|
Ruby
2.0.0p481(2014-05-08revision45883)
|
00001 /************************************************ 00002 00003 enumerator.c - provides Enumerator class 00004 00005 $Author: nagachika $ 00006 00007 Copyright (C) 2001-2003 Akinori MUSHA 00008 00009 $Idaemons: /home/cvs/rb/enumerator/enumerator.c,v 1.1.1.1 2001/07/15 10:12:48 knu Exp $ 00010 $RoughId: enumerator.c,v 1.6 2003/07/27 11:03:24 nobu Exp $ 00011 $Id: enumerator.c 44150 2013-12-12 16:02:08Z nagachika $ 00012 00013 ************************************************/ 00014 00015 #include "ruby/ruby.h" 00016 #include "node.h" 00017 #include "internal.h" 00018 00019 /* 00020 * Document-class: Enumerator 00021 * 00022 * A class which allows both internal and external iteration. 00023 * 00024 * An Enumerator can be created by the following methods. 00025 * - Kernel#to_enum 00026 * - Kernel#enum_for 00027 * - Enumerator.new 00028 * 00029 * Most methods have two forms: a block form where the contents 00030 * are evaluated for each item in the enumeration, and a non-block form 00031 * which returns a new Enumerator wrapping the iteration. 00032 * 00033 * enumerator = %w(one two three).each 00034 * puts enumerator.class # => Enumerator 00035 * 00036 * enumerator.each_with_object("foo") do |item, obj| 00037 * puts "#{obj}: #{item}" 00038 * end 00039 * 00040 * # foo: one 00041 * # foo: two 00042 * # foo: three 00043 * 00044 * enum_with_obj = enumerator.each_with_object("foo") 00045 * puts enum_with_obj.class # => Enumerator 00046 * 00047 * enum_with_obj.each do |item, obj| 00048 * puts "#{obj}: #{item}" 00049 * end 00050 * 00051 * # foo: one 00052 * # foo: two 00053 * # foo: three 00054 * 00055 * This allows you to chain Enumerators together. For example, you 00056 * can map a list's elements to strings containing the index 00057 * and the element as a string via: 00058 * 00059 * puts %w[foo bar baz].map.with_index { |w, i| "#{i}:#{w}" } 00060 * # => ["0:foo", "1:bar", "2:baz"] 00061 * 00062 * An Enumerator can also be used as an external iterator. 00063 * For example, Enumerator#next returns the next value of the iterator 00064 * or raises StopIteration if the Enumerator is at the end. 00065 * 00066 * e = [1,2,3].each # returns an enumerator object. 00067 * puts e.next # => 1 00068 * puts e.next # => 2 00069 * puts e.next # => 3 00070 * puts e.next # raises StopIteration 00071 * 00072 * You can use this to implement an internal iterator as follows: 00073 * 00074 * def ext_each(e) 00075 * while true 00076 * begin 00077 * vs = e.next_values 00078 * rescue StopIteration 00079 * return $!.result 00080 * end 00081 * y = yield(*vs) 00082 * e.feed y 00083 * end 00084 * end 00085 * 00086 * o = Object.new 00087 * 00088 * def o.each 00089 * puts yield 00090 * puts yield(1) 00091 * puts yield(1, 2) 00092 * 3 00093 * end 00094 * 00095 * # use o.each as an internal iterator directly. 00096 * puts o.each {|*x| puts x; [:b, *x] } 00097 * # => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3 00098 * 00099 * # convert o.each to an external iterator for 00100 * # implementing an internal iterator. 00101 * puts ext_each(o.to_enum) {|*x| puts x; [:b, *x] } 00102 * # => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3 00103 * 00104 */ 00105 VALUE rb_cEnumerator; 00106 VALUE rb_cLazy; 00107 static ID id_rewind, id_each, id_new, id_initialize, id_yield, id_call, id_size, id_to_enum; 00108 static ID id_eqq, id_next, id_result, id_lazy, id_receiver, id_arguments, id_memo, id_method, id_force; 00109 static VALUE sym_each, sym_cycle; 00110 00111 VALUE rb_eStopIteration; 00112 00113 struct enumerator { 00114 VALUE obj; 00115 ID meth; 00116 VALUE args; 00117 VALUE fib; 00118 VALUE dst; 00119 VALUE lookahead; 00120 VALUE feedvalue; 00121 VALUE stop_exc; 00122 VALUE size; 00123 VALUE (*size_fn)(ANYARGS); 00124 }; 00125 00126 static VALUE rb_cGenerator, rb_cYielder; 00127 00128 struct generator { 00129 VALUE proc; 00130 }; 00131 00132 struct yielder { 00133 VALUE proc; 00134 }; 00135 00136 static VALUE generator_allocate(VALUE klass); 00137 static VALUE generator_init(VALUE obj, VALUE proc); 00138 00139 /* 00140 * Enumerator 00141 */ 00142 static void 00143 enumerator_mark(void *p) 00144 { 00145 struct enumerator *ptr = p; 00146 rb_gc_mark(ptr->obj); 00147 rb_gc_mark(ptr->args); 00148 rb_gc_mark(ptr->fib); 00149 rb_gc_mark(ptr->dst); 00150 rb_gc_mark(ptr->lookahead); 00151 rb_gc_mark(ptr->feedvalue); 00152 rb_gc_mark(ptr->stop_exc); 00153 rb_gc_mark(ptr->size); 00154 } 00155 00156 #define enumerator_free RUBY_TYPED_DEFAULT_FREE 00157 00158 static size_t 00159 enumerator_memsize(const void *p) 00160 { 00161 return p ? sizeof(struct enumerator) : 0; 00162 } 00163 00164 static const rb_data_type_t enumerator_data_type = { 00165 "enumerator", 00166 { 00167 enumerator_mark, 00168 enumerator_free, 00169 enumerator_memsize, 00170 }, 00171 }; 00172 00173 static struct enumerator * 00174 enumerator_ptr(VALUE obj) 00175 { 00176 struct enumerator *ptr; 00177 00178 TypedData_Get_Struct(obj, struct enumerator, &enumerator_data_type, ptr); 00179 if (!ptr || ptr->obj == Qundef) { 00180 rb_raise(rb_eArgError, "uninitialized enumerator"); 00181 } 00182 return ptr; 00183 } 00184 00185 /* 00186 * call-seq: 00187 * obj.to_enum(method = :each, *args) -> enum 00188 * obj.enum_for(method = :each, *args) -> enum 00189 * obj.to_enum(method = :each, *args) {|*args| block} -> enum 00190 * obj.enum_for(method = :each, *args){|*args| block} -> enum 00191 * 00192 * Creates a new Enumerator which will enumerate by calling +method+ on 00193 * +obj+, passing +args+ if any. 00194 * 00195 * If a block is given, it will be used to calculate the size of 00196 * the enumerator without the need to iterate it (see Enumerator#size). 00197 * 00198 * === Examples 00199 * 00200 * str = "xyz" 00201 * 00202 * enum = str.enum_for(:each_byte) 00203 * enum.each { |b| puts b } 00204 * # => 120 00205 * # => 121 00206 * # => 122 00207 * 00208 * # protect an array from being modified by some_method 00209 * a = [1, 2, 3] 00210 * some_method(a.to_enum) 00211 * 00212 * It is typical to call to_enum when defining methods for 00213 * a generic Enumerable, in case no block is passed. 00214 * 00215 * Here is such an example, with parameter passing and a sizing block: 00216 * 00217 * module Enumerable 00218 * # a generic method to repeat the values of any enumerable 00219 * def repeat(n) 00220 * raise ArgumentError, "#{n} is negative!" if n < 0 00221 * unless block_given? 