
01896                     (FL_TEST(p, FL_FINALIZE))) {
01897                     if (!deferred) {
01898                         p->as.free.flags = T_ZOMBIE;
01899                         RDATA(p)->dfree = 0;
01900                     }
01901                     p->as.free.next = deferred_final_list;
01902                     deferred_final_list = p;
01903                     assert(BUILTIN_TYPE(p) == T_ZOMBIE);
01904                     final_num++;
01905                 }
01906                 else {
01907                     (void)VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE));
01908                     p->as.free.flags = 0;
01909                     p->as.free.next = sweep_slot->freelist;
01910                     sweep_slot->freelist = p;
01911                     freed_num++;
01912                 }
01913             }
01914             else {
01915                 empty_num++;
01916             }
01917         }
01918         p++;
01919     }
01920     gc_clear_slot_bits(sweep_slot);
01921     if (final_num + freed_num + empty_num == sweep_slot->header->limit &&
01922         objspace->heap.free_num > objspace->heap.do_heap_free) {
01923         RVALUE *pp;
01924 
01925         for (pp = deferred_final_list; pp != final; pp = pp->as.free.next) {
01926             RDATA(pp)->dmark = (void (*)(void *))(VALUE)sweep_slot;
01927             pp->as.free.flags |= FL_SINGLETON; /* freeing page mark */
01928         }
01929         sweep_slot->header->limit = final_num;
01930         unlink_heap_slot(objspace, sweep_slot);
01931     }
01932     else {
01933         if (freed_num + empty_num > 0) {
01934             link_free_heap_slot(objspace, sweep_slot);
01935         }
01936         else {
01937             sweep_slot->free_next = NULL;
01938         }
01939         objspace->heap.free_num += freed_num + empty_num;
01940     }
01941     objspace->total_freed_object_num += freed_num;
01942     objspace->heap.final_num += final_num;
01943 
01944     if (deferred_final_list && !finalizing) {
01945         rb_thread_t *th = GET_THREAD();
01946         if (th) {
01947             RUBY_VM_SET_FINALIZER_INTERRUPT(th);
01948         }
01949     }
01950 }
01951 
01952 static int
01953 ready_to_gc(rb_objspace_t *objspace)
01954 {
01955     if (dont_gc || during_gc) {
01956         if (!has_free_object) {
01957             if (!heaps_increment(objspace)) {
01958                 set_heaps_increment(objspace);
01959                 heaps_increment(objspace);
01960             }
01961         }
01962         return FALSE;
01963     }
01964     return TRUE;
01965 }
01966 
01967 static void
01968 before_gc_sweep(rb_objspace_t *objspace)
01969 {
01970     objspace->heap.do_heap_free = (size_t)((heaps_used * HEAP_OBJ_LIMIT) * 0.65);
01971     objspace->heap.free_min = (size_t)((heaps_used * HEAP_OBJ_LIMIT)  * 0.2);
01972     if (objspace->heap.free_min < initial_free_min) {
01973         objspace->heap.free_min = initial_free_min;
01974         if (objspace->heap.do_heap_free < initial_free_min)
01975             objspace->heap.do_heap_free = initial_free_min;
01976     }
01977     objspace->heap.sweep_slots = heaps;
01978     objspace->heap.free_num = 0;
01979     objspace->heap.free_slots = NULL;
01980 
01981     /* sweep unlinked method entries */
01982     if (GET_VM()->unlinked_method_entry_list) {
01983         rb_sweep_method_entry(GET_VM());
01984     }
01985 }
01986 
01987 static void
01988 after_gc_sweep(rb_objspace_t *objspace)
01989 {
01990     size_t inc;
01991 
01992     gc_prof_set_malloc_info(objspace);
01993     if (objspace->heap.free_num < objspace->heap.free_min) {
01994         set_heaps_increment(objspace);
01995         heaps_increment(objspace);
01996     }
01997 
01998     inc = ATOMIC_SIZE_EXCHANGE(malloc_increase, 0);
01999     if (inc > malloc_limit) {
02000         malloc_limit +=
02001           (size_t)((inc - malloc_limit) * (double)objspace->heap.marked_num / (heaps_used * HEAP_OBJ_LIMIT));
02002         if (malloc_limit < initial_malloc_limit) malloc_limit = initial_malloc_limit;
02003     }
02004 
02005     free_unused_heaps(objspace);
02006 }
02007 
02008 static int
02009 lazy_sweep(rb_objspace_t *objspace)
02010 {
02011     struct heaps_slot *next;
02012 
02013     heaps_increment(objspace);
02014     while (objspace->heap.sweep_slots) {
02015         next = objspace->heap.sweep_slots->next;
02016         slot_sweep(objspace, objspace->heap.sweep_slots);
02017         objspace->heap.sweep_slots = next;
02018         if (has_free_object) {
02019             during_gc = 0;
02020             return TRUE;
02021         }
02022     }
02023     return FALSE;
02024 }
02025 
02026 static void
02027 rest_sweep(rb_objspace_t *objspace)
02028 {
02029     if (objspace->heap.sweep_slots) {
02030         while (objspace->heap.sweep_slots) {
02031             lazy_sweep(objspace);
02032         }
02033         after_gc_sweep(objspace);
02034     }
02035 }
02036 
02037 static void gc_marks(rb_objspace_t *objspace);
02038 
02039 static int
02040 gc_prepare_free_objects(rb_objspace_t *objspace)
02041 {
02042     int res;
02043 
02044     if (objspace->flags.dont_lazy_sweep)
02045         return garbage_collect(objspace);
02046 
02047 
02048     if (!ready_to_gc(objspace)) return TRUE;
02049 
02050     during_gc++;
02051     gc_prof_timer_start(objspace);
02052     gc_prof_sweep_timer_start(objspace);
02053 
02054     if (objspace->heap.sweep_slots) {
02055         res = lazy_sweep(objspace);
02056         if (res) {
02057             gc_prof_sweep_timer_stop(objspace);
02058             gc_prof_set_malloc_info(objspace);
02059             gc_prof_timer_stop(objspace, Qfalse);
02060             return res;
02061         }
02062         after_gc_sweep(objspace);
02063     }
02064     else {
02065         if (heaps_increment(objspace)) {
02066             during_gc = 0;
02067             return TRUE;
02068         }
02069     }
02070 
02071     gc_marks(objspace);
02072 
02073     before_gc_sweep(objspace);
02074     if (objspace->heap.free_min > (heaps_used * HEAP_OBJ_LIMIT - objspace->heap.marked_num)) {
02075         set_heaps_increment(objspace);
02076     }
02077 
02078     gc_prof_sweep_timer_start(objspace);
02079     if (!(res = lazy_sweep(objspace))) {
02080         after_gc_sweep(objspace);
02081         if (has_free_object) {
02082             res = TRUE;
02083             during_gc = 0;
02084         }
02085     }
02086     gc_prof_sweep_timer_stop(objspace);
02087 
02088     gc_prof_timer_stop(objspace, Qtrue);
02089     return res;
02090 }
02091 
02092 static void
02093 gc_sweep(rb_objspace_t *objspace)
02094 {
02095     struct heaps_slot *next;
02096 
02097     before_gc_sweep(objspace);
02098 
02099     while (objspace->heap.sweep_slots) {
02100         next = objspace->heap.sweep_slots->next;
02101         slot_sweep(objspace, objspace->heap.sweep_slots);
02102         objspace->heap.sweep_slots = next;
02103     }
02104 
02105     after_gc_sweep(objspace);
02106 
02107     during_gc = 0;
02108 }
02109 
02110 /* Marking stack */
02111 
02112 static void push_mark_stack(mark_stack_t *, VALUE);
02113 static int pop_mark_stack(mark_stack_t *, VALUE *);
02114 static void shrink_stack_chunk_cache(mark_stack_t *stack);
02115 
02116 static stack_chunk_t *
02117 stack_chunk_alloc(void)
02118 {
02119     stack_chunk_t *res;
02120 
02121     res = malloc(sizeof(stack_chunk_t));
02122     if (!res)
02123         rb_memerror();
02124 
02125     return res;
02126 }
02127 
02128 static inline int
02129 is_mark_stask_empty(mark_stack_t *stack)
02130 {
02131     return stack->chunk == NULL;
02132 }
02133 
02134 static void
02135 add_stack_chunk_cache(mark_stack_t *stack, stack_chunk_t *chunk)
02136 {
02137     chunk->next = stack->cache;
02138     stack->cache = chunk;
02139     stack->cache_size++;
02140 }
02141 
02142 static void
02143 shrink_stack_chunk_cache(mark_stack_t *stack)
02144 {
02145     stack_chunk_t *chunk;
02146 
02147     if (stack->unused_cache_size > (stack->cache_size/2)) {
02148         chunk = stack->cache;
02149         stack->cache = stack->cache->next;
02150         stack->cache_size--;
02151         free(chunk);
02152     }
02153     stack->unused_cache_size = stack->cache_size;
02154 }
02155 
02156 static void
02157 push_mark_stack_chunk(mark_stack_t *stack)
02158 {
02159     stack_chunk_t *next;
02160 
02161     assert(stack->index == stack->limit);
02162     if (stack->cache_size > 0) {
02163         next = stack->cache;
02164         stack->cache = stack->cache->next;
02165         stack->cache_size--;
02166         if (stack->unused_cache_size > stack->cache_size)
02167             stack->unused_cache_size = stack->cache_size;
02168     }
02169     else {
02170         next = stack_chunk_alloc();
02171     }
02172     next->next = stack->chunk;
02173     stack->chunk = next;
02174     stack->index = 0;
02175 }
02176 
02177 static void
02178 pop_mark_stack_chunk(mark_stack_t *stack)
02179 {
02180     stack_chunk_t *prev;
02181 
02182     prev = stack->chunk->next;
02183     assert(stack->index == 0);
02184     add_stack_chunk_cache(stack, stack->chunk);
02185     stack->chunk = prev;
02186     stack->index = stack->limit;
02187 }
02188 
02189 #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
02190 static void
02191 free_stack_chunks(mark_stack_t *stack)
02192 {
02193     stack_chunk_t *chunk = stack->chunk;
02194     stack_chunk_t *next = NULL;
02195 
02196     while (chunk != NULL) {
02197         next = chunk->next;
02198         free(chunk);
02199         chunk = next;
02200     }
02201 }
02202 #endif
02203 
02204 static void
02205 push_mark_stack(mark_stack_t *stack, VALUE data)
02206 {
02207     if (stack->index == stack->limit) {
02208         push_mark_stack_chunk(stack);
02209     }
02210     stack->chunk->data[stack->index++] = data;
02211 }
02212 
02213 static int
02214 pop_mark_stack(mark_stack_t *stack, VALUE *data)
02215 {
02216     if (is_mark_stask_empty(stack)) {
02217         return FALSE;
02218     }
02219     if (stack->index == 1) {
02220         *data = stack->chunk->data[--stack->index];
02221         pop_mark_stack_chunk(stack);
02222         return TRUE;
02223     }
02224     *data = stack->chunk->data[--stack->index];
02225     return TRUE;
02226 }
02227 
02228 static void
02229 init_mark_stack(mark_stack_t *stack)
02230 {
02231     int i;
02232 
02233     push_mark_stack_chunk(stack);
02234     stack->limit = STACK_CHUNK_SIZE;
02235 
02236     for (i=0; i < 4; i++) {
02237         add_stack_chunk_cache(stack, stack_chunk_alloc());
02238     }
02239     stack->unused_cache_size = stack->cache_size;
02240 }
02241 
02242 