00222 * return to_enum(__method__, n) do # __method__ is :repeat here 00223 * sz = size # Call size and multiply by n... 00224 * sz * n if sz # but return nil if size itself is nil 00225 * end 00226 * end 00227 * each do |*val| 00228 * n.times { yield *val } 00229 * end 00230 * end 00231 * end 00232 * 00233 * %i[hello world].repeat(2) { |w| puts w } 00234 * # => Prints 'hello', 'hello', 'world', 'world' 00235 * enum = (1..14).repeat(3) 00236 * # => returns an Enumerator when called without a block 00237 * enum.first(4) # => [1, 1, 1, 2] 00238 * enum.size # => 42 00239 */ 00240 static VALUE 00241 obj_to_enum(int argc, VALUE *argv, VALUE obj) 00242 { 00243 VALUE enumerator, meth = sym_each; 00244 00245 if (argc > 0) { 00246 --argc; 00247 meth = *argv++; 00248 } 00249 enumerator = rb_enumeratorize_with_size(obj, meth, argc, argv, 0); 00250 if (rb_block_given_p()) { 00251 enumerator_ptr(enumerator)->size = rb_block_proc(); 00252 } 00253 return enumerator; 00254 } 00255 00256 static VALUE 00257 enumerator_allocate(VALUE klass) 00258 { 00259 struct enumerator *ptr; 00260 VALUE enum_obj; 00261 00262 enum_obj = TypedData_Make_Struct(klass, struct enumerator, &enumerator_data_type, ptr); 00263 ptr->obj = Qundef; 00264 00265 return enum_obj; 00266 } 00267 00268 static VALUE 00269 enumerator_init(VALUE enum_obj, VALUE obj, VALUE meth, int argc, VALUE *argv, VALUE (*size_fn)(ANYARGS), VALUE size) 00270 { 00271 struct enumerator *ptr; 00272 00273 TypedData_Get_Struct(enum_obj, struct enumerator, &enumerator_data_type, ptr); 00274 00275 if (!ptr) { 00276 rb_raise(rb_eArgError, "unallocated enumerator"); 00277 } 00278 00279 ptr->obj = obj; 00280 ptr->meth = rb_to_id(meth); 00281 if (argc) ptr->args = rb_ary_new4(argc, argv); 00282 ptr->fib = 0; 00283 ptr->dst = Qnil; 00284 ptr->lookahead = Qundef; 00285 ptr->feedvalue = Qundef; 00286 ptr->stop_exc = Qfalse; 00287 ptr->size = size; 00288 ptr->size_fn = size_fn; 00289 00290 return enum_obj; 00291 } 00292 00293 /* 00294 * call-seq: 00295 * Enumerator.new(size = nil) { |yielder| ... } 00296 * Enumerator.new(obj, method = :each, *args) 00297 * 00298 * Creates a new Enumerator object, which can be used as an 00299 * Enumerable. 00300 * 00301 * In the first form, iteration is defined by the given block, in 00302 * which a "yielder" object, given as block parameter, can be used to 00303 * yield a value by calling the +yield+ method (aliased as +<<+): 00304 * 00305 * fib = Enumerator.new do |y| 00306 * a = b = 1 00307 * loop do 00308 * y << a 00309 * a, b = b, a + b 00310 * end 00311 * end 00312 * 00313 * p fib.take(10) # => [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] 00314 * 00315 * The optional parameter can be used to specify how to calculate the size 00316 * in a lazy fashion (see Enumerator#size). It can either be a value or 00317 * a callable object. 00318 * 00319 * In the second, deprecated, form, a generated Enumerator iterates over the 00320 * given object using the given method with the given arguments passed. 00321 * 00322 * Use of this form is discouraged. Use Kernel#enum_for or Kernel#to_enum 00323 * instead. 00324 * 00325 * e = Enumerator.new(ObjectSpace, :each_object) 00326 * #-> ObjectSpace.enum_for(:each_object) 00327 * 00328 * e.select { |obj| obj.is_a?(Class) } #=> array of all classes 00329 * 00330 */ 00331 static VALUE 00332 enumerator_initialize(int argc, VALUE *argv, VALUE obj) 00333 { 00334 VALUE recv, meth = sym_each; 00335 VALUE size = Qnil; 00336 00337 if (rb_block_given_p()) { 00338 rb_check_arity(argc, 0, 1); 00339 recv = generator_init(generator_allocate(rb_cGenerator), rb_block_proc()); 00340 if (argc) { 00341 if (NIL_P(argv[0]) || rb_obj_is_proc(argv[0]) || 00342 (RB_TYPE_P(argv[0], T_FLOAT) && RFLOAT_VALUE(argv[0]) == INFINITY)) { 00343 size = argv[0]; 00344 } else { 00345 size = rb_to_int(argv[0]); 00346 } 00347 argc = 0; 00348 } 00349 } 00350 else { 00351 rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); 00352 rb_warn("Enumerator.new without a block is deprecated; use Object#to_enum"); 00353 recv = *argv++; 00354 if (--argc) { 00355 meth = *argv++; 00356 --argc; 00357 } 00358 } 00359 00360 return enumerator_init(obj, recv, meth, argc, argv, 0, size); 00361 } 00362 00363 /* :nodoc: */ 00364 static VALUE 00365 enumerator_init_copy(VALUE obj, VALUE orig) 00366 { 00367 struct enumerator *ptr0, *ptr1; 00368 00369 if (!OBJ_INIT_COPY(obj, orig)) return obj; 00370 ptr0 = enumerator_ptr(orig); 00371 if (ptr0->fib) { 00372 /* Fibers cannot be copied */ 00373 rb_raise(rb_eTypeError, "can't copy execution context"); 00374 } 00375 00376 TypedData_Get_Struct(obj, struct enumerator, &enumerator_data_type, ptr1); 00377 00378 if (!ptr1) { 00379 rb_raise(rb_eArgError, "unallocated enumerator"); 00380 } 00381 00382 ptr1->obj = ptr0->obj; 00383 ptr1->meth = ptr0->meth; 00384 ptr1->args = ptr0->args; 00385 ptr1->fib = 0; 00386 ptr1->lookahead = Qundef; 00387 ptr1->feedvalue = Qundef; 00388 ptr1->size = ptr0->size; 00389 ptr1->size_fn = ptr0->size_fn; 00390 00391 return obj; 00392 } 00393 00394 /* 00395 * For backwards compatibility; use rb_enumeratorize_with_size 00396 */ 00397 VALUE 00398 rb_enumeratorize(VALUE obj, VALUE meth, int argc, VALUE *argv) 00399 { 00400 return rb_enumeratorize_with_size(obj, meth, argc, argv, 0); 00401 } 00402 00403 static VALUE 00404 lazy_to_enum_i(VALUE self, VALUE meth, int argc, VALUE *argv, VALUE (*size_fn)(ANYARGS)); 00405 00406 VALUE 00407 rb_enumeratorize_with_size(VALUE obj, VALUE meth, int argc, VALUE *argv, VALUE (*size_fn)(ANYARGS)) 00408 { 00409 /* Similar effect as calling obj.to_enum, i.e. dispatching to either 00410 Kernel#to_enum vs Lazy#to_enum */ 00411 if (RTEST(rb_obj_is_kind_of(obj, rb_cLazy))) 00412 return lazy_to_enum_i(obj, meth, argc, argv, size_fn); 00413 else 00414 return enumerator_init(enumerator_allocate(rb_cEnumerator), 00415 obj, meth, argc, argv, size_fn, Qnil); 00416 } 00417 00418 static VALUE 00419 enumerator_block_call(VALUE obj, rb_block_call_func *func, VALUE arg) 00420 { 00421 int argc = 0; 00422 VALUE *argv = 0; 00423 const struct enumerator *e = enumerator_ptr(obj); 00424 ID meth = e->meth; 00425 00426 if (e->args) { 00427 argc = RARRAY_LENINT(e->args); 00428 argv = RARRAY_PTR(e->args); 00429 } 00430 return rb_block_call(e->obj, meth, argc, argv, func, arg); 00431 } 00432 00433 /* 00434 * call-seq: 00435 * enum.each {...