02243 /* Marking */
02244 
02245 #define MARK_IN_BITMAP(bits, p) (bits[BITMAP_INDEX(p)] = bits[BITMAP_INDEX(p)] | ((uintptr_t)1 << BITMAP_OFFSET(p)))
02246 
02247 
02248 #ifdef __ia64
02249 #define SET_STACK_END (SET_MACHINE_STACK_END(&th->machine_stack_end), th->machine_register_stack_end = rb_ia64_bsp())
02250 #else
02251 #define SET_STACK_END SET_MACHINE_STACK_END(&th->machine_stack_end)
02252 #endif
02253 
02254 #define STACK_START (th->machine_stack_start)
02255 #define STACK_END (th->machine_stack_end)
02256 #define STACK_LEVEL_MAX (th->machine_stack_maxsize/sizeof(VALUE))
02257 
02258 #if STACK_GROW_DIRECTION < 0
02259 # define STACK_LENGTH  (size_t)(STACK_START - STACK_END)
02260 #elif STACK_GROW_DIRECTION > 0
02261 # define STACK_LENGTH  (size_t)(STACK_END - STACK_START + 1)
02262 #else
02263 # define STACK_LENGTH  ((STACK_END < STACK_START) ? (size_t)(STACK_START - STACK_END) \
02264                         : (size_t)(STACK_END - STACK_START + 1))
02265 #endif
02266 #if !STACK_GROW_DIRECTION
02267 int ruby_stack_grow_direction;
02268 int
02269 ruby_get_stack_grow_direction(volatile VALUE *addr)
02270 {
02271     VALUE *end;
02272     SET_MACHINE_STACK_END(&end);
02273 
02274     if (end > addr) return ruby_stack_grow_direction = 1;
02275     return ruby_stack_grow_direction = -1;
02276 }
02277 #endif
02278 
02279 size_t
02280 ruby_stack_length(VALUE **p)
02281 {
02282     rb_thread_t *th = GET_THREAD();
02283     SET_STACK_END;
02284     if (p) *p = STACK_UPPER(STACK_END, STACK_START, STACK_END);
02285     return STACK_LENGTH;
02286 }
02287 
02288 #if !(defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK))
02289 static int
02290 stack_check(int water_mark)
02291 {
02292     int ret;
02293     rb_thread_t *th = GET_THREAD();
02294     SET_STACK_END;
02295     ret = STACK_LENGTH > STACK_LEVEL_MAX - water_mark;
02296 #ifdef __ia64
02297     if (!ret) {
02298         ret = (VALUE*)rb_ia64_bsp() - th->machine_register_stack_start >
02299               th->machine_register_stack_maxsize/sizeof(VALUE) - water_mark;
02300     }
02301 #endif
02302     return ret;
02303 }
02304 #endif
02305 
02306 #define STACKFRAME_FOR_CALL_CFUNC 512
02307 
02308 int
02309 ruby_stack_check(void)
02310 {
02311 #if defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK)
02312     return 0;
02313 #else
02314     return stack_check(STACKFRAME_FOR_CALL_CFUNC);
02315 #endif
02316 }
02317 
02318 static void
02319 mark_locations_array(rb_objspace_t *objspace, register VALUE *x, register long n)
02320 {
02321     VALUE v;
02322     while (n--) {
02323         v = *x;
02324         (void)VALGRIND_MAKE_MEM_DEFINED(&v, sizeof(v));
02325         if (is_pointer_to_heap(objspace, (void *)v)) {
02326             gc_mark(objspace, v);
02327         }
02328         x++;
02329     }
02330 }
02331 
02332 static void
02333 gc_mark_locations(rb_objspace_t *objspace, VALUE *start, VALUE *end)
02334 {
02335     long n;
02336 
02337     if (end <= start) return;
02338     n = end - start;
02339     mark_locations_array(objspace, start, n);
02340 }
02341 
02342 void
02343 rb_gc_mark_locations(VALUE *start, VALUE *end)
02344 {
02345     gc_mark_locations(&rb_objspace, start, end);
02346 }
02347 
02348 #define rb_gc_mark_locations(start, end) gc_mark_locations(objspace, (start), (end))
02349 
02350 struct mark_tbl_arg {
02351     rb_objspace_t *objspace;
02352 };
02353 
02354 static int
02355 mark_entry(st_data_t key, st_data_t value, st_data_t data)
02356 {
02357     struct mark_tbl_arg *arg = (void*)data;
02358     gc_mark(arg->objspace, (VALUE)value);
02359     return ST_CONTINUE;
02360 }
02361 
02362 static void
02363 mark_tbl(rb_objspace_t *objspace, st_table *tbl)
02364 {
02365     struct mark_tbl_arg arg;
02366     if (!tbl || tbl->num_entries == 0) return;
02367     arg.objspace = objspace;
02368     st_foreach(tbl, mark_entry, (st_data_t)&arg);
02369 }
02370 
02371 static int
02372 mark_key(st_data_t key, st_data_t value, st_data_t data)
02373 {
02374     struct mark_tbl_arg *arg = (void*)data;
02375     gc_mark(arg->objspace, (VALUE)key);
02376     return ST_CONTINUE;
02377 }
02378 
02379 static void
02380 mark_set(rb_objspace_t *objspace, st_table *tbl)
02381 {
02382     struct mark_tbl_arg arg;
02383     if (!tbl) return;
02384     arg.objspace = objspace;
02385     st_foreach(tbl, mark_key, (st_data_t)&arg);
02386 }
02387 
02388 void
02389 rb_mark_set(st_table *tbl)
02390 {
02391     mark_set(&rb_objspace, tbl);
02392 }
02393 
02394 static int
02395 mark_keyvalue(st_data_t key, st_data_t value, st_data_t data)
02396 {
02397     struct mark_tbl_arg *arg = (void*)data;
02398     gc_mark(arg->objspace, (VALUE)key);
02399     gc_mark(arg->objspace, (VALUE)value);
02400     return ST_CONTINUE;
02401 }
02402 
02403 static void
02404 mark_hash(rb_objspace_t *objspace, st_table *tbl)
02405 {
02406     struct mark_tbl_arg arg;
02407     if (!tbl) return;
02408     arg.objspace = objspace;
02409     st_foreach(tbl, mark_keyvalue, (st_data_t)&arg);
02410 }
02411 
02412 void
02413 rb_mark_hash(st_table *tbl)
02414 {
02415     mark_hash(&rb_objspace, tbl);
02416 }
02417 
02418 static void
02419 mark_method_entry(rb_objspace_t *objspace, const rb_method_entry_t *me)
02420 {
02421     const rb_method_definition_t *def = me->def;
02422 
02423     gc_mark(objspace, me->klass);
02424   again:
02425     if (!def) return;
02426     switch (def->type) {
02427       case VM_METHOD_TYPE_ISEQ:
02428         gc_mark(objspace, def->body.iseq->self);
02429         break;
02430       case VM_METHOD_TYPE_BMETHOD:
02431         gc_mark(objspace, def->body.proc);
02432         break;
02433       case VM_METHOD_TYPE_ATTRSET:
02434       case VM_METHOD_TYPE_IVAR:
02435         gc_mark(objspace, def->body.attr.location);
02436         break;
02437       case VM_METHOD_TYPE_REFINED:
02438         if (def->body.orig_me) {
02439             def = def->body.orig_me->def;
02440             goto again;
02441         }
02442         break;
02443       default:
02444         break; /* ignore */
02445     }
02446 }
02447 
02448 void
02449 rb_mark_method_entry(const rb_method_entry_t *me)
02450 {
02451     mark_method_entry(&rb_objspace, me);
02452 }
02453 
02454 static int
02455 mark_method_entry_i(ID key, const rb_method_entry_t *me, st_data_t data)
02456 {
02457     struct mark_tbl_arg *arg = (void*)data;
02458     mark_method_entry(arg->objspace, me);
02459     return ST_CONTINUE;
02460 }
02461 
02462 static void
02463 mark_m_tbl(rb_objspace_t *objspace, st_table *tbl)
02464 {
02465     struct mark_tbl_arg arg;
02466     if (!tbl) return;
02467     arg.objspace = objspace;
02468     st_foreach(tbl, mark_method_entry_i, (st_data_t)&arg);
02469 }
02470 
02471 static int
02472 mark_const_entry_i(ID key, const rb_const_entry_t *ce, st_data_t data)
02473 {
02474     struct mark_tbl_arg *arg = (void*)data;
02475     gc_mark(arg->objspace, ce->value);
02476     gc_mark(arg->objspace, ce->file);
02477     return ST_CONTINUE;
02478 }
02479 
02480 static void
02481 mark_const_tbl(rb_objspace_t *objspace, st_table *tbl)
02482 {
02483     struct mark_tbl_arg arg;
02484     if (!tbl) return;
02485     arg.objspace = objspace;
02486     st_foreach(tbl, mark_const_entry_i, (st_data_t)&arg);
02487 }
02488 
02489 #if STACK_GROW_DIRECTION < 0
02490 #define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_END, (end) = STACK_START)
02491 #elif STACK_GROW_DIRECTION > 0
02492 #define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_START, (end) = STACK_END+(appendix))
02493 #else
02494 #define GET_STACK_BOUNDS(start, end, appendix) \
02495     ((STACK_END < STACK_START) ? \
02496      ((start) = STACK_END, (end) = STACK_START) : ((start) = STACK_START, (end) = STACK_END+(appendix)))
02497 #endif
02498 
02499 #define numberof(array) (int)(sizeof(array) / sizeof((array)[0]))
02500 
02501 static void
02502 mark_current_machine_context(rb_objspace_t *objspace, rb_thread_t *th)
02503 {
02504     union {
02505         rb_jmp_buf j;
02506         VALUE v[sizeof(rb_jmp_buf) / sizeof(VALUE)];
02507     } save_regs_gc_mark;
02508     VALUE *stack_start, *stack_end;
02509 
02510     FLUSH_REGISTER_WINDOWS;
02511     /* This assumes that all registers are saved into the jmp_buf (and stack) */
02512     rb_setjmp(save_regs_gc_mark.j);
02513 
02514     SET_STACK_END;
02515     GET_STACK_BOUNDS(stack_start, stack_end, 1);
02516 
02517     mark_locations_array(objspace, save_regs_gc_mark.v, numberof(save_regs_gc_mark.v));
02518 
02519     rb_gc_mark_locations(stack_start, stack_end);
02520 #ifdef __ia64
02521     rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end);
02522 #endif
02523 #if defined(__mc68000__)
02524     mark_locations_array(objspace, (VALUE*)((char*)STACK_END + 2),
02525                          (STACK_START - STACK_END));
02526 #endif
02527 }
02528 
02529 void
02530 rb_gc_mark_machine_stack(rb_thread_t *th)
02531 {
02532     rb_objspace_t *objspace = &rb_objspace;
02533     VALUE *stack_start, *stack_end;
02534 
02535     GET_STACK_BOUNDS(stack_start, stack_end, 0);
02536     rb_gc_mark_locations(stack_start, stack_end);
02537 #ifdef __ia64
02538     rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end);
02539 #endif
02540 }
02541 
02542 void
02543 rb_mark_tbl(st_table *tbl)
02544 {
02545     mark_tbl(&rb_objspace, tbl);
02546 }
02547 
02548 void
02549 rb_gc_mark_maybe(VALUE obj)
02550 {
02551     if (is_pointer_to_heap(&rb_objspace, (void *)obj)) {
02552         gc_mark(&rb_objspace, obj);
02553     }
02554 }
02555 
02556 static int
02557 gc_mark_ptr(rb_objspace_t *objspace, VALUE ptr)
02558 {
02559     register uintptr_t *bits = GET_HEAP_BITMAP(ptr);
02560     if (MARKED_IN_BITMAP(bits, ptr)) return 0;
02561     MARK_IN_BITMAP(bits, ptr);
02562     objspace->heap.marked_num++;
02563     return 1;
02564 }
02565 
02566 static int
02567 markable_object_p(rb_objspace_t *objspace, VALUE ptr)
02568 {
02569     register RVALUE *obj = RANY(ptr);
02570 
02571     if (rb_special_const_p(ptr)) return 0; /* special const not marked */
02572     if (obj->as.basic.flags == 0) return 0 ;       /* free cell */
02573 
02574     return 1;
02575 }
02576 
02577 int
02578 rb_objspace_markable_object_p(VALUE obj)
02579 {
02580     return markable_object_p(/* now it doesn't use &rb_objspace */ 0, obj);
02581 }
02582 
02583 static void
02584 gc_mark(rb_objspace_t *objspace, VALUE ptr)
02585 {
02586     if (!markable_object_p(objspace, ptr)) {
02587         return;
02588     }
02589 
02590     if (LIKELY(objspace->mark_func_data == 0)) {
02591         if (!gc_mark_ptr(objspace, ptr)) return; /* already marked */
02592         push_mark_stack(&objspace->mark_stack, ptr);
02593     }
02594     else {