} 00436 * 00437 * Iterates over the block according to how this Enumerable was constructed. 00438 * If no block is given, returns self. 00439 * 00440 */ 00441 static VALUE 00442 enumerator_each(int argc, VALUE *argv, VALUE obj) 00443 { 00444 if (argc > 0) { 00445 struct enumerator *e = enumerator_ptr(obj = rb_obj_dup(obj)); 00446 VALUE args = e->args; 00447 if (args) { 00448 args = rb_ary_dup(args); 00449 rb_ary_cat(args, argv, argc); 00450 } 00451 else { 00452 args = rb_ary_new4(argc, argv); 00453 } 00454 e->args = args; 00455 } 00456 if (!rb_block_given_p()) return obj; 00457 return enumerator_block_call(obj, 0, obj); 00458 } 00459 00460 static VALUE 00461 enumerator_with_index_i(VALUE val, VALUE m, int argc, VALUE *argv) 00462 { 00463 NODE *memo = (NODE *)m; 00464 VALUE idx = memo->u1.value; 00465 memo->u1.value = rb_int_succ(idx); 00466 00467 if (argc <= 1) 00468 return rb_yield_values(2, val, idx); 00469 00470 return rb_yield_values(2, rb_ary_new4(argc, argv), idx); 00471 } 00472 00473 static VALUE 00474 enumerator_size(VALUE obj); 00475 00476 /* 00477 * call-seq: 00478 * e.with_index(offset = 0) {|(*args), idx| ... } 00479 * e.with_index(offset = 0) 00480 * 00481 * Iterates the given block for each element with an index, which 00482 * starts from +offset+. If no block is given, returns a new Enumerator 00483 * that includes the index, starting from +offset+ 00484 * 00485 * +offset+:: the starting index to use 00486 * 00487 */ 00488 static VALUE 00489 enumerator_with_index(int argc, VALUE *argv, VALUE obj) 00490 { 00491 VALUE memo; 00492 00493 rb_scan_args(argc, argv, "01", &memo); 00494 RETURN_SIZED_ENUMERATOR(obj, argc, argv, enumerator_size); 00495 if (NIL_P(memo)) 00496 memo = INT2FIX(0); 00497 else 00498 memo = rb_to_int(memo); 00499 return enumerator_block_call(obj, enumerator_with_index_i, (VALUE)NEW_MEMO(memo, 0, 0)); 00500 } 00501 00502 /* 00503 * call-seq: 00504 * e.each_with_index {|(*args), idx| ... } 00505 * e.each_with_index 00506 * 00507 * Same as Enumerator#with_index(0), i.e. there is no starting offset. 00508 * 00509 * If no block is given, a new Enumerator is returned that includes the index. 00510 * 00511 */ 00512 static VALUE 00513 enumerator_each_with_index(VALUE obj) 00514 { 00515 return enumerator_with_index(0, NULL, obj); 00516 } 00517 00518 static VALUE 00519 enumerator_with_object_i(VALUE val, VALUE memo, int argc, VALUE *argv) 00520 { 00521 if (argc <= 1) 00522 return rb_yield_values(2, val, memo); 00523 00524 return rb_yield_values(2, rb_ary_new4(argc, argv), memo); 00525 } 00526 00527 /* 00528 * call-seq: 00529 * e.with_object(obj) {|(*args), obj| ... } 00530 * e.with_object(obj) 00531 * 00532 * Iterates the given block for each element with an arbitrary object, +obj+, 00533 * and returns +obj+ 00534 * 00535 * If no block is given, returns a new Enumerator. 00536 * 00537 * === Example 00538 * 00539 * to_three = Enumerator.new do |y| 00540 * 3.times do |x| 00541 * y << x 00542 * end 00543 * end 00544 * 00545 * to_three_with_string = to_three.with_object("foo") 00546 * to_three_with_string.each do |x,string| 00547 * puts "#{string}: #{x}" 00548 * end 00549 * 00550 * # => foo:0 00551 * # => foo:1 00552 * # => foo:2 00553 */ 00554 static VALUE 00555 enumerator_with_object(VALUE obj, VALUE memo) 00556 { 00557 RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enumerator_size); 00558 enumerator_block_call(obj, enumerator_with_object_i, memo); 00559 00560 return memo; 00561 } 00562 00563 static VALUE 00564 next_ii(VALUE i, VALUE obj, int argc, VALUE *argv) 00565 { 00566 struct enumerator *e = enumerator_ptr(obj); 00567 VALUE feedvalue = Qnil; 00568 VALUE args = rb_ary_new4(argc, argv); 00569 rb_fiber_yield(1, &args); 00570 if (e->feedvalue != Qundef) { 00571 feedvalue = e->feedvalue; 00572 e->feedvalue = Qundef; 00573 } 00574 return feedvalue; 00575 } 00576 00577 static VALUE 00578 next_i(VALUE curr, VALUE obj) 00579 { 00580 struct enumerator *e = enumerator_ptr(obj); 00581 VALUE nil = Qnil; 00582 VALUE result; 00583 00584 result = rb_block_call(obj, id_each, 0, 0, next_ii, obj); 00585 e->stop_exc = rb_exc_new2(rb_eStopIteration, "iteration reached an end"); 00586 rb_ivar_set(e->stop_exc, id_result, result); 00587 return rb_fiber_yield(1, &nil); 00588 } 00589 00590 static void 00591 next_init(VALUE obj, struct enumerator *e) 00592 { 00593 VALUE curr = rb_fiber_current(); 00594 e->dst = curr; 00595 e->fib = rb_fiber_new(next_i, obj); 00596 e->lookahead = Qundef; 00597 } 00598 00599 static VALUE 00600 get_next_values(VALUE obj, struct enumerator *e) 00601 { 00602 VALUE curr, vs; 00603 00604 if (e->stop_exc) 00605 rb_exc_raise(e->stop_exc); 00606 00607 curr = rb_fiber_current(); 00608 00609 if (!e->fib || !rb_fiber_alive_p(e->fib)) { 00610 next_init(obj, e); 00611 } 00612 00613 vs = rb_fiber_resume(e->fib, 1, &curr); 00614 if (e->stop_exc) { 00615 e->fib = 0; 00616 e->dst = Qnil; 00617 e->lookahead = Qundef; 00618 e->feedvalue = Qundef; 00619 rb_exc_raise(e->stop_exc); 00620 } 00621 return vs; 00622 } 00623 00624 /* 00625 * call-seq: 00626 * e.next_values -> array 00627 * 00628 * Returns the next object as an array in the enumerator, and move the 00629 * internal position forward. When the position reached at the end, 00630 * StopIteration is raised. 00631 * 00632 * This method can be used to distinguish <code>yield</code> and <code>yield 00633 * nil</code>. 00634 * 00635 * === Example 00636 * 00637 * o = Object.new 00638 * def o.each 00639 * yield 00640 * yield 1 00641 * yield 1, 2 00642 * yield nil 00643 * yield [1, 2] 00644 * end 00645 * e = o.to_enum 00646 * p e.next_values 00647 * p e.next_values 00648 * p e.next_values 00649 * p e.next_values 00650 * p e.next_values 00651 * e = o.to_enum 00652 * p e.next 00653 * p e.next 00654 * p e.next 00655 * p e.next 00656 * p e.next 00657 * 00658 * ## yield args next_values next 00659 * # yield [] nil 00660 * # yield 1 [1] 1 00661 * # yield 1, 2 [1, 2] [1, 2] 00662 * # yield nil [nil] nil 00663 * # yield [1, 2] [[1, 2]] [1, 2] 00664 * 00665 * Note that +next_values+ does not affect other non-external enumeration 00666 * methods unless underlying iteration method itself has side-effect, e.g. 00667 * IO#each_line. 00668 * 00669 */ 00670 00671 static VALUE 00672 enumerator_next_values(VALUE obj) 00673 { 00674 struct enumerator *e = enumerator_ptr(obj); 00675 VALUE vs; 00676 00677 if (e->lookahead != Qundef) { 00678 vs = e->lookahead; 00679 e->lookahead = Qundef; 00680 return vs; 00681 } 00682 00683 return get_next_values(obj, e); 00684 } 00685 00686 static VALUE 00687 ary2sv(VALUE args, int dup) 00688 { 00689 if (!RB_TYPE_P(args, T_ARRAY)) 00690 return args; 00691 00692 switch (RARRAY_LEN(args)) { 00693 case 0: 00694 return Qnil; 00695 00696 case 1: 00697 return RARRAY_PTR(args)[0]; 00698 00699 default: 00700 if (dup) 00701 return rb_ary_dup(args); 00702 return args; 00703 } 00704 } 00705 00706 /* 00707 * call-seq: 00708 * e.next -> object 00709 * 00710 * Returns the next object in the enumerator, and move the internal position 00711 * forward. When the position reached at the end, StopIteration is raised. 00712 * 00713 * === Example 00714 * 00715 * a = [1,2,3] 00716 * e = a.to_enum 00717 * p e.next #=> 1 00718 * p e.next #=> 2 00719 * p e.next #=> 3 00720 * p e.next #raises StopIteration 00721 * 00722 * Note that enumeration sequence by +next+ does not affect other non-external 00723 * enumeration methods, unless the underlying iteration methods itself has 00724 * side-effect, e.g. IO#each_line. 00725 * 00726 */ 00727 00728 static VALUE 00729 enumerator_next(VALUE obj) 00730 { 00731 VALUE vs = enumerator_next_values(obj); 00732 return ary2sv(vs, 0); 00733 } 00734 00735 static VALUE 00736 enumerator_peek_values(VALUE obj) 00737 { 00738 struct enumerator *e = enumerator_ptr(obj); 00739 00740 if (e->lookahead == Qundef) { 00741 e->lookahead = get_next_values(obj, e); 00742 } 00743 return e->lookahead; 00744 } 00745 00746 /* 00747 * call-seq: 00748 * e.peek_values -> array 00749 * 00750 * Returns the next object as an array, similar to Enumerator#next_values, but 00751 * doesn't move the internal position forward. If the position is already at 00752 * the end, StopIteration is raised. 00753 * 00754 * === Example 00755 * 00756 * o = Object.new 00757 * def o.each 00758 * yield 00759 * yield 1 00760 * yield 1, 2 00761 * end 00762 * e = o.to_enum 00763 * p e.peek_values #=> [] 00764 * e.next 00765 * p e.peek_values #=> [1] 00766 * p e.peek_values #=> [1] 00767 * e.next 00768 * p e.peek_values #=> [1, 2] 00769 * e.next 00770 * p e.peek_values # raises StopIteration 00771 * 00772 */ 00773 00774 static VALUE 00775 enumerator_peek_values_m(VALUE obj) 00776 { 00777 return rb_ary_dup(enumerator_peek_values(obj)); 00778 } 00779 00780 /* 00781 * call-seq: 00782 * e.peek -> object 00783 * 00784 * Returns the next object in the enumerator, but doesn't move the internal 00785 * position forward. If the position is already at the end, StopIteration 00786 * is raised. 00787 * 00788 * === Example 00789 * 00790 * a = [1,2,3] 00791 * e = a.to_enum 00792 * p e.next #=> 1 00793 * p e.peek #=> 2 00794 * p e.peek #=> 2 00795 * p e.peek #=> 2 00796 * p e.next #=> 2 00797 * p e.next #=> 3 00798 * p e.next #raises StopIteration 00799 * 00800 */ 00801 00802 static VALUE 00803 enumerator_peek(VALUE obj) 00804 { 00805 VALUE vs = enumerator_peek_values(obj); 00806 return ary2sv(vs, 1); 00807 } 00808 00809 /* 00810 * call-seq: 00811 * e.feed obj -> nil 00812 * 00813 * Sets the value to be returned by the next yield inside +e+. 00814 * 00815 * If the value is not set, the yield returns nil. 00816 * 00817 * This value is cleared after being yielded. 00818 * 00819 * o = Object.new 00820 * def o.each 00821 * x = yield # (2) blocks 00822 * p x # (5) => "foo" 00823 * x = yield # (6) blocks 00824 * p x # (8) => nil 00825 * x = yield # (9) blocks 00826 * p x # not reached w/o another e.next 00827 * end 00828 * 00829 * e = o.to_enum 00830 * e.next # (1) 00831 * e.feed "foo" # (3) 00832 * e.next # (4) 00833 * e.next # (7) 00834 * # (10) 00835 */ 00836 00837 static VALUE 00838 enumerator_feed(VALUE obj, VALUE v) 00839 { 00840 struct enumerator *e = enumerator_ptr(obj); 00841 00842 if (e->feedvalue != Qundef) { 00843 rb_raise(rb_eTypeError, "feed value already set"); 00844 } 00845 e->feedvalue = v; 00846 00847 return Qnil; 00848 } 00849 00850 /* 00851 * call-seq: 00852 * e.rewind -> e 00853 * 00854 * Rewinds the enumeration sequence to the beginning. 00855 * 00856 * If the enclosed object responds to a "rewind" method, it is called. 00857 */ 00858 00859 static VALUE 00860 enumerator_rewind(VALUE obj) 00861 { 00862 struct enumerator *e = enumerator_ptr(obj); 00863 00864 rb_check_funcall(e->obj, id_rewind, 0, 0); 00865 00866 e->fib = 0; 00867 e->dst = Qnil; 00868 e->lookahead = Qundef; 00869 e->feedvalue = Qundef; 00870 e->stop_exc = Qfalse; 00871 return obj; 00872 } 00873 00874 static VALUE 00875 inspect_enumerator(VALUE obj, VALUE dummy, int recur) 00876 { 00877 struct enumerator *e; 00878 const char *cname; 00879 VALUE eobj, eargs, str, method; 00880 int tainted, untrusted; 00881 00882 TypedData_Get_Struct(obj, struct enumerator, &enumerator_data_type, e); 00883 00884 cname = rb_obj_classname(obj); 00885 00886 if (!e || e->obj == Qundef) { 00887 return rb_sprintf("#<%s: uninitialized>", cname); 00888 } 00889 00890 if (recur) { 00891 str = rb_sprintf("#<%s: ...>", cname); 00892 OBJ_TAINT(str); 00893 return str; 00894 } 00895 00896 eobj = rb_attr_get(obj, id_receiver); 00897 if (NIL_P(eobj)) { 00898 eobj = e->obj; 00899 } 00900 00901 tainted = OBJ_TAINTED(eobj); 00902 untrusted = OBJ_UNTRUSTED(eobj); 00903 00904 /* (1..100).each_cons(2) => "#<Enumerator: 1..100:each_cons(2)>" */ 00905 str = rb_sprintf("#<%s: ", cname); 00906 rb_str_concat(str, rb_inspect(eobj)); 00907 method = rb_attr_get(obj, id_method); 00908 if (NIL_P(method)) { 00909 rb_str_buf_cat2(str, ":"); 00910 rb_str_buf_cat2(str, rb_id2name(e->meth)); 00911 } 00912 else if (method != Qfalse) { 00913 Check_Type(method, T_SYMBOL); 00914 rb_str_buf_cat2(str, ":"); 00915 rb_str_buf_cat2(str, rb_id2name(SYM2ID(method))); 00916 } 00917 00918 eargs = rb_attr_get(obj, id_arguments); 00919 if (NIL_P(eargs)) { 00920 eargs = e->args; 00921 } 00922 if (eargs != Qfalse) { 00923 long argc = RARRAY_LEN(eargs); 00924 VALUE *argv = RARRAY_PTR(eargs); 00925 00926 if (argc > 0) { 00927 rb_str_buf_cat2(str, "("); 00928 00929 while (argc--) { 00930 VALUE arg = *argv++; 00931 00932 rb_str_concat(str, rb_inspect(arg)); 00933 rb_str_buf_cat2(str, argc > 0 ? ", " : ")"); 00934 00935 if (OBJ_TAINTED(arg)) tainted = TRUE; 00936 if (OBJ_UNTRUSTED(arg)) untrusted = TRUE; 00937 } 00938 } 00939 } 00940 00941 rb_str_buf_cat2(str, ">"); 00942 00943 if (tainted) OBJ_TAINT(str); 00944 if (untrusted) OBJ_UNTRUST(str); 00945 return str; 00946 } 00947 00948 /* 00949 * call-seq: 00950 * e.inspect -> string 00951 * 00952 * Creates a printable version of <i>e</i>. 