02595         objspace->mark_func_data->mark_func(ptr, objspace->mark_func_data->data);
02596     }
02597 }
02598 
02599 void
02600 rb_gc_mark(VALUE ptr)
02601 {
02602     gc_mark(&rb_objspace, ptr);
02603 }
02604 
02605 static void
02606 gc_mark_children(rb_objspace_t *objspace, VALUE ptr)
02607 {
02608     register RVALUE *obj = RANY(ptr);
02609 
02610     goto marking;               /* skip */
02611 
02612   again:
02613     if (LIKELY(objspace->mark_func_data == 0)) {
02614         obj = RANY(ptr);
02615         if (!markable_object_p(objspace, ptr)) return;
02616         if (!gc_mark_ptr(objspace, ptr)) return;  /* already marked */
02617     }
02618     else {
02619         gc_mark(objspace, ptr);
02620         return;
02621     }
02622 
02623   marking:
02624     if (FL_TEST(obj, FL_EXIVAR)) {
02625         rb_mark_generic_ivar(ptr);
02626     }
02627 
02628     switch (BUILTIN_TYPE(obj)) {
02629       case T_NIL:
02630       case T_FIXNUM:
02631         rb_bug("rb_gc_mark() called for broken object");
02632         break;
02633 
02634       case T_NODE:
02635         switch (nd_type(obj)) {
02636           case NODE_IF:         /* 1,2,3 */
02637           case NODE_FOR:
02638           case NODE_ITER:
02639           case NODE_WHEN:
02640           case NODE_MASGN:
02641           case NODE_RESCUE:
02642           case NODE_RESBODY:
02643           case NODE_CLASS:
02644           case NODE_BLOCK_PASS:
02645             gc_mark(objspace, (VALUE)obj->as.node.u2.node);
02646             /* fall through */
02647           case NODE_BLOCK:      /* 1,3 */
02648           case NODE_ARRAY:
02649           case NODE_DSTR:
02650           case NODE_DXSTR:
02651           case NODE_DREGX:
02652           case NODE_DREGX_ONCE:
02653           case NODE_ENSURE:
02654           case NODE_CALL:
02655           case NODE_DEFS:
02656           case NODE_OP_ASGN1:
02657             gc_mark(objspace, (VALUE)obj->as.node.u1.node);
02658             /* fall through */
02659           case NODE_SUPER:      /* 3 */
02660           case NODE_FCALL:
02661           case NODE_DEFN:
02662           case NODE_ARGS_AUX:
02663             ptr = (VALUE)obj->as.node.u3.node;
02664             goto again;
02665 
02666           case NODE_WHILE:      /* 1,2 */
02667           case NODE_UNTIL:
02668           case NODE_AND:
02669           case NODE_OR:
02670           case NODE_CASE:
02671           case NODE_SCLASS:
02672           case NODE_DOT2:
02673           case NODE_DOT3:
02674           case NODE_FLIP2:
02675           case NODE_FLIP3:
02676           case NODE_MATCH2:
02677           case NODE_MATCH3:
02678           case NODE_OP_ASGN_OR:
02679           case NODE_OP_ASGN_AND:
02680           case NODE_MODULE:
02681           case NODE_ALIAS:
02682           case NODE_VALIAS:
02683           case NODE_ARGSCAT:
02684             gc_mark(objspace, (VALUE)obj->as.node.u1.node);
02685             /* fall through */
02686           case NODE_GASGN:      /* 2 */
02687           case NODE_LASGN:
02688           case NODE_DASGN:
02689           case NODE_DASGN_CURR:
02690           case NODE_IASGN:
02691           case NODE_IASGN2:
02692           case NODE_CVASGN:
02693           case NODE_COLON3:
02694           case NODE_OPT_N:
02695           case NODE_EVSTR:
02696           case NODE_UNDEF:
02697           case NODE_POSTEXE:
02698             ptr = (VALUE)obj->as.node.u2.node;
02699             goto again;
02700 
02701           case NODE_HASH:       /* 1 */
02702           case NODE_LIT:
02703           case NODE_STR:
02704           case NODE_XSTR:
02705           case NODE_DEFINED:
02706           case NODE_MATCH:
02707           case NODE_RETURN:
02708           case NODE_BREAK:
02709           case NODE_NEXT:
02710           case NODE_YIELD:
02711           case NODE_COLON2:
02712           case NODE_SPLAT:
02713           case NODE_TO_ARY:
02714             ptr = (VALUE)obj->as.node.u1.node;
02715             goto again;
02716 
02717           case NODE_SCOPE:      /* 2,3 */
02718           case NODE_CDECL:
02719           case NODE_OPT_ARG:
02720             gc_mark(objspace, (VALUE)obj->as.node.u3.node);
02721             ptr = (VALUE)obj->as.node.u2.node;
02722             goto again;
02723 
02724           case NODE_ARGS:       /* custom */
02725             {
02726                 struct rb_args_info *args = obj->as.node.u3.args;
02727                 if (args) {
02728                     if (args->pre_init)    gc_mark(objspace, (VALUE)args->pre_init);
02729                     if (args->post_init)   gc_mark(objspace, (VALUE)args->post_init);
02730                     if (args->opt_args)    gc_mark(objspace, (VALUE)args->opt_args);
02731                     if (args->kw_args)     gc_mark(objspace, (VALUE)args->kw_args);
02732                     if (args->kw_rest_arg) gc_mark(objspace, (VALUE)args->kw_rest_arg);
02733                 }
02734             }
02735             ptr = (VALUE)obj->as.node.u2.node;
02736             goto again;
02737 
02738           case NODE_ZARRAY:     /* - */
02739           case NODE_ZSUPER:
02740           case NODE_VCALL:
02741           case NODE_GVAR:
02742           case NODE_LVAR:
02743           case NODE_DVAR:
02744           case NODE_IVAR:
02745           case NODE_CVAR:
02746           case NODE_NTH_REF:
02747           case NODE_BACK_REF:
02748           case NODE_REDO:
02749           case NODE_RETRY:
02750           case NODE_SELF:
02751           case NODE_NIL:
02752           case NODE_TRUE:
02753           case NODE_FALSE:
02754           case NODE_ERRINFO:
02755           case NODE_BLOCK_ARG:
02756             break;
02757           case NODE_ALLOCA:
02758             mark_locations_array(objspace,
02759                                  (VALUE*)obj->as.node.u1.value,
02760                                  obj->as.node.u3.cnt);
02761             gc_mark(objspace, (VALUE)obj->as.node.u2.node);
02762             break;
02763 
02764           case NODE_CREF:
02765             gc_mark(objspace, obj->as.node.nd_refinements);
02766             gc_mark(objspace, (VALUE)obj->as.node.u1.node);
02767             ptr = (VALUE)obj->as.node.u3.node;
02768             goto again;
02769 
02770           default:              /* unlisted NODE */
02771             if (is_pointer_to_heap(objspace, obj->as.node.u1.node)) {
02772                 gc_mark(objspace, (VALUE)obj->as.node.u1.node);
02773             }
02774             if (is_pointer_to_heap(objspace, obj->as.node.u2.node)) {
02775                 gc_mark(objspace, (VALUE)obj->as.node.u2.node);
02776             }
02777             if (is_pointer_to_heap(objspace, obj->as.node.u3.node)) {
02778                 gc_mark(objspace, (VALUE)obj->as.node.u3.node);
02779             }
02780         }
02781         return;                 /* no need to mark class. */
02782     }
02783 
02784     gc_mark(objspace, obj->as.basic.klass);
02785     switch (BUILTIN_TYPE(obj)) {
02786       case T_ICLASS:
02787       case T_CLASS:
02788       case T_MODULE:
02789         mark_m_tbl(objspace, RCLASS_M_TBL(obj));
02790         if (!RCLASS_EXT(obj)) break;
02791         mark_tbl(objspace, RCLASS_IV_TBL(obj));
02792         mark_const_tbl(objspace, RCLASS_CONST_TBL(obj));
02793         ptr = RCLASS_SUPER(obj);
02794         goto again;
02795 
02796       case T_ARRAY:
02797         if (FL_TEST(obj, ELTS_SHARED)) {
02798             ptr = obj->as.array.as.heap.aux.shared;
02799             goto again;
02800         }
02801         else {
02802             long i, len = RARRAY_LEN(obj);
02803             VALUE *ptr = RARRAY_PTR(obj);
02804             for (i=0; i < len; i++) {
02805                 gc_mark(objspace, *ptr++);
02806             }
02807         }
02808         break;
02809 
02810       case T_HASH:
02811         mark_hash(objspace, obj->as.hash.ntbl);
02812         ptr = obj->as.hash.ifnone;
02813         goto again;
02814 
02815       case T_STRING:
02816 #define STR_ASSOC FL_USER3   /* copied from string.c */
02817         if (FL_TEST(obj, RSTRING_NOEMBED) && FL_ANY(obj, ELTS_SHARED|STR_ASSOC)) {
02818             ptr = obj->as.string.as.heap.aux.shared;
02819             goto again;
02820         }
02821         break;
02822 
02823       case T_DATA:
02824         if (RTYPEDDATA_P(obj)) {
02825             RUBY_DATA_FUNC mark_func = obj->as.typeddata.type->function.dmark;
02826             if (mark_func) (*mark_func)(DATA_PTR(obj));
02827         }
02828         else {
02829             if (obj->as.data.dmark) (*obj->as.data.dmark)(DATA_PTR(obj));
02830         }
02831         break;
02832 
02833       case T_OBJECT:
02834         {
02835             long i, len = ROBJECT_NUMIV(obj);
02836             VALUE *ptr = ROBJECT_IVPTR(obj);
02837             for (i  = 0; i < len; i++) {
02838                 gc_mark(objspace, *ptr++);
02839             }
02840         }
02841         break;
02842 
02843       case T_FILE:
02844         if (obj->as.file.fptr) {
02845             gc_mark(objspace, obj->as.file.fptr->pathv);
02846             gc_mark(objspace, obj->as.file.fptr->tied_io_for_writing);
02847             gc_mark(objspace, obj->as.file.fptr->writeconv_asciicompat);
02848             gc_mark(objspace, obj->as.file.fptr->writeconv_pre_ecopts);
02849             gc_mark(objspace, obj->as.file.fptr->encs.ecopts);
02850             gc_mark(objspace, obj->as.file.fptr->write_lock);
02851         }
02852         break;
02853 
02854       case T_REGEXP:
02855         ptr = obj->as.regexp.src;
02856         goto again;
02857 
02858       case T_FLOAT:
02859       case T_BIGNUM:
02860       case T_ZOMBIE:
02861         break;
02862 
02863       case T_MATCH:
02864         gc_mark(objspace, obj->as.match.regexp);
02865         if (obj->as.match.str) {
02866             ptr = obj->as.match.str;
02867             goto again;
02868         }
02869         break;
02870 
02871       case T_RATIONAL:
02872         gc_mark(objspace, obj->as.rational.num);
02873         ptr = obj->as.rational.den;
02874         goto again;
02875 
02876       case T_COMPLEX:
02877         gc_mark(objspace, obj->as.complex.real);
02878         ptr = obj->as.complex.imag;
02879         goto again;
02880 
02881       case T_STRUCT:
02882         {
02883             long len = RSTRUCT_LEN(obj);
02884             VALUE *ptr = RSTRUCT_PTR(obj);
02885 
02886             while (len--) {
02887                 gc_mark(objspace, *ptr++);
02888             }
02889         }
02890         break;
02891 
02892       default:
02893         rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s",
02894                BUILTIN_TYPE(obj), (void *)obj,