00953 */ 00954 00955 static VALUE 00956 enumerator_inspect(VALUE obj) 00957 { 00958 return rb_exec_recursive(inspect_enumerator, obj, 0); 00959 } 00960 00961 /* 00962 * call-seq: 00963 * e.size -> int, Float::INFINITY or nil 00964 * 00965 * Returns the size of the enumerator, or +nil+ if it can't be calculated lazily. 00966 * 00967 * (1..100).to_a.permutation(4).size # => 94109400 00968 * loop.size # => Float::INFINITY 00969 * (1..100).drop_while.size # => nil 00970 */ 00971 00972 static VALUE 00973 enumerator_size(VALUE obj) 00974 { 00975 struct enumerator *e = enumerator_ptr(obj); 00976 00977 if (e->size_fn) { 00978 return (*e->size_fn)(e->obj, e->args, obj); 00979 } 00980 if (rb_obj_is_proc(e->size)) { 00981 if (e->args) 00982 return rb_proc_call(e->size, e->args); 00983 else 00984 return rb_proc_call_with_block(e->size, 0, 0, Qnil); 00985 } 00986 return e->size; 00987 } 00988 00989 /* 00990 * Yielder 00991 */ 00992 static void 00993 yielder_mark(void *p) 00994 { 00995 struct yielder *ptr = p; 00996 rb_gc_mark(ptr->proc); 00997 } 00998 00999 #define yielder_free RUBY_TYPED_DEFAULT_FREE 01000 01001 static size_t 01002 yielder_memsize(const void *p) 01003 { 01004 return p ? sizeof(struct yielder) : 0; 01005 } 01006 01007 static const rb_data_type_t yielder_data_type = { 01008 "yielder", 01009 { 01010 yielder_mark, 01011 yielder_free, 01012 yielder_memsize, 01013 }, 01014 }; 01015 01016 static struct yielder * 01017 yielder_ptr(VALUE obj) 01018 { 01019 struct yielder *ptr; 01020 01021 TypedData_Get_Struct(obj, struct yielder, &yielder_data_type, ptr); 01022 if (!ptr || ptr->proc == Qundef) { 01023 rb_raise(rb_eArgError, "uninitialized yielder"); 01024 } 01025 return ptr; 01026 } 01027 01028 /* :nodoc: */ 01029 static VALUE 01030 yielder_allocate(VALUE klass) 01031 { 01032 struct yielder *ptr; 01033 VALUE obj; 01034 01035 obj = TypedData_Make_Struct(klass, struct yielder, &yielder_data_type, ptr); 01036 ptr->proc = Qundef; 01037 01038 return obj; 01039 } 01040 01041 static VALUE 01042 yielder_init(VALUE obj, VALUE proc) 01043 { 01044 struct yielder *ptr; 01045 01046 TypedData_Get_Struct(obj, struct yielder, &yielder_data_type, ptr); 01047 01048 if (!ptr) { 01049 rb_raise(rb_eArgError, "unallocated yielder"); 01050 } 01051 01052 ptr->proc = proc; 01053 01054 return obj; 01055 } 01056 01057 /* :nodoc: */ 01058 static VALUE 01059 yielder_initialize(VALUE obj) 01060 { 01061 rb_need_block(); 01062 01063 return yielder_init(obj, rb_block_proc()); 01064 } 01065 01066 /* :nodoc: */ 01067 static VALUE 01068 yielder_yield(VALUE obj, VALUE args) 01069 { 01070 struct yielder *ptr = yielder_ptr(obj); 01071 01072 return rb_proc_call(ptr->proc, args); 01073 } 01074 01075 /* :nodoc: */ 01076 static VALUE yielder_yield_push(VALUE obj, VALUE args) 01077 { 01078 yielder_yield(obj, args); 01079 return obj; 01080 } 01081 01082 static VALUE 01083 yielder_yield_i(VALUE obj, VALUE memo, int argc, VALUE *argv) 01084 { 01085 return rb_yield_values2(argc, argv); 01086 } 01087 01088 static VALUE 01089 yielder_new(void) 01090 { 01091 return yielder_init(yielder_allocate(rb_cYielder), rb_proc_new(yielder_yield_i, 0)); 01092 } 01093 01094 /* 01095 * Generator 01096 */ 01097 static void 01098 generator_mark(void *p) 01099 { 01100 struct generator *ptr = p; 01101 rb_gc_mark(ptr->proc); 01102 } 01103 01104 #define generator_free RUBY_TYPED_DEFAULT_FREE 01105 01106 static size_t 01107 generator_memsize(const void *p) 01108 { 01109 return p ? sizeof(struct generator) : 0; 01110 } 01111 01112 static const rb_data_type_t generator_data_type = { 01113 "generator", 01114 { 01115 generator_mark, 01116 generator_free, 01117 generator_memsize, 01118 }, 01119 }; 01120 01121 static struct generator * 01122 generator_ptr(VALUE obj) 01123 { 01124 struct generator *ptr; 01125 01126 TypedData_Get_Struct(obj, struct generator, &generator_data_type, ptr); 01127 if (!ptr || ptr->proc == Qundef) { 01128 rb_raise(rb_eArgError, "uninitialized generator"); 01129 } 01130 return ptr; 01131 } 01132 01133 /* :nodoc: */ 01134 static VALUE 01135 generator_allocate(VALUE klass) 01136 { 01137 struct generator *ptr; 01138 VALUE obj; 01139 01140 obj = TypedData_Make_Struct(klass, struct generator, &generator_data_type, ptr); 01141 ptr->proc = Qundef; 01142 01143 return obj; 01144 } 01145 01146 static VALUE 01147 generator_init(VALUE obj, VALUE proc) 01148 { 01149 struct generator *ptr; 01150 01151 TypedData_Get_Struct(obj, struct generator, &generator_data_type, ptr); 01152 01153 if (!ptr) { 01154 rb_raise(rb_eArgError, "unallocated generator"); 01155 } 01156 01157 ptr->proc = proc; 01158 01159 return obj; 01160 } 01161 01162 /* :nodoc: */ 01163 static VALUE 01164 generator_initialize(int argc, VALUE *argv, VALUE obj) 01165 { 01166 VALUE proc; 01167 01168 if (argc == 0) { 01169 rb_need_block(); 01170 01171 proc = rb_block_proc(); 01172 } 01173 else { 01174 rb_scan_args(argc, argv, "1", &proc); 01175 01176 if (!rb_obj_is_proc(proc)) 01177 rb_raise(rb_eTypeError, 01178 "wrong argument type %s (expected Proc)", 01179 rb_obj_classname(proc)); 01180 01181 if (rb_block_given_p()) { 01182 rb_warn("given block not used"); 01183 } 01184 } 01185 01186 return generator_init(obj, proc); 01187 } 01188 01189 /* :nodoc: */ 01190 static VALUE 01191 generator_init_copy(VALUE obj, VALUE orig) 01192 { 01193 struct generator *ptr0, *ptr1; 01194 01195 if (!OBJ_INIT_COPY(obj, orig)) return obj; 01196 01197 ptr0 = generator_ptr(orig); 01198 01199 TypedData_Get_Struct(obj, struct generator, &generator_data_type, ptr1); 01200 01201 if (!ptr1) { 01202 rb_raise(rb_eArgError, "unallocated generator"); 01203 } 01204 01205 ptr1->proc = ptr0->proc; 01206 01207 return obj; 01208 } 01209 01210 /* :nodoc: */ 01211 static VALUE 01212 generator_each(int argc, VALUE *argv, VALUE obj) 01213 { 01214 struct generator *ptr = generator_ptr(obj); 01215 VALUE args = rb_ary_new2(argc + 1); 01216 01217 rb_ary_push(args, yielder_new()); 01218 if (argc > 0) { 01219 rb_ary_cat(args, argv, argc); 01220 } 01221 01222 return rb_proc_call(ptr->proc, args); 01223 } 01224 01225 /* Lazy Enumerator methods */ 01226 static VALUE 01227 enum_size(VALUE self) 01228 { 01229 VALUE r = rb_check_funcall(self, id_size, 0, 0); 01230 return (r == Qundef) ? Qnil : r; 01231 } 01232 01233 static VALUE 01234 lazy_size(VALUE self) 01235 { 01236 return enum_size(rb_ivar_get(self, id_receiver)); 01237 } 01238 01239 static VALUE 01240 lazy_receiver_size(VALUE generator, VALUE args, VALUE lazy) 01241 { 01242 return lazy_size(lazy); 01243 } 01244 01245 static VALUE 01246 lazy_init_iterator(VALUE val, VALUE m, int argc, VALUE *argv) 01247 { 01248 VALUE result; 01249 if (argc == 1) { 01250 VALUE args[2]; 01251 args[0] = m; 01252 args[1] = val; 01253 result = rb_yield_values2(2, args); 01254 } 01255 else { 01256 VALUE args; 01257 int len = rb_long2int((long)argc + 1); 01258 01259 args = rb_ary_tmp_new(len); 01260 rb_ary_push(args, m); 01261 if (argc > 0) { 01262 rb_ary_cat(args, argv, argc); 01263 } 01264 result = rb_yield_values2(len, RARRAY_PTR(args)); 01265 RB_GC_GUARD(args); 01266 } 01267 if (result == Qundef) rb_iter_break(); 01268 return Qnil; 01269 } 01270 01271 static VALUE 01272 lazy_init_block_i(VALUE val, VALUE m, int argc, VALUE *argv) 01273 { 01274 rb_block_call(m, id_each, argc-1, argv+1, lazy_init_iterator, val); 01275 return Qnil; 01276 } 01277 01278 /* 01279 * call-seq: 01280 * Lazy.new(obj, size=nil) { |yielder, *values| ... } 01281 * 01282 * Creates a new Lazy enumerator. When the enumerator is actually enumerated 01283 * (e.g. by calling #force), +obj+ will be enumerated and each value passed 01284 * to the given block. The block can yield values back using +yielder+. 01285 * For example, to create a method +filter_map+ in both lazy and 01286 * non-lazy fashions: 01287 * 01288 * module Enumerable 01289 * def filter_map(&block) 01290 * map(&block).compact 01291 * end 01292 * end 01293 * 01294 * class Enumerator::Lazy 01295 * def filter_map 01296 * Lazy.new(self) do |yielder, *values| 01297 * result = yield *values 01298 * yielder << result if result 01299 * end 01300 * end 01301 * end 01302 * 01303 * (1..Float::INFINITY).lazy.filter_map{|i| i*i if i.even?}.first(5) 01304 * # => [4, 16, 36, 64, 100] 01305 */ 01306 static VALUE 01307 lazy_initialize(int argc, VALUE *argv, VALUE self) 01308 { 01309 VALUE obj, size = Qnil; 01310 VALUE generator; 01311 01312 rb_check_arity(argc, 1, 2); 01313 if (!rb_block_given_p()) { 01314 rb_raise(rb_eArgError, "tried to call lazy new without a block"); 01315 } 01316 obj = argv[0]; 01317 if (argc > 1) { 01318 size = argv[1]; 01319 } 01320 generator = generator_allocate(rb_cGenerator); 01321 rb_block_call(generator, id_initialize, 0, 0, lazy_init_block_i, obj); 01322 enumerator_init(self, generator, sym_each, 0, 0, 0, size); 01323 rb_ivar_set(self, id_receiver, obj); 01324 01325 return self; 01326 } 01327 01328 static VALUE 01329 lazy_set_method(VALUE lazy, VALUE args, VALUE (*size_fn)(ANYARGS)) 01330 { 01331 ID id = rb_frame_this_func(); 01332 struct enumerator *e = enumerator_ptr(lazy); 01333 rb_ivar_set(lazy, id_method, ID2SYM(id)); 01334 if (NIL_P(args)) { 01335 /* Qfalse indicates that the arguments are empty */ 01336 rb_ivar_set(lazy, id_arguments, Qfalse); 01337 } 01338 else { 01339 rb_ivar_set(lazy, id_arguments, args); 01340 } 01341 e->size_fn = size_fn; 01342 return lazy; 01343 } 01344 01345 /* 01346 * call-seq: 01347 * e.lazy -> lazy_enumerator 01348 * 01349 * Returns a lazy enumerator, whose methods map/collect, 01350 * flat_map/collect_concat, select/find_all, reject, grep, zip, take, 01351 * take_while, drop, and drop_while enumerate values only on an 01352 * as-needed basis. However, if a block is given to zip, values 01353 * are enumerated immediately. 01354 * 01355 * === Example 01356 * 01357 * The following program finds pythagorean triples: 01358 * 01359 * def pythagorean_triples 01360 * (1..Float::INFINITY).lazy.flat_map {|z| 01361 * (1..z).flat_map {|x| 01362 * (x..z).select {|y| 01363 * x**2 + y**2 == z**2 01364 * }.map {|y| 01365 * [x, y, z] 01366 * } 01367 * } 01368 * } 01369 * end 01370 * # show first ten pythagorean triples 01371 * p pythagorean_triples.take(10).force # take is lazy, so force is needed 01372 * p pythagorean_triples.first(10) # first is eager 01373 * # show pythagorean triples less than 100 01374 * p pythagorean_triples.take_while { |*, z| z < 100 }.force 01375 */ 01376 static VALUE 01377 enumerable_lazy(VALUE obj) 01378 { 01379 VALUE result = lazy_to_enum_i(obj, sym_each, 0, 0, enum_size); 01380 /* Qfalse indicates that the Enumerator::Lazy has no method name */ 01381 rb_ivar_set(result, id_method, Qfalse); 01382 return result; 01383 } 01384 01385 static VALUE 01386 lazy_to_enum_i(VALUE obj, VALUE meth, int argc, VALUE *argv, VALUE (*size_fn)(ANYARGS)) 01387 { 01388 return enumerator_init(enumerator_allocate(rb_cLazy), 01389 obj, meth, argc, argv, size_fn, Qnil); 01390 } 01391 01392 /* 01393 * call-seq: 01394 * lzy.to_enum(method = :each, *args) -> lazy_enum 01395 * lzy.enum_for(method = :each, *args) -> lazy_enum 01396 * lzy.to_enum(method = :each, *args) {|*args| block} -> lazy_enum 01397 * lzy.enum_for(method = :each, *args){|*args| block} -> lazy_enum 01398 * 01399 * Similar to Kernel#to_enum, except it returns a lazy enumerator. 01400 * This makes it easy to define Enumerable methods that will 01401 * naturally remain lazy if called from a lazy enumerator. 