02895                is_pointer_to_heap(objspace, obj) ? "corrupted object" : "non object");
02896     }
02897 }
02898 
02899 static void
02900 gc_mark_stacked_objects(rb_objspace_t *objspace)
02901 {
02902     mark_stack_t *mstack = &objspace->mark_stack;
02903     VALUE obj = 0;
02904 
02905     if (!mstack->index) return;
02906     while (pop_mark_stack(mstack, &obj)) {
02907         gc_mark_children(objspace, obj);
02908     }
02909     shrink_stack_chunk_cache(mstack);
02910 }
02911 
02912 static void
02913 gc_marks(rb_objspace_t *objspace)
02914 {
02915     struct gc_list *list;
02916     rb_thread_t *th = GET_THREAD();
02917     struct mark_func_data_struct *prev_mark_func_data;
02918 
02919     prev_mark_func_data = objspace->mark_func_data;
02920     objspace->mark_func_data = 0;
02921 
02922     gc_prof_mark_timer_start(objspace);
02923     objspace->heap.marked_num = 0;
02924     objspace->count++;
02925 
02926     SET_STACK_END;
02927 
02928     th->vm->self ? rb_gc_mark(th->vm->self) : rb_vm_mark(th->vm);
02929 
02930     mark_tbl(objspace, finalizer_table);
02931     mark_current_machine_context(objspace, th);
02932 
02933     rb_gc_mark_symbols();
02934     rb_gc_mark_encodings();
02935 
02936     /* mark protected global variables */
02937     for (list = global_List; list; list = list->next) {
02938         rb_gc_mark_maybe(*list->varptr);
02939     }
02940     rb_mark_end_proc();
02941     rb_gc_mark_global_tbl();
02942 
02943     mark_tbl(objspace, rb_class_tbl);
02944 
02945     /* mark generic instance variables for special constants */
02946     rb_mark_generic_ivar_tbl();
02947 
02948     rb_gc_mark_parser();
02949 
02950     rb_gc_mark_unlinked_live_method_entries(th->vm);
02951 
02952     /* marking-loop */
02953     gc_mark_stacked_objects(objspace);
02954 
02955     gc_prof_mark_timer_stop(objspace);
02956 
02957     objspace->mark_func_data = prev_mark_func_data;
02958 }
02959 
02960 /* GC */
02961 
02962 void
02963 rb_gc_force_recycle(VALUE p)
02964 {
02965     rb_objspace_t *objspace = &rb_objspace;
02966     struct heaps_slot *slot;
02967 
02968     objspace->total_freed_object_num++;
02969     if (MARKED_IN_BITMAP(GET_HEAP_BITMAP(p), p)) {
02970         add_slot_local_freelist(objspace, (RVALUE *)p);
02971     }
02972     else {
02973         objspace->heap.free_num++;
02974         slot = add_slot_local_freelist(objspace, (RVALUE *)p);
02975         if (slot->free_next == NULL) {
02976             link_free_heap_slot(objspace, slot);
02977         }
02978     }
02979 }
02980 
02981 void
02982 rb_gc_register_mark_object(VALUE obj)
02983 {
02984     VALUE ary = GET_THREAD()->vm->mark_object_ary;
02985     rb_ary_push(ary, obj);
02986 }
02987 
02988 void
02989 rb_gc_register_address(VALUE *addr)
02990 {
02991     rb_objspace_t *objspace = &rb_objspace;
02992     struct gc_list *tmp;
02993 
02994     tmp = ALLOC(struct gc_list);
02995     tmp->next = global_List;
02996     tmp->varptr = addr;
02997     global_List = tmp;
02998 }
02999 
03000 void
03001 rb_gc_unregister_address(VALUE *addr)
03002 {
03003     rb_objspace_t *objspace = &rb_objspace;
03004     struct gc_list *tmp = global_List;
03005 
03006     if (tmp->varptr == addr) {
03007         global_List = tmp->next;
03008         xfree(tmp);
03009         return;
03010     }
03011     while (tmp->next) {
03012         if (tmp->next->varptr == addr) {
03013             struct gc_list *t = tmp->next;
03014 
03015             tmp->next = tmp->next->next;
03016             xfree(t);
03017             break;
03018         }
03019         tmp = tmp->next;
03020     }
03021 }
03022 
03023 #define GC_NOTIFY 0
03024 
03025 static int
03026 garbage_collect(rb_objspace_t *objspace)
03027 {
03028     if (GC_NOTIFY) printf("start garbage_collect()\n");
03029 
03030     if (!heaps) {
03031         return FALSE;
03032     }
03033     if (!ready_to_gc(objspace)) {
03034         return TRUE;
03035     }
03036 
03037     gc_prof_timer_start(objspace);
03038 
03039     rest_sweep(objspace);
03040 
03041     during_gc++;
03042     gc_marks(objspace);
03043 
03044     gc_prof_sweep_timer_start(objspace);
03045     gc_sweep(objspace);
03046     gc_prof_sweep_timer_stop(objspace);
03047 
03048     gc_prof_timer_stop(objspace, Qtrue);
03049     if (GC_NOTIFY) printf("end garbage_collect()\n");
03050     return TRUE;
03051 }
03052 
03053 static void *
03054 gc_with_gvl(void *ptr)
03055 {
03056     return (void *)(VALUE)garbage_collect((rb_objspace_t *)ptr);
03057 }
03058 
03059 static int
03060 garbage_collect_with_gvl(rb_objspace_t *objspace)
03061 {
03062     if (dont_gc) return TRUE;
03063     if (ruby_thread_has_gvl_p()) {
03064         return garbage_collect(objspace);
03065     }
03066     else {
03067         if (ruby_native_thread_p()) {
03068             return (int)(VALUE)rb_thread_call_with_gvl(gc_with_gvl, (void *)objspace);
03069         }
03070         else {
03071             /* no ruby thread */
03072             fprintf(stderr, "[FATAL] failed to allocate memory\n");
03073             exit(EXIT_FAILURE);
03074         }
03075     }
03076 }
03077 
03078 int
03079 rb_garbage_collect(void)
03080 {
03081     return garbage_collect(&rb_objspace);
03082 }
03083 
03084 #undef Init_stack
03085 
03086 void
03087 Init_stack(volatile VALUE *addr)
03088 {
03089     ruby_init_stack(addr);
03090 }
03091 
03092 /*
03093  *  call-seq:
03094  *     GC.start                     -> nil
03095  *     gc.garbage_collect           -> nil
03096  *     ObjectSpace.garbage_collect  -> nil
03097  *
03098  *  Initiates garbage collection, unless manually disabled.
03099  *
03100  */
03101 
03102 VALUE
03103 rb_gc_start(void)
03104 {
03105     rb_gc();
03106     return Qnil;
03107 }
03108 
03109 void
03110 rb_gc(void)
03111 {
03112     rb_objspace_t *objspace = &rb_objspace;
03113     garbage_collect(objspace);
03114     if (!finalizing) finalize_deferred(objspace);
03115     free_unused_heaps(objspace);
03116 }
03117 
03118 int
03119 rb_during_gc(void)
03120 {
03121     rb_objspace_t *objspace = &rb_objspace;
03122     return during_gc;
03123 }
03124 
03125 /*
03126  *  call-seq:
03127  *     GC.count -> Integer
03128  *
03129  *  The number of times GC occurred.
03130  *
03131  *  It returns the number of times GC occurred since the process started.
03132  *
03133  */
03134 
03135 static VALUE
03136 gc_count(VALUE self)
03137 {
03138     return UINT2NUM(rb_objspace.count);
03139 }
03140 
03141 /*
03142  *  call-seq:
03143  *     GC.stat -> Hash
03144  *
03145  *  Returns a Hash containing information about the GC.
03146  *
03147  *  The hash includes information about internal statistics about GC such as:
03148  *
03149  *      {
03150  *          :count=>0,
03151  *          :heap_used=>12,
03152  *          :heap_length=>12,
03153  *          :heap_increment=>0,
03154  *          :heap_live_num=>7539,
03155  *          :heap_free_num=>88,
03156  *          :heap_final_num=>0,
03157  *          :total_allocated_object=>7630,
03158  *          :total_freed_object=>88
03159  *      }
03160  *
03161  *  The contents of the hash are implementation specific and may be changed in
03162  *  the future.
03163  *
03164  *  This method is only expected to work on C Ruby.
03165  *
03166  */
03167 
03168 static VALUE
03169 gc_stat(int argc, VALUE *argv, VALUE self)
03170 {
03171     rb_objspace_t *objspace = &rb_objspace;
03172     VALUE hash;
03173     static VALUE sym_count;
03174     static VALUE sym_heap_used, sym_heap_length, sym_heap_increment;
03175     static VALUE sym_heap_live_num, sym_heap_free_num, sym_heap_final_num;
03176     static VALUE sym_total_allocated_object, sym_total_freed_object;
03177     if (sym_count == 0) {
03178         sym_count = ID2SYM(rb_intern_const("count"));
03179         sym_heap_used = ID2SYM(rb_intern_const("heap_used"));
03180         sym_heap_length = ID2SYM(rb_intern_const("heap_length"));
03181         sym_heap_increment = ID2SYM(rb_intern_const("heap_increment"));
03182         sym_heap_live_num = ID2SYM(rb_intern_const("heap_live_num"));
03183         sym_heap_free_num = ID2SYM(rb_intern_const("heap_free_num"));
03184         sym_heap_final_num = ID2SYM(rb_intern_const("heap_final_num"));
03185         sym_total_allocated_object = ID2SYM(rb_intern_const("total_allocated_object"));
03186         sym_total_freed_object = ID2SYM(rb_intern_const("total_freed_object"));
03187     }
03188 
03189     if (rb_scan_args(argc, argv, "01", &hash) == 1) {
03190         if (!RB_TYPE_P(hash, T_HASH))
03191             rb_raise(rb_eTypeError, "non-hash given");
03192     }
03193 
03194     if (hash == Qnil) {
03195         hash = rb_hash_new();
03196     }
03197 
03198     rest_sweep(objspace);
03199 
03200     rb_hash_aset(hash, sym_count, SIZET2NUM(objspace->count));
03201     /* implementation dependent counters */
03202     rb_hash_aset(hash, sym_heap_used, SIZET2NUM(objspace->heap.used));
03203     rb_hash_aset(hash, sym_heap_length, SIZET2NUM(objspace->heap.length));
03204     rb_hash_aset(hash, sym_heap_increment, SIZET2NUM(objspace->heap.increment));
03205     rb_hash_aset(hash, sym_heap_live_num, SIZET2NUM(objspace_live_num(objspace)));
03206     rb_hash_aset(hash, sym_heap_free_num, SIZET2NUM(objspace->heap.free_num));
03207     rb_hash_aset(hash, sym_heap_final_num, SIZET2NUM(objspace->heap.final_num));
03208     rb_hash_aset(hash, sym_total_allocated_object, SIZET2NUM(objspace->total_allocated_object_num));
03209     rb_hash_aset(hash, sym_total_freed_object, SIZET2NUM(objspace->total_freed_object_num));
03210 
03211     return hash;
03212 }
03213 
03214 /*
03215  *  call-seq:
03216  *    GC.stress     -> true or false
03217  *
03218  *  Returns current status of GC stress mode.
03219  */
03220 
03221 static VALUE
03222 gc_stress_get(VALUE self)
03223 {
03224     rb_objspace_t *objspace = &rb_objspace;
03225     return ruby_gc_stress ? Qtrue : Qfalse;
03226 }
03227 
03228 /*
03229  *  call-seq:
03230  *    GC.stress = bool          -> bool
03231  *
03232  *  Updates the GC stress mode.
03233  *
03234  *  When stress mode is enabled, the GC is invoked at every GC opportunity:
03235  *  all memory and object allocations.
03236  *
03237  *  Enabling stress mode will degrade performance, it is only for debugging.
03238  */
03239 
03240 static VALUE
03241 gc_stress_set(VALUE self, VALUE flag)
03242 {
03243     rb_objspace_t *objspace = &rb_objspace;
03244     rb_secure(2);
03245     ruby_gc_stress = RTEST(flag);
03246     return flag;
03247 }
03248 
03249 /*
03250  *  call-seq:
03251  *     GC.enable    -> true or false
03252  *
03253  *  Enables garbage collection, returning +true+ if garbage
03254  *  collection was previously disabled.
03255  *
03256  *     GC.disable   #=> false
03257  *     GC.enable    #=> true
03258  *     GC.enable    #=> false
03259  *
03260  */
03261 
03262 VALUE
03263 rb_gc_enable(void)
03264 {
03265     rb_objspace_t *objspace = &rb_objspace;
03266     int old = dont_gc;
03267 
03268     dont_gc = FALSE;
03269     return old ? Qtrue : Qfalse;
03270 }
03271 
03272 /*
03273  *  call-seq:
03274  *     GC.disable    -> true or false
03275  *
03276  *  Disables garbage collection, returning +true+ if garbage
03277  *  collection was already disabled.
03278  *
03279  *     GC.disable   #=> false
03280  *     GC.disable   #=> true
03281  *
03282  */
03283 
03284 VALUE
03285 rb_gc_disable(void)
03286 {
03287     rb_objspace_t *objspace = &rb_objspace;
03288     int old = dont_gc;
03289 
03290     rest_sweep(objspace);
03291 
03292     dont_gc = TRUE;
03293     return old ? Qtrue : Qfalse;
03294 }
03295 
03296 void
03297 rb_gc_set_params(void)
03298 {
03299     char *malloc_limit_ptr, *heap_min_slots_ptr, *free_min_ptr;
03300 
03301     if (rb_safe_level() > 0) return;
03302 
03303     malloc_limit_ptr = getenv("RUBY_GC_MALLOC_LIMIT");
03304     if (malloc_limit_ptr != NULL) {
03305         int malloc_limit_i = atoi(malloc_limit_ptr);
03306         if (RTEST(ruby_verbose))
03307             fprintf(stderr, "malloc_limit=%d (%d)\n",
03308                     malloc_limit_i, initial_malloc_limit);
03309         if (malloc_limit_i > 0) {
03310             initial_malloc_limit = malloc_limit_i;
03311         }
03312     }
03313 
03314     heap_min_slots_ptr = getenv("RUBY_HEAP_MIN_SLOTS");
03315     if (heap_min_slots_ptr != NULL) {
03316         int heap_min_slots_i = atoi(heap_min_slots_ptr);
03317         if (RTEST(ruby_verbose))
03318             fprintf(stderr, "heap_min_slots=%d (%d)\n",
03319                     heap_min_slots_i, initial_heap_min_slots);
03320         if (heap_min_slots_i > 0) {
03321             initial_heap_min_slots = heap_min_slots_i;
03322             initial_expand_heap(&rb_objspace);
03323         }
03324     }
03325 
03326     free_min_ptr = getenv("RUBY_FREE_MIN");
03327     if (free_min_ptr != NULL) {
03328         int free_min_i = atoi(free_min_ptr);
03329         if (RTEST(ruby_verbose))
03330             fprintf(stderr, "free_min=%d (%d)\n", free_min_i, initial_free_min);
03331         if (free_min_i > 0) {
03332             initial_free_min = free_min_i;
03333         }
03334     }
03335 }
03336 
03337 void
03338 rb_objspace_reachable_objects_from(VALUE obj, void (func)(VALUE, void *), void *data)
03339 {
03340     rb_objspace_t *objspace = &rb_objspace;
03341 
03342     if (markable_object_p(objspace, obj)) {
03343         struct mark_func_data_struct mfd;
03344         mfd.mark_func = func;
03345         mfd.data = data;
03346         objspace->mark_func_data = &mfd;
03347         gc_mark_children(objspace, obj);
03348         objspace->mark_func_data = 0;
03349     }
03350 }
03351 
03352 /*
03353   ------------------------ Extended allocator ------------------------
03354 */
03355 
03356 static void vm_xfree(rb_objspace_t *objspace, void *ptr);
03357 
03358 static void *
03359 negative_size_allocation_error_with_gvl(void *ptr)
03360 {
03361     rb_raise(rb_eNoMemError, "%s", (const char *)ptr);
03362     return 0; /* should not be reached */
03363 }
03364 
03365 static void
03366 negative_size_allocation_error(const char *msg)
03367 {
03368     if (ruby_thread_has_gvl_p()) {
03369         rb_raise(rb_eNoMemError, "%s", msg);
03370     }
03371     else {
03372         if (ruby_native_thread_p()) {
03373             rb_thread_call_with_gvl(negative_size_allocation_error_with_gvl, (void *)msg);
03374         }
03375         else {
03376             fprintf(stderr, "[FATAL] %s\n", msg);
03377             exit(EXIT_FAILURE);
03378         }
03379     }
03380 }
03381 
03382 static void *
03383 ruby_memerror_body(void *dummy)
03384 {
03385     rb_memerror();
03386     return 0;
03387 }
03388 
03389 static void
03390 ruby_memerror(void)
03391 {
03392     if (ruby_thread_has_gvl_p()) {
03393         rb_memerror();
03394     }
03395     else {
03396         if (ruby_native_thread_p()) {
03397             rb_thread_call_with_gvl(ruby_memerror_body, 0);
03398         }
03399         else {
03400             /* no ruby thread */
03401             fprintf(stderr, "[FATAL] failed to allocate memory\n");
03402             exit(EXIT_FAILURE);
03403         }
03404     }
03405 }
03406 
03407 void
03408 rb_memerror(void)
03409 {
03410     rb_thread_t *th = GET_THREAD();
03411     if (!nomem_error ||
03412         (rb_thread_raised_p(th, RAISED_NOMEMORY) && rb_safe_level() < 4)) {
03413         fprintf(stderr, "[FATAL] failed to allocate memory\n");
03414         exit(EXIT_FAILURE);
03415     }
03416     if (rb_thread_raised_p(th, RAISED_NOMEMORY)) {
03417         rb_thread_raised_clear(th);
03418         GET_THREAD()->errinfo = nomem_error;
03419         JUMP_TAG(TAG_RAISE);
03420     }
03421     rb_thread_raised_set(th, RAISED_NOMEMORY);
03422     rb_exc_raise(nomem_error);
03423 }
03424 
03425 static void *
03426 aligned_malloc(size_t alignment, size_t size)
03427 {
03428     void *res;
03429 
03430 #if defined __MINGW32__
03431     res = __mingw_aligned_malloc(size, alignment);
03432 #elif defined _WIN32 && !defined __CYGWIN__
03433     res = _aligned_malloc(size, alignment);
03434 #elif defined(HAVE_POSIX_MEMALIGN)
03435     if (posix_memalign(&res, alignment, size) == 0) {
03436         return res;
03437     }
03438     else {
03439         return NULL;
03440     }
03441 #elif defined(HAVE_MEMALIGN)
03442     res = memalign(alignment, size);
03443 #else
03444     char* aligned;
03445     res = malloc(alignment + size + sizeof(void*));
03446     aligned = (char*)res + alignment + sizeof(void*);
03447     aligned -= ((VALUE)aligned & (alignment - 1));
03448     ((void**)aligned)[-1] = res;
03449     res = (void*)aligned;
03450 #endif
03451 
03452 #if defined(_DEBUG) || defined(GC_DEBUG)
03453     /* alignment must be a power of 2 */
03454     assert((alignment - 1) & alignment == 0);
03455     assert(alignment % sizeof(void*) == 0);
03456 #endif
03457     return res;
03458 }
03459 
03460 static void
03461 aligned_free(void *ptr)
03462 {
03463 #if defined __MINGW32__
03464     __mingw_aligned_free(ptr);
03465 #elif defined _WIN32 && !defined __CYGWIN__
03466     _aligned_free(ptr);
03467 #elif defined(HAVE_MEMALIGN) || defined(HAVE_POSIX_MEMALIGN)
03468     free(ptr);
03469 #else
03470     free(((void**)ptr)[-1]);
03471 #endif
03472 }
03473 
03474 static inline size_t
03475 vm_malloc_prepare(rb_objspace_t *objspace, size_t size)
03476 {
03477     if ((ssize_t)size < 0) {
03478         negative_size_allocation_error("negative allocation size (or too big)");
03479     }
03480     if (size == 0) size = 1;
03481 
03482 #if CALC_EXACT_MALLOC_SIZE
03483     size += sizeof(size_t);
03484 #endif
03485 
03486     if ((ruby_gc_stress && !ruby_disable_gc_stress) ||
03487         (malloc_increase+size) > malloc_limit) {
03488         garbage_collect_with_gvl(objspace);
03489     }
03490 
03491     return size;
03492 }
03493 
03494 static inline void *
03495 vm_malloc_fixup(rb_objspace_t *objspace, void *mem, size_t size)
03496 {
03497     ATOMIC_SIZE_ADD(malloc_increase, size);
03498 
03499 #if CALC_EXACT_MALLOC_SIZE
03500     ATOMIC_SIZE_ADD(objspace->malloc_params.allocated_size, size);
03501     ATOMIC_SIZE_INC(objspace->malloc_params.allocations);
03502     ((size_t *)mem)[0] = size;
03503     mem = (size_t *)mem + 1;
03504 #endif
03505 
03506     return mem;
03507 }
03508 
03509 #define TRY_WITH_GC(alloc) do { \
03510         if (!(alloc) && \
03511             (!garbage_collect_with_gvl(objspace) || \
03512              !(alloc))) { \
03513             ruby_memerror(); \
03514         } \
03515     } while (0)
03516 
03517 static void *
03518 vm_xmalloc(rb_objspace_t *objspace, size_t size)
03519 {
03520     void *mem;
03521 
03522     size = vm_malloc_prepare(objspace, size);
03523     TRY_WITH_GC(mem = malloc(size));
03524     return vm_malloc_fixup(objspace, mem, size);
03525 }
03526 
03527 static void *
03528 vm_xrealloc(rb_objspace_t *objspace, void *ptr, size_t size)
03529 {
03530     void *mem;
03531 #if CALC_EXACT_MALLOC_SIZE
03532     size_t oldsize;
03533 #endif
03534 
03535     if ((ssize_t)size < 0) {
03536         negative_size_allocation_error("negative re-allocation size");
03537     }
03538 
03539     if (!ptr) return vm_xmalloc(objspace, size);
03540 
03541     /*
03542      * The behavior of realloc(ptr, 0) is implementation defined.
03543      * Therefore we don't use realloc(ptr, 0) for portability reason.
03544      * see http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_400.htm
03545      */
03546     if (size == 0) {
03547         vm_xfree(objspace, ptr);
03548         return 0;
03549     }
03550     if (ruby_gc_stress && !ruby_disable_gc_stress)
03551         garbage_collect_with_gvl(objspace);
03552 
03553 #if CALC_EXACT_MALLOC_SIZE
03554     size += sizeof(size_t);
03555     ptr = (size_t *)ptr - 1;
03556     oldsize = ((size_t *)ptr)[0];
03557 #endif
03558 
03559     mem = realloc(ptr, size);
03560     if (!mem) {
03561         if (garbage_collect_with_gvl(objspace)) {
03562             mem = realloc(ptr, size);
03563         }
03564         if (!mem) {
03565             ruby_memerror();
03566         }
03567     }
03568     ATOMIC_SIZE_ADD(malloc_increase, size);
03569 
03570 #if CALC_EXACT_MALLOC_SIZE
03571     ATOMIC_SIZE_ADD(objspace->malloc_params.allocated_size, size - oldsize);
03572     ((size_t *)mem)[0] = size;
03573     mem = (size_t *)mem + 1;
03574 #endif
03575 
03576     return mem;
03577 }
03578 
03579 static void
03580 vm_xfree(rb_objspace_t *objspace, void *ptr)
03581 {
03582 #if CALC_EXACT_MALLOC_SIZE
03583     size_t size;
03584     ptr = ((size_t *)ptr) - 1;
03585     size = ((size_t*)ptr)[0];
03586     if (size) {
03587         ATOMIC_SIZE_SUB(objspace->malloc_params.allocated_size, size);
03588         ATOMIC_SIZE_DEC(objspace->malloc_params.allocations);
03589     }
03590 #endif
03591 
03592     free(ptr);
03593 }
03594 
03595 void *
03596 ruby_xmalloc(size_t size)
03597 {
03598     return vm_xmalloc(&rb_objspace, size);
03599 }
03600 
03601 static inline size_t
03602 xmalloc2_size(size_t n, size_t size)
03603 {
03604     size_t len = size * n;
03605     if (n != 0 && size != len / n) {
03606         rb_raise(rb_eArgError, "malloc: possible integer overflow");
03607     }
03608     return len;
03609 }
03610 
03611 void *
03612 ruby_xmalloc2(size_t n, size_t size)
03613 {
03614     return vm_xmalloc(&rb_objspace, xmalloc2_size(n, size));
03615 }
03616 
03617 static void *
03618 vm_xcalloc(rb_objspace_t *objspace, size_t count, size_t elsize)
03619 {
03620     void *mem;
03621     size_t size;
03622 
03623     size = xmalloc2_size(count, elsize);
03624     size = vm_malloc_prepare(objspace, size);
03625 
03626     TRY_WITH_GC(mem = calloc(1, size));
03627     return vm_malloc_fixup(objspace, mem, size);
03628 }
03629 
03630 void *
03631 ruby_xcalloc(size_t n, size_t size)
03632 {
03633     return vm_xcalloc(&rb_objspace, n, size);
03634 }
03635 
03636 void *
03637 ruby_xrealloc(void *ptr, size_t size)
03638 {
03639     return vm_xrealloc(&rb_objspace, ptr, size);
03640 }
03641 
03642 void *
03643 ruby_xrealloc2(void *ptr, size_t n, size_t size)
03644 {
03645     size_t len = size * n;
03646     if (n != 0 && size != len / n) {
03647         rb_raise(rb_eArgError, "realloc: possible integer overflow");
03648     }
03649     return ruby_xrealloc(ptr, len);
03650 }
03651 
03652 void
03653 ruby_xfree(void *x)
03654 {
03655     if (x)
03656         vm_xfree(&rb_objspace, x);
03657 }
03658 
03659 
03660 /* Mimic ruby_xmalloc, but need not rb_objspace.