01402 * 01403 * For example, continuing from the example in Kernel#to_enum: 01404 * 01405 * # See Kernel#to_enum for the definition of repeat 01406 * r = 1..Float::INFINITY 01407 * r.repeat(2).first(5) # => [1, 1, 2, 2, 3] 01408 * r.repeat(2).class # => Enumerator 01409 * r.repeat(2).map{|n| n ** 2}.first(5) # => endless loop! 01410 * # works naturally on lazy enumerator: 01411 * r.lazy.repeat(2).class # => Enumerator::Lazy 01412 * r.lazy.repeat(2).map{|n| n ** 2}.first(5) # => [1, 1, 4, 4, 9] 01413 */ 01414 01415 static VALUE 01416 lazy_to_enum(int argc, VALUE *argv, VALUE self) 01417 { 01418 VALUE lazy, meth = sym_each; 01419 01420 if (argc > 0) { 01421 --argc; 01422 meth = *argv++; 01423 } 01424 lazy = lazy_to_enum_i(self, meth, argc, argv, 0); 01425 if (rb_block_given_p()) { 01426 enumerator_ptr(lazy)->size = rb_block_proc(); 01427 } 01428 return lazy; 01429 } 01430 01431 static VALUE 01432 lazy_map_func(VALUE val, VALUE m, int argc, VALUE *argv) 01433 { 01434 VALUE result = rb_yield_values2(argc - 1, &argv[1]); 01435 01436 rb_funcall(argv[0], id_yield, 1, result); 01437 return Qnil; 01438 } 01439 01440 static VALUE 01441 lazy_map(VALUE obj) 01442 { 01443 if (!rb_block_given_p()) { 01444 rb_raise(rb_eArgError, "tried to call lazy map without a block"); 01445 } 01446 01447 return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, 01448 lazy_map_func, 0), 01449 Qnil, lazy_receiver_size); 01450 } 01451 01452 static VALUE 01453 lazy_flat_map_i(VALUE i, VALUE yielder, int argc, VALUE *argv) 01454 { 01455 return rb_funcall2(yielder, id_yield, argc, argv); 01456 } 01457 01458 static VALUE 01459 lazy_flat_map_each(VALUE obj, VALUE yielder) 01460 { 01461 rb_block_call(obj, id_each, 0, 0, lazy_flat_map_i, yielder); 01462 return Qnil; 01463 } 01464 01465 static VALUE 01466 lazy_flat_map_to_ary(VALUE obj, VALUE yielder) 01467 { 01468 VALUE ary = rb_check_array_type(obj); 01469 if (NIL_P(ary)) { 01470 rb_funcall(yielder, id_yield, 1, obj); 01471 } 01472 else { 01473 long i; 01474 for (i = 0; i < RARRAY_LEN(ary); i++) { 01475 rb_funcall(yielder, id_yield, 1, RARRAY_PTR(ary)[i]); 01476 } 01477 } 01478 return Qnil; 01479 } 01480 01481 static VALUE 01482 lazy_flat_map_func(VALUE val, VALUE m, int argc, VALUE *argv) 01483 { 01484 VALUE result = rb_yield_values2(argc - 1, &argv[1]); 01485 if (RB_TYPE_P(result, T_ARRAY)) { 01486 long i; 01487 for (i = 0; i < RARRAY_LEN(result); i++) { 01488 rb_funcall(argv[0], id_yield, 1, RARRAY_PTR(result)[i]); 01489 } 01490 } 01491 else { 01492 if (rb_respond_to(result, id_force) && rb_respond_to(result, id_each)) { 01493 lazy_flat_map_each(result, argv[0]); 01494 } 01495 else { 01496 lazy_flat_map_to_ary(result, argv[0]); 01497 } 01498 } 01499 return Qnil; 01500 } 01501 01502 /* 01503 * call-seq: 01504 * lazy.flat_map { |obj| block } -> a_lazy_enumerator 01505 * 01506 * Returns a new lazy enumerator with the concatenated results of running 01507 * <i>block</i> once for every element in <i>lazy</i>. 01508 * 01509 * ["foo", "bar"].lazy.flat_map {|i| i.each_char.lazy}.force 01510 * #=> ["f", "o", "o", "b", "a", "r"] 01511 * 01512 * A value <i>x</i> returned by <i>block</i> is decomposed if either of 01513 * the following conditions is true: 01514 * 01515 * a) <i>x</i> responds to both each and force, which means that 01516 * <i>x</i> is a lazy enumerator. 01517 * b) <i>x</i> is an array or responds to to_ary. 01518 * 01519 * Otherwise, <i>x</i> is contained as-is in the return value. 01520 * 01521 * [{a:1}, {b:2}].lazy.flat_map {|i| i}.force 01522 * #=> [{:a=>1}, {:b=>2}] 01523 */ 01524 static VALUE 01525 lazy_flat_map(VALUE obj) 01526 { 01527 if (!rb_block_given_p()) { 01528 rb_raise(rb_eArgError, "tried to call lazy flat_map without a block"); 01529 } 01530 01531 return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, 01532 lazy_flat_map_func, 0), 01533 Qnil, 0); 01534 } 01535 01536 static VALUE 01537 lazy_select_func(VALUE val, VALUE m, int argc, VALUE *argv) 01538 { 01539 VALUE element = rb_enum_values_pack(argc - 1, argv + 1); 01540 01541 if (RTEST(rb_yield(element))) { 01542 return rb_funcall(argv[0], id_yield, 1, element); 01543 } 01544 return Qnil; 01545 } 01546 01547 static VALUE 01548 lazy_select(VALUE obj) 01549 { 01550 if (!rb_block_given_p()) { 01551 rb_raise(rb_eArgError, "tried to call lazy select without a block"); 01552 } 01553 01554 return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, 01555 lazy_select_func, 0), 01556 Qnil, 0); 01557 } 01558 01559 static VALUE 01560 lazy_reject_func(VALUE val, VALUE m, int argc, VALUE *argv) 01561 { 01562 VALUE element = rb_enum_values_pack(argc - 1, argv + 1); 01563 01564 if (!RTEST(rb_yield(element))) { 01565 return rb_funcall(argv[0], id_yield, 1, element); 01566 } 01567 return Qnil; 01568 } 01569 01570 static VALUE 01571 lazy_reject(VALUE obj) 01572 { 01573 if (!rb_block_given_p()) { 01574 rb_raise(rb_eArgError, "tried to call lazy reject without a block"); 01575 } 01576 01577 return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, 01578 lazy_reject_func, 0), 01579 Qnil, 0); 01580 } 01581 01582 static VALUE 01583 lazy_grep_func(VALUE val, VALUE m, int argc, VALUE *argv) 01584 { 01585 VALUE i = rb_enum_values_pack(argc - 1, argv + 1); 01586 VALUE result = rb_funcall(m, id_eqq, 1, i); 01587 01588 if (RTEST(result)) { 01589 rb_funcall(argv[0], id_yield, 1, i); 01590 } 01591 return Qnil; 01592 } 01593 01594 static VALUE 01595 lazy_grep_iter(VALUE val, VALUE m, int argc, VALUE *argv) 01596 { 01597 VALUE i = rb_enum_values_pack(argc - 1, argv + 1); 01598 VALUE result = rb_funcall(m, id_eqq, 1, i); 01599 01600 if (RTEST(result)) { 01601 rb_funcall(argv[0], id_yield, 1, rb_yield(i)); 01602 } 01603 return Qnil; 01604 } 01605 01606 static VALUE 01607 lazy_grep(VALUE obj, VALUE pattern) 01608 { 01609 return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, 01610 rb_block_given_p() ? 01611 lazy_grep_iter : lazy_grep_func, 01612 pattern), 01613 rb_ary_new3(1, pattern), 0); 01614 } 01615 01616 static VALUE 01617 call_next(VALUE obj) 01618 { 01619 return rb_funcall(obj, id_next, 0); 01620 } 01621 01622 static VALUE 01623 next_stopped(VALUE obj) 01624 { 01625 return Qnil; 01626 } 01627 01628 static VALUE 01629 lazy_zip_arrays_func(VALUE val, VALUE arrays, int argc, VALUE *argv) 01630 { 01631 VALUE yielder, ary, memo; 01632 long i, count; 01633 01634 yielder = argv[0]; 01635 memo = rb_attr_get(yielder, id_memo); 01636 count = NIL_P(memo) ? 