03661  * should return pointer suitable for ruby_xfree
03662  */
03663 void *
03664 ruby_mimmalloc(size_t size)
03665 {
03666     void *mem;
03667 #if CALC_EXACT_MALLOC_SIZE
03668     size += sizeof(size_t);
03669 #endif
03670     mem = malloc(size);
03671 #if CALC_EXACT_MALLOC_SIZE
03672     /* set 0 for consistency of allocated_size/allocations */
03673     ((size_t *)mem)[0] = 0;
03674     mem = (size_t *)mem + 1;
03675 #endif
03676     return mem;
03677 }
03678 
03679 #if CALC_EXACT_MALLOC_SIZE
03680 /*
03681  *  call-seq:
03682  *     GC.malloc_allocated_size -> Integer
03683  *
03684  *  Returns the size of memory allocated by malloc().
03685  *
03686  *  Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+.
03687  */
03688 
03689 static VALUE
03690 gc_malloc_allocated_size(VALUE self)
03691 {
03692     return UINT2NUM(rb_objspace.malloc_params.allocated_size);
03693 }
03694 
03695 /*
03696  *  call-seq:
03697  *     GC.malloc_allocations -> Integer
03698  *
03699  *  Returns the number of malloc() allocations.
03700  *
03701  *  Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+.
03702  */
03703 
03704 static VALUE
03705 gc_malloc_allocations(VALUE self)
03706 {
03707     return UINT2NUM(rb_objspace.malloc_params.allocations);
03708 }
03709 #endif
03710 
03711 /*
03712   ------------------------------ WeakMap ------------------------------
03713 */
03714 
03715 struct weakmap {
03716     st_table *obj2wmap;         /* obj -> [ref,...] */
03717     st_table *wmap2obj;         /* ref -> obj */
03718     VALUE final;
03719 };
03720 
03721 static int
03722 wmap_mark_map(st_data_t key, st_data_t val, st_data_t arg)
03723 {
03724     gc_mark_ptr((rb_objspace_t *)arg, (VALUE)val);
03725     return ST_CONTINUE;
03726 }
03727 
03728 static void
03729 wmap_mark(void *ptr)
03730 {
03731     struct weakmap *w = ptr;
03732     st_foreach(w->obj2wmap, wmap_mark_map, (st_data_t)&rb_objspace);
03733     rb_gc_mark(w->final);
03734 }
03735 
03736 static int
03737 wmap_free_map(st_data_t key, st_data_t val, st_data_t arg)
03738 {
03739     rb_ary_resize((VALUE)val, 0);
03740     return ST_CONTINUE;
03741 }
03742 
03743 static void
03744 wmap_free(void *ptr)
03745 {
03746     struct weakmap *w = ptr;
03747     st_foreach(w->obj2wmap, wmap_free_map, 0);
03748     st_free_table(w->obj2wmap);
03749     st_free_table(w->wmap2obj);
03750 }
03751 
03752 size_t rb_ary_memsize(VALUE ary);
03753 static int
03754 wmap_memsize_map(st_data_t key, st_data_t val, st_data_t arg)
03755 {
03756     *(size_t *)arg += rb_ary_memsize((VALUE)val);
03757     return ST_CONTINUE;
03758 }
03759 
03760 static size_t
03761 wmap_memsize(const void *ptr)
03762 {
03763     size_t size;
03764     const struct weakmap *w = ptr;
03765     if (!w) return 0;
03766     size = sizeof(*w);
03767     size += st_memsize(w->obj2wmap);
03768     size += st_memsize(w->wmap2obj);
03769     st_foreach(w->obj2wmap, wmap_memsize_map, (st_data_t)&size);
03770     return size;
03771 }
03772 
03773 static const rb_data_type_t weakmap_type = {
03774     "weakmap",
03775     {
03776         wmap_mark,
03777         wmap_free,
03778         wmap_memsize,
03779     }
03780 };
03781 
03782 static VALUE
03783 wmap_allocate(VALUE klass)
03784 {
03785     struct weakmap *w;
03786     VALUE obj = TypedData_Make_Struct(klass, struct weakmap, &weakmap_type, w);
03787     w->obj2wmap = st_init_numtable();
03788     w->wmap2obj = st_init_numtable();
03789     w->final = rb_obj_method(obj, ID2SYM(rb_intern("finalize")));
03790     return obj;
03791 }
03792 
03793 static int
03794 wmap_final_func(st_data_t *key, st_data_t *value, st_data_t arg, int existing)
03795 {
03796     VALUE wmap, ary;
03797     if (!existing) return ST_STOP;
03798     wmap = (VALUE)arg, ary = (VALUE)*value;
03799     rb_ary_delete_same(ary, wmap);
03800     if (!RARRAY_LEN(ary)) return ST_DELETE;
03801     return ST_CONTINUE;
03802 }
03803 
03804 static VALUE
03805 wmap_finalize(VALUE self, VALUE objid)
03806 {
03807     st_data_t orig, wmap, data;
03808     VALUE obj, rids;
03809     long i;
03810     struct weakmap *w;
03811 
03812     TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
03813     /* Get reference from object id. */
03814     obj = obj_id_to_ref(objid);
03815 
03816     /* obj is original referenced object and/or weak reference. */
03817     orig = (st_data_t)obj;
03818     if (st_delete(w->obj2wmap, &orig, &data)) {
03819         rids = (VALUE)data;
03820         for (i = 0; i < RARRAY_LEN(rids); ++i) {
03821             wmap = (st_data_t)RARRAY_PTR(rids)[i];
03822             st_delete(w->wmap2obj, &wmap, NULL);
03823         }
03824     }
03825 
03826     wmap = (st_data_t)obj;
03827     if (st_delete(w->wmap2obj, &wmap, &orig)) {
03828         wmap = (st_data_t)obj;
03829         st_update(w->obj2wmap, orig, wmap_final_func, wmap);
03830     }
03831     return self;
03832 }
03833 
03834 /* Creates a weak reference from the given key to the given value */
03835 static VALUE
03836 wmap_aset(VALUE self, VALUE wmap, VALUE orig)
03837 {
03838     st_data_t data;
03839     VALUE rids;
03840     struct weakmap *w;
03841 
03842     TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
03843     rb_define_final(orig, w->final);
03844     rb_define_final(wmap, w->final);
03845     if (st_lookup(w->obj2wmap, (st_data_t)orig, &data)) {
03846         rids = (VALUE)data;
03847     }
03848     else {
03849         rids = rb_ary_tmp_new(1);
03850         st_insert(w->obj2wmap, (st_data_t)orig, (st_data_t)rids);
03851     }
03852     rb_ary_push(rids, wmap);
03853     st_insert(w->wmap2obj, (st_data_t)wmap, (st_data_t)orig);
03854     return nonspecial_obj_id(orig);
03855 }
03856 
03857 /* Retrieves a weakly referenced object with the given key */
03858 static VALUE
03859 wmap_aref(VALUE self, VALUE wmap)
03860 {
03861     st_data_t data;
03862     VALUE obj;
03863     struct weakmap *w;
03864     rb_objspace_t *objspace = &rb_objspace;
03865 
03866     TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
03867     if (!st_lookup(w->wmap2obj, (st_data_t)wmap, &data)) return Qnil;
03868     obj = (VALUE)data;
03869     if (!is_id_value(objspace, obj)) return Qnil;
03870     if (!is_live_object(objspace, obj)) return Qnil;
03871     return obj;
03872 }
03873 
03874 
03875 /*
03876   ------------------------------ GC profiler ------------------------------
03877 */
03878 
03879 static inline void gc_prof_set_heap_info(rb_objspace_t *, gc_profile_record *);
03880 #define GC_PROFILE_RECORD_DEFAULT_SIZE 100
03881 
03882 static double
03883 getrusage_time(void)
03884 {
03885 #if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_PROCESS_CPUTIME_ID)
03886     {
03887         static int try_clock_gettime = 1;
03888         struct timespec ts;
03889         if (try_clock_gettime && clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts) == 0) {
03890             return ts.tv_sec + ts.tv_nsec * 1e-9;
03891         }
03892         else {
03893             try_clock_gettime = 0;
03894         }
03895     }
03896 #endif
03897 
03898 #ifdef RUSAGE_SELF
03899     {
03900         struct rusage usage;
03901         struct timeval time;
03902         if (getrusage(RUSAGE_SELF, &usage) == 0) {
03903             time = usage.ru_utime;
03904             return time.tv_sec + time.tv_usec * 1e-6;
03905         }
03906     }
03907 #endif
03908 
03909 #ifdef _WIN32
03910     {
03911         FILETIME creation_time, exit_time, kernel_time, user_time;
03912         ULARGE_INTEGER ui;
03913         LONG_LONG q;
03914         double t;
03915 
03916         if (GetProcessTimes(GetCurrentProcess(),
03917                             &creation_time, &exit_time, &kernel_time, &user_time) != 0) {
03918             memcpy(&ui, &user_time, sizeof(FILETIME));
03919             q = ui.QuadPart / 10L;
03920             t = (DWORD)(q % 1000000L) * 1e-6;
03921             q /= 1000000L;
03922 #ifdef __GNUC__
03923             t += q;
03924 #else
03925             t += (double)(DWORD)(q >> 16) * (1 << 16);
03926             t += (DWORD)q & ~(~0 << 16);
03927 #endif
03928             return t;
03929         }
03930     }
03931 #endif
03932 
03933     return 0.0;
03934 }
03935 
03936 static inline void
03937 gc_prof_timer_start(rb_objspace_t *objspace)
03938 {
03939     if (objspace->profile.run) {
03940         size_t count = objspace->profile.count;
03941 
03942         if (!objspace->profile.record) {
03943             objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE;
03944             objspace->profile.record = malloc(sizeof(gc_profile_record) * objspace->profile.size);
03945         }
03946         if (count >= objspace->profile.size) {
03947             objspace->profile.size += 1000;
03948             objspace->profile.record = realloc(objspace->profile.record, sizeof(gc_profile_record) * objspace->profile.size);
03949         }
03950         if (!objspace->profile.record) {
03951             rb_bug("gc_profile malloc or realloc miss");
03952         }
03953         MEMZERO(&objspace->profile.record[count], gc_profile_record, 1);
03954         objspace->profile.record[count].gc_time = getrusage_time();
03955         objspace->profile.record[objspace->profile.count].gc_invoke_time =
03956             objspace->profile.record[count].gc_time - objspace->profile.invoke_time;
03957     }
03958 }
03959 
03960 static inline void
03961 gc_prof_timer_stop(rb_objspace_t *objspace, int marked)
03962 {
03963     if (objspace->profile.run) {
03964         double gc_time = 0;
03965         size_t count = objspace->profile.count;
03966         gc_profile_record *record = &objspace->profile.record[count];
03967 
03968         gc_time = getrusage_time() - record->gc_time;
03969         if (gc_time < 0) gc_time = 0;
03970         record->gc_time = gc_time;
03971         record->is_marked = !!(marked);
03972         gc_prof_set_heap_info(objspace, record);
03973         objspace->profile.count++;
03974     }
03975 }
03976 
03977 #if !GC_PROFILE_MORE_DETAIL
03978 
03979 static inline void
03980 gc_prof_mark_timer_start(rb_objspace_t *objspace)
03981 {
03982     if (RUBY_DTRACE_GC_MARK_BEGIN_ENABLED()) {
03983         RUBY_DTRACE_GC_MARK_BEGIN();
03984     }
03985 }
03986 
03987 static inline void
03988 gc_prof_mark_timer_stop(rb_objspace_t *objspace)
03989 {
03990     if (RUBY_DTRACE_GC_MARK_END_ENABLED()) {
03991         RUBY_DTRACE_GC_MARK_END();
03992     }
03993 }
03994 
03995 static inline void
03996 gc_prof_sweep_timer_start(rb_objspace_t *objspace)
03997 {
03998     if (RUBY_DTRACE_GC_SWEEP_BEGIN_ENABLED()) {
03999         RUBY_DTRACE_GC_SWEEP_BEGIN();
04000     }
04001 }
04002 
04003 static inline void
04004 gc_prof_sweep_timer_stop(rb_objspace_t *objspace)
04005 {
04006     if (RUBY_DTRACE_GC_SWEEP_END_ENABLED()) {
04007         RUBY_DTRACE_GC_SWEEP_END();
04008     }
04009 }
04010 
04011 static inline void
04012 gc_prof_set_malloc_info(rb_objspace_t *objspace)
04013 {
04014 }
04015 
04016 static inline void
04017 gc_prof_set_heap_info(rb_objspace_t *objspace, gc_profile_record *record)
04018 {
04019     size_t live = objspace_live_num(objspace);
04020     size_t total = heaps_used * HEAP_OBJ_LIMIT;
04021 
04022     record->heap_total_objects = total;
04023     record->heap_use_size = live * sizeof(RVALUE);
04024     record->heap_total_size = total * sizeof(RVALUE);
04025 }
04026 
04027 #else
04028 
04029 static inline void
04030 gc_prof_mark_timer_start(rb_objspace_t *objspace)
04031 {
04032     if (RUBY_DTRACE_GC_MARK_BEGIN_ENABLED()) {
04033         RUBY_DTRACE_GC_MARK_BEGIN();
04034     }
04035     if (objspace->profile.run) {
04036         size_t count = objspace->profile.count;
04037 
04038         objspace->profile.record[count].gc_mark_time = getrusage_time();
04039     }
04040 }
04041 
04042 static inline void
04043 gc_prof_mark_timer_stop(rb_objspace_t *objspace)
04044 {
04045     if (RUBY_DTRACE_GC_MARK_END_ENABLED()) {
04046         RUBY_DTRACE_GC_MARK_END();
04047     }
04048     if (objspace->profile.run) {
04049         double mark_time = 0;
04050         size_t count = objspace->profile.count;
04051         gc_profile_record *record = &objspace->profile.record[count];
04052 
04053         mark_time = getrusage_time() - record->gc_mark_time;
04054         if (mark_time < 0) mark_time = 0;
04055         record->gc_mark_time = mark_time;
04056     }
04057 }
04058 
04059 static inline void
04060 gc_prof_sweep_timer_start(rb_objspace_t *objspace)
04061 {
04062     if (RUBY_DTRACE_GC_SWEEP_BEGIN_ENABLED()) {
04063         RUBY_DTRACE_GC_SWEEP_BEGIN();
04064     }
04065     if (objspace->profile.run) {
04066         size_t count = objspace->profile.count;
04067 
04068         objspace->profile.record[count].gc_sweep_time = getrusage_time();
04069     }
04070 }
04071 
04072 static inline void
04073 gc_prof_sweep_timer_stop(rb_objspace_t *objspace)
04074 {
04075     if (RUBY_DTRACE_GC_SWEEP_END_ENABLED()) {
04076         RUBY_DTRACE_GC_SWEEP_END();
04077     }
04078     if (objspace->profile.run) {
04079         double sweep_time = 0;
04080         size_t count = objspace->profile.count;
04081         gc_profile_record *record = &objspace->profile.record[count];
04082 
04083         sweep_time = getrusage_time() - record->gc_sweep_time;\
04084         if (sweep_time < 0) sweep_time = 0;\
04085         record->gc_sweep_time = sweep_time;
04086     }
04087 }
04088 
04089 static inline void
04090 gc_prof_set_malloc_info(rb_objspace_t *objspace)
04091 {
04092     if (objspace->profile.run) {
04093         gc_profile_record *record = &objspace->profile.record[objspace->profile.count];
04094         if (record) {
04095             record->allocate_increase = malloc_increase;
04096             record->allocate_limit = malloc_limit;
04097         }
04098     }
04099 }
04100 
04101 static inline void
04102 gc_prof_set_heap_info(rb_objspace_t *objspace, gc_profile_record *record)
04103 {
04104     size_t live = objspace_live_num(objspace);
04105     size_t total = heaps_used * HEAP_OBJ_LIMIT;
04106 
04107     record->heap_use_slots = heaps_used;
04108     record->heap_live_objects = live;
04109     record->heap_free_objects = total - live;
04110     record->heap_total_objects = total;
04111     record->have_finalize = deferred_final_list ? Qtrue : Qfalse;
04112     record->heap_use_size = live * sizeof(RVALUE);
04113     record->heap_total_size = total * sizeof(RVALUE);
04114 }
04115 
04116 #endif /* !GC_PROFILE_MORE_DETAIL */
04117 
04118 
04119 /*
04120  *  call-seq:
04121  *    GC::Profiler.clear          -> nil
04122  *
04123  *  Clears the GC profiler data.
04124  *
04125  */
04126 
04127 static VALUE
04128 gc_profile_clear(void)
04129 {
04130     rb_objspace_t *objspace = &rb_objspace;
04131 
04132     if (GC_PROFILE_RECORD_DEFAULT_SIZE * 2 < objspace->profile.size) {
04133         objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE * 2;
04134         objspace->profile.record = realloc(objspace->profile.record, sizeof(gc_profile_record) * objspace->profile.size);
04135         if (!objspace->profile.record) {
04136             rb_memerror();
04137         }
04138     }
04139     MEMZERO(objspace->profile.record, gc_profile_record, objspace->profile.size);
04140     objspace->profile.count = 0;
04141     return Qnil;
04142 }
04143 
04144 /*
04145  *  call-seq:
04146  *     GC::Profiler.raw_data    -> [Hash, ...]
04147  *
04148  *  Returns an Array of individual raw profile data Hashes ordered
04149  *  from earliest to latest by +:GC_INVOKE_TIME+.
04150  *
04151  *  For example:
04152  *
04153  *    [
04154  *      {
04155  *         :GC_TIME=>1.3000000000000858e-05,
04156  *         :GC_INVOKE_TIME=>0.010634999999999999,
04157  *         :HEAP_USE_SIZE=>289640,
04158  *         :HEAP_TOTAL_SIZE=>588960,
04159  *         :HEAP_TOTAL_OBJECTS=>14724,
04160  *         :GC_IS_MARKED=>false
04161  *      },
04162  *      # ...
04163  *    ]
04164  *
04165  *  The keys mean:
04166  *
04167  *  +:GC_TIME+::
04168  *      Time elapsed in seconds for this GC run
04169  *  +:GC_INVOKE_TIME+::
04170  *      Time elapsed in seconds from startup to when the GC was invoked
04171  *  +:HEAP_USE_SIZE+::
04172  *      Total bytes of heap used
04173  *  +:HEAP_TOTAL_SIZE+::
04174  *      Total size of heap in bytes
04175  *  +:HEAP_TOTAL_OBJECTS+::
04176  *      Total number of objects
04177  *  +:GC_IS_MARKED+::
04178  *      Returns +true+ if the GC is in mark phase
04179  *
04180  *  If ruby was built with +GC_PROFILE_MORE_DETAIL+, you will also have access
04181  *  to the following hash keys:
04182  *
04183  *  +:GC_MARK_TIME+::
04184  *  +:GC_SWEEP_TIME+::
04185  *  +:ALLOCATE_INCREASE+::
04186  *  +:ALLOCATE_LIMIT+::
04187  *  +:HEAP_USE_SLOTS+::
04188  *  +:HEAP_LIVE_OBJECTS+::
04189  *  +:HEAP_FREE_OBJECTS+::
04190  *  +:HAVE_FINALIZE+::
04191  *
04192  */
04193 
04194 static VALUE
04195 gc_profile_record_get(void)
04196 {
04197     VALUE prof;
04198     VALUE gc_profile = rb_ary_new();
04199     size_t i;
04200     rb_objspace_t *objspace = (&rb_objspace);
04201 
04202     if (!objspace->profile.run) {
04203         return Qnil;
04204     }
04205 
04206     for (i =0; i < objspace->profile.count; i++) {
04207         prof = rb_hash_new();
04208         rb_hash_aset(prof, ID2SYM(rb_intern("GC_TIME")), DBL2NUM(objspace->profile.record[i].gc_time));
04209         rb_hash_aset(prof, ID2SYM(rb_intern("GC_INVOKE_TIME")), DBL2NUM(objspace->profile.record[i].gc_invoke_time));
04210         rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SIZE")), SIZET2NUM(objspace->profile.record[i].heap_use_size));
04211         rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")), SIZET2NUM(objspace->profile.record[i].heap_total_size));
04212         rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")), SIZET2NUM(objspace->profile.record[i].heap_total_objects));
04213         rb_hash_aset(prof, ID2SYM(rb_intern("GC_IS_MARKED")), objspace->profile.record[i].is_marked);
04214 #if GC_PROFILE_MORE_DETAIL
04215         rb_hash_aset(prof, ID2SYM(rb_intern("GC_MARK_TIME")), DBL2NUM(objspace->profile.record[i].gc_mark_time));
04216         rb_hash_aset(prof, ID2SYM(rb_intern("GC_SWEEP_TIME")), DBL2NUM(objspace->profile.record[i].gc_sweep_time));
04217         rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_INCREASE")), SIZET2NUM(objspace->profile.record[i].allocate_increase));
04218         rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_LIMIT")), SIZET2NUM(objspace->profile.record[i].allocate_limit));
04219         rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SLOTS")), SIZET2NUM(objspace->profile.record[i].heap_use_slots));
04220         rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_LIVE_OBJECTS")), SIZET2NUM(objspace->profile.record[i].heap_live_objects));
04221         rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_FREE_OBJECTS")), SIZET2NUM(objspace->profile.record[i].heap_free_objects));
04222         rb_hash_aset(prof, ID2SYM(rb_intern("HAVE_FINALIZE")), objspace->profile.record[i].have_finalize);
04223 #endif
04224         rb_ary_push(gc_profile, prof);
04225     }
04226 
04227     return gc_profile;
04228 }
04229 
04230 static void
04231 gc_profile_dump_on(VALUE out, VALUE (*append)(VALUE, VALUE))
04232 {
04233     rb_objspace_t *objspace = &rb_objspace;
04234     size_t count = objspace->profile.count;
04235 
04236     if (objspace->profile.run && count) {
04237         int index = 1;
04238         size_t i;
04239         gc_profile_record r;
04240         append(out, rb_sprintf("GC %"PRIuSIZE" invokes.\n", objspace->count));
04241         append(out, rb_str_new_cstr("Index    Invoke Time(sec)       Use Size(byte)     Total Size(byte)         Total Object                    GC Time(ms)\n"));
04242         for (i = 0; i < count; i++) {
04243             r = objspace->profile.record[i];
04244 #if !GC_PROFILE_MORE_DETAIL
04245             if (r.is_marked) {
04246 #endif
04247                 append(out, rb_sprintf("%5d %19.3f %20"PRIuSIZE" %20"PRIuSIZE" %20"PRIuSIZE" %30.20f\n",
04248                         index++, r.gc_invoke_time, r.heap_use_size,
04249                         r.heap_total_size, r.heap_total_objects, r.gc_time*1000));
04250 #if !GC_PROFILE_MORE_DETAIL
04251             }
04252 #endif
04253         }
04254 #if GC_PROFILE_MORE_DETAIL
04255         append(out, rb_str_new_cstr("\n\n" \
04256                 "More detail.\n" \
04257                 "Index Allocate Increase    Allocate Limit  Use Slot  Have Finalize             Mark Time(ms)            Sweep Time(ms)\n"));
04258         index = 1;
04259         for (i = 0; i < count; i++) {
04260             r = objspace->profile.record[i];
04261             append(out, rb_sprintf("%5d %17"PRIuSIZE" %17"PRIuSIZE" %9"PRIuSIZE" %14s %25.20f %25.20f\n",
04262                         index++, r.allocate_increase, r.allocate_limit,
04263                         r.heap_use_slots, (r.have_finalize ? "true" : "false"),
04264                         r.gc_mark_time*1000, r.gc_sweep_time*1000));
04265         }
04266 #endif
04267     }
04268 }
04269 
04270 /*
04271  *  call-seq:
04272  *     GC::Profiler.result  -> String
04273  *
04274  *  Returns a profile data report such as:
04275  *
04276  *    GC 1 invokes.