0 : NUM2LONG(memo); 01637 01638 ary = rb_ary_new2(RARRAY_LEN(arrays) + 1); 01639 rb_ary_push(ary, argv[1]); 01640 for (i = 0; i < RARRAY_LEN(arrays); i++) { 01641 rb_ary_push(ary, rb_ary_entry(RARRAY_PTR(arrays)[i], count)); 01642 } 01643 rb_funcall(yielder, id_yield, 1, ary); 01644 rb_ivar_set(yielder, id_memo, LONG2NUM(++count)); 01645 return Qnil; 01646 } 01647 01648 static VALUE 01649 lazy_zip_func(VALUE val, VALUE zip_args, int argc, VALUE *argv) 01650 { 01651 VALUE yielder, ary, arg, v; 01652 long i; 01653 01654 yielder = argv[0]; 01655 arg = rb_attr_get(yielder, id_memo); 01656 if (NIL_P(arg)) { 01657 arg = rb_ary_new2(RARRAY_LEN(zip_args)); 01658 for (i = 0; i < RARRAY_LEN(zip_args); i++) { 01659 rb_ary_push(arg, rb_funcall(RARRAY_PTR(zip_args)[i], id_to_enum, 0)); 01660 } 01661 rb_ivar_set(yielder, id_memo, arg); 01662 } 01663 01664 ary = rb_ary_new2(RARRAY_LEN(arg) + 1); 01665 v = Qnil; 01666 if (--argc > 0) { 01667 ++argv; 01668 v = argc > 1 ? rb_ary_new4(argc, argv) : *argv; 01669 } 01670 rb_ary_push(ary, v); 01671 for (i = 0; i < RARRAY_LEN(arg); i++) { 01672 v = rb_rescue2(call_next, RARRAY_PTR(arg)[i], next_stopped, 0, 01673 rb_eStopIteration, (VALUE)0); 01674 rb_ary_push(ary, v); 01675 } 01676 rb_funcall(yielder, id_yield, 1, ary); 01677 return Qnil; 01678 } 01679 01680 static VALUE 01681 lazy_zip(int argc, VALUE *argv, VALUE obj) 01682 { 01683 VALUE ary, v; 01684 long i; 01685 rb_block_call_func *func = lazy_zip_arrays_func; 01686 01687 if (rb_block_given_p()) { 01688 return rb_call_super(argc, argv); 01689 } 01690 01691 ary = rb_ary_new2(argc); 01692 for (i = 0; i < argc; i++) { 01693 v = rb_check_array_type(argv[i]); 01694 if (NIL_P(v)) { 01695 for (; i < argc; i++) { 01696 if (!rb_respond_to(argv[i], id_each)) { 01697 rb_raise(rb_eTypeError, "wrong argument type %s (must respond to :each)", 01698 rb_obj_classname(argv[i])); 01699 } 01700 } 01701 ary = rb_ary_new4(argc, argv); 01702 func = lazy_zip_func; 01703 break; 01704 } 01705 rb_ary_push(ary, v); 01706 } 01707 01708 return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, 01709 func, ary), 01710 ary, lazy_receiver_size); 01711 } 01712 01713 static VALUE 01714 lazy_take_func(VALUE val, VALUE args, int argc, VALUE *argv) 01715 { 01716 long remain; 01717 VALUE memo = rb_attr_get(argv[0], id_memo); 01718 if (NIL_P(memo)) { 01719 memo = args; 01720 } 01721 01722 rb_funcall2(argv[0], id_yield, argc - 1, argv + 1); 01723 if ((remain = NUM2LONG(memo)-1) == 0) { 01724 return Qundef; 01725 } 01726 else { 01727 rb_ivar_set(argv[0], id_memo, LONG2NUM(remain)); 01728 return Qnil; 01729 } 01730 } 01731 01732 static VALUE 01733 lazy_take_size(VALUE generator, VALUE args, VALUE lazy) 01734 { 01735 VALUE receiver = lazy_size(lazy); 01736 long len = NUM2LONG(RARRAY_PTR(rb_ivar_get(lazy, id_arguments))[0]); 01737 if (NIL_P(receiver) || (FIXNUM_P(receiver) && FIX2LONG(receiver) < len)) 01738 return receiver; 01739 return LONG2NUM(len); 01740 } 01741 01742 static VALUE 01743 lazy_take(VALUE obj, VALUE n) 01744 { 01745 long len = NUM2LONG(n); 01746 VALUE lazy; 01747 01748 if (len < 0) { 01749 rb_raise(rb_eArgError, "attempt to take negative size"); 01750 } 01751 if (len == 0) { 01752 VALUE len = INT2NUM(0); 01753 lazy = lazy_to_enum_i(obj, sym_cycle, 1, &len, 0); 01754 } 01755 else { 01756 lazy = rb_block_call(rb_cLazy, id_new, 1, &obj, 01757 lazy_take_func, n); 01758 } 01759 return lazy_set_method(lazy, rb_ary_new3(1, n), lazy_take_size); 01760 } 01761 01762 static VALUE 01763 lazy_take_while_func(VALUE val, VALUE args, int argc, VALUE *argv) 01764 { 01765 VALUE result = rb_yield_values2(argc - 1, &argv[1]); 01766 if (!RTEST(result)) return Qundef; 01767 rb_funcall2(argv[0], id_yield, argc - 1, argv + 1); 01768 return Qnil; 01769 } 01770 01771 static VALUE 01772 lazy_take_while(VALUE obj) 01773 { 01774 if (!rb_block_given_p()) { 01775 rb_raise(rb_eArgError, "tried to call lazy take_while without a block"); 01776 } 01777 return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, 01778 lazy_take_while_func, 0), 01779 Qnil, 0); 01780 } 01781 01782 static VALUE 01783 lazy_drop_size(VALUE generator, VALUE args, VALUE lazy) 01784 { 01785 long len = NUM2LONG(RARRAY_PTR(rb_ivar_get(lazy, id_arguments))[0]); 01786 VALUE receiver = lazy_size(lazy); 01787 if (NIL_P(receiver)) 01788 return receiver; 01789 if (FIXNUM_P(receiver)) { 01790 len = FIX2LONG(receiver) - len; 01791 return LONG2FIX(len < 0 ? 0 : len); 01792 } 01793 return rb_funcall(receiver, '-', 1, LONG2NUM(len)); 01794 } 01795 01796 static VALUE 01797 lazy_drop_func(VALUE val, VALUE args, int argc, VALUE *argv) 01798 { 01799 long remain; 01800 VALUE memo = rb_attr_get(argv[0], id_memo); 01801 if (NIL_P(memo)) { 01802 memo = args; 01803 } 01804 if ((remain = NUM2LONG(memo)) == 0) { 01805 rb_funcall2(argv[0], id_yield, argc - 1, argv + 1); 01806 } 01807 else { 01808 rb_ivar_set(argv[0], id_memo, LONG2NUM(--remain)); 01809 } 01810 return Qnil; 01811 } 01812 01813 static VALUE 01814 lazy_drop(VALUE obj, VALUE n) 01815 { 01816 long len = NUM2LONG(n); 01817 01818 if (len < 0) { 01819 rb_raise(rb_eArgError, "attempt to drop negative size"); 01820 } 01821 return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, 01822 lazy_drop_func, n), 01823 rb_ary_new3(1, n), lazy_drop_size); 01824 } 01825 01826 static VALUE 01827 lazy_drop_while_func(VALUE val, VALUE args, int argc, VALUE *argv) 01828 { 01829 VALUE memo = rb_attr_get(argv[0], id_memo); 01830 if (NIL_P(memo) && !RTEST(rb_yield_values2(argc - 1, &argv[1]))) { 01831 rb_ivar_set(argv[0], id_memo, memo = Qtrue); 01832 } 01833 if (memo == Qtrue) { 01834 rb_funcall2(argv[0], id_yield, argc - 1, argv + 1); 01835 } 01836 return Qnil; 01837 } 01838 01839 static VALUE 01840 lazy_drop_while(VALUE obj) 01841 { 01842 if (!rb_block_given_p()) { 01843 rb_raise(rb_eArgError, "tried to call lazy drop_while without a block"); 01844 } 01845 return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, 01846 lazy_drop_while_func, 0), 01847 Qnil, 0); 01848 } 01849 01850 static VALUE 01851 lazy_super(int argc, VALUE *argv, VALUE lazy) 01852 { 01853 return enumerable_lazy(rb_call_super(argc, argv)); 01854 } 01855 01856 static VALUE 01857 lazy_lazy(VALUE obj) 01858 { 01859 return obj; 01860 } 01861 01862 /* 01863 * Document-class: StopIteration 01864 * 01865 * Raised to stop the iteration, in particular by Enumerator#next. It is 01866 * rescued by Kernel#loop. 01867 * 01868 * loop do 01869 * puts "Hello" 01870 * raise StopIteration 01871 * puts "World" 01872 * end 01873 * puts "Done!" 01874 * 01875 * <em>produces:</em> 01876 * 01877 * Hello 01878 * Done! 01879 */ 01880 01881 /* 01882 * call-seq: 01883 * result -> value 01884 * 01885 * Returns the return value of the iterator. 01886 * 01887 * o = Object.new 01888 * def o.each 01889 * yield 1 01890 * yield 2 01891 * yield 3 01892 * 100 01893 * end 01894 * 01895 * e = o.to_enum 01896 * 01897 * puts e.next #=> 1 01898 * puts e.next #=> 2 01899 * puts e.next #=> 3 01900 * 01901 * begin 01902 * e.next 01903 * rescue StopIteration => ex