04277  *    Index    Invoke Time(sec)       Use Size(byte)     Total Size(byte)         Total Object                    GC time(ms)
04278  *        1               0.012               159240               212940                10647         0.00000000000001530000
04279  */
04280 
04281 static VALUE
04282 gc_profile_result(void)
04283 {
04284         VALUE str = rb_str_buf_new(0);
04285         gc_profile_dump_on(str, rb_str_buf_append);
04286         return str;
04287 }
04288 
04289 /*
04290  *  call-seq:
04291  *     GC::Profiler.report
04292  *     GC::Profiler.report(io)
04293  *
04294  *  Writes the GC::Profiler.result to <tt>$stdout</tt> or the given IO object.
04295  *
04296  */
04297 
04298 static VALUE
04299 gc_profile_report(int argc, VALUE *argv, VALUE self)
04300 {
04301     VALUE out;
04302 
04303     if (argc == 0) {
04304         out = rb_stdout;
04305     }
04306     else {
04307         rb_scan_args(argc, argv, "01", &out);
04308     }
04309     gc_profile_dump_on(out, rb_io_write);
04310 
04311     return Qnil;
04312 }
04313 
04314 /*
04315  *  call-seq:
04316  *     GC::Profiler.total_time  -> float
04317  *
04318  *  The total time used for garbage collection in seconds
04319  */
04320 
04321 static VALUE
04322 gc_profile_total_time(VALUE self)
04323 {
04324     double time = 0;
04325     rb_objspace_t *objspace = &rb_objspace;
04326     size_t i;
04327 
04328     if (objspace->profile.run && objspace->profile.count) {
04329         for (i = 0; i < objspace->profile.count; i++) {
04330             time += objspace->profile.record[i].gc_time;
04331         }
04332     }
04333     return DBL2NUM(time);
04334 }
04335 
04336 /*
04337  *  call-seq:
04338  *    GC::Profiler.enabled?     -> true or false
04339  *
04340  *  The current status of GC profile mode.
04341  */
04342 
04343 static VALUE
04344 gc_profile_enable_get(VALUE self)
04345 {
04346     rb_objspace_t *objspace = &rb_objspace;
04347     return objspace->profile.run ? Qtrue : Qfalse;
04348 }
04349 
04350 /*
04351  *  call-seq:
04352  *    GC::Profiler.enable       -> nil
04353  *
04354  *  Starts the GC profiler.
04355  *
04356  */
04357 
04358 static VALUE
04359 gc_profile_enable(void)
04360 {
04361     rb_objspace_t *objspace = &rb_objspace;
04362 
04363     objspace->profile.run = TRUE;
04364     return Qnil;
04365 }
04366 
04367 /*
04368  *  call-seq:
04369  *    GC::Profiler.disable      -> nil
04370  *
04371  *  Stops the GC profiler.
04372  *
04373  */
04374 
04375 static VALUE
04376 gc_profile_disable(void)
04377 {
04378     rb_objspace_t *objspace = &rb_objspace;
04379 
04380     objspace->profile.run = FALSE;
04381     return Qnil;
04382 }
04383 
04384 #ifdef GC_DEBUG
04385 
04386 /*
04387   ------------------------------ DEBUG ------------------------------
04388 */
04389 
04390 void
04391 rb_gcdebug_print_obj_condition(VALUE obj)
04392 {
04393     rb_objspace_t *objspace = &rb_objspace;
04394 
04395     if (is_pointer_to_heap(objspace, (void *)obj)) {
04396         fprintf(stderr, "pointer to heap?: true\n");
04397     }
04398     else {
04399         fprintf(stderr, "pointer to heap?: false\n");
04400         return;
04401     }
04402     fprintf(stderr, "marked?: %s\n",
04403             MARKED_IN_BITMAP(GET_HEAP_BITMAP(obj), obj) ? "true" : "false");
04404     if (is_lazy_sweeping(objspace)) {
04405         fprintf(stderr, "lazy sweeping?: true\n");
04406         fprintf(stderr, "swept?: %s\n",
04407                 is_swept_object(objspace, obj) ? "done" : "not yet");
04408     }
04409     else {
04410         fprintf(stderr, "lazy sweeping?: false\n");
04411     }
04412 }
04413 
04414 static VALUE
04415 gcdebug_sential(VALUE obj, VALUE name)
04416 {
04417     fprintf(stderr, "WARNING: object %s(%p) is inadvertently collected\n", (char *)name, (void *)obj);
04418     return Qnil;
04419 }
04420 
04421 void
04422 rb_gcdebug_sentinel(VALUE obj, const char *name)
04423 {
04424     rb_define_final(obj, rb_proc_new(gcdebug_sential, (VALUE)name));
04425 }
04426 #endif /* GC_DEBUG */
04427 
04428 
04429 /*
04430  * Document-class: ObjectSpace
04431  *
04432  *  The ObjectSpace module contains a number of routines
04433  *  that interact with the garbage collection facility and allow you to
04434  *  traverse all living objects with an iterator.
04435  *
04436  *  ObjectSpace also provides support for object finalizers, procs that will be
04437  *  called when a specific object is about to be destroyed by garbage
04438  *  collection.
04439  *
04440  *     include ObjectSpace
04441  *
04442  *     a = "A"
04443  *     b = "B"
04444  *     c = "C"
04445  *
04446  *     define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })
04447  *     define_finalizer(a, proc {|id| puts "Finalizer two on #{id}" })
04448  *     define_finalizer(b, proc {|id| puts "Finalizer three on #{id}" })
04449  *
04450  *  _produces:_
04451  *
04452  *     Finalizer three on 537763470
04453  *     Finalizer one on 537763480
04454  *     Finalizer two on 537763480
04455  *
04456  */
04457 
04458 /*
04459  *  Document-class: ObjectSpace::WeakMap
04460  *
04461  *  An ObjectSpace::WeakMap object holds references to
04462  *  any objects, but those objects can get garbage collected.
04463  *
04464  *  This class is mostly used internally by WeakRef, please use
04465  *  +lib/weakref.rb+ for the public interface.
04466  */
04467 
04468 /*  Document-class: GC::Profiler
04469  *
04470  *  The GC profiler provides access to information on GC runs including time,
04471  *  length and object space size.
04472  *
04473  *  Example:
04474  *
04475  *    GC::Profiler.enable
04476  *
04477  *    require 'rdoc/rdoc'
04478  *
04479  *    GC::Profiler.report
04480  *
04481  *    GC::Profiler.disable
04482  *
04483  *  See also GC.count, GC.malloc_allocated_size and GC.malloc_allocations
04484  */
04485 
04486 /*
04487  *  The GC module provides an interface to Ruby's mark and
04488  *  sweep garbage collection mechanism.
04489  *
04490  *  Some of the underlying methods are also available via the ObjectSpace
04491  *  module.
04492  *
04493  *  You may obtain information about the operation of the GC through
04494  *  GC::Profiler.
04495  */
04496 
04497 void
04498 Init_GC(void)
04499 {
04500     VALUE rb_mObSpace;
04501     VALUE rb_mProfiler;
04502 
04503     rb_mGC = rb_define_module("GC");
04504     rb_define_singleton_method(rb_mGC, "start", rb_gc_start, 0);
04505     rb_define_singleton_method(rb_mGC, "enable", rb_gc_enable, 0);
04506     rb_define_singleton_method(rb_mGC, "disable", rb_gc_disable, 0);
04507     rb_define_singleton_method(rb_mGC, "stress", gc_stress_get, 0);
04508     rb_define_singleton_method(rb_mGC, "stress=", gc_stress_set, 1);
04509     rb_define_singleton_method(rb_mGC, "count", gc_count, 0);
04510     rb_define_singleton_method(rb_mGC, "stat", gc_stat, -1);
04511     rb_define_method(rb_mGC, "garbage_collect", rb_gc_start, 0);
04512 
04513     rb_mProfiler = rb_define_module_under(rb_mGC, "Profiler");
04514     rb_define_singleton_method(rb_mProfiler, "enabled?", gc_profile_enable_get, 0);
04515     rb_define_singleton_method(rb_mProfiler, "enable", gc_profile_enable, 0);
04516     rb_define_singleton_method(rb_mProfiler, "raw_data", gc_profile_record_get, 0);
04517     rb_define_singleton_method(rb_mProfiler, "disable", gc_profile_disable, 0);
04518     rb_define_singleton_method(rb_mProfiler, "clear", gc_profile_clear, 0);
04519     rb_define_singleton_method(rb_mProfiler, "result", gc_profile_result, 0);
04520     rb_define_singleton_method(rb_mProfiler, "report", gc_profile_report, -1);
04521     rb_define_singleton_method(rb_mProfiler, "total_time", gc_profile_total_time, 0);
04522 
04523     rb_mObSpace = rb_define_module("ObjectSpace");
04524     rb_define_module_function(rb_mObSpace, "each_object", os_each_obj, -1);
04525     rb_define_module_function(rb_mObSpace, "garbage_collect", rb_gc_start, 0);
04526 
04527     rb_define_module_function(rb_mObSpace, "define_finalizer", define_final, -1);
04528     rb_define_module_function(rb_mObSpace, "undefine_finalizer", undefine_final, 1);
04529 
04530     rb_define_module_function(rb_mObSpace, "_id2ref", id2ref, 1);
04531 
04532     nomem_error = rb_exc_new3(rb_eNoMemError,
04533                               rb_obj_freeze(rb_str_new2("failed to allocate memory")));
04534     OBJ_TAINT(nomem_error);
04535     OBJ_FREEZE(nomem_error);
04536 
04537     rb_define_method(rb_cBasicObject, "__id__", rb_obj_id, 0);
04538     rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0);
04539 
04540     rb_define_module_function(rb_mObSpace, "count_objects", count_objects, -1);
04541 
04542     {
04543         VALUE rb_cWeakMap = rb_define_class_under(rb_mObSpace, "WeakMap", rb_cObject);
04544         rb_define_alloc_func(rb_cWeakMap, wmap_allocate);
04545         rb_define_method(rb_cWeakMap, "[]=", wmap_aset, 2);
04546         rb_define_method(rb_cWeakMap, "[]", wmap_aref, 1);
04547         rb_define_private_method(rb_cWeakMap, "finalize", wmap_finalize, 1);
04548     }
04549 
04550 #if CALC_EXACT_MALLOC_SIZE
04551     rb_define_singleton_method(rb_mGC, "malloc_allocated_size", gc_malloc_allocated_size, 0);
04552     rb_define_singleton_method(rb_mGC, "malloc_allocations", gc_malloc_allocations, 0);
04553 #endif
04554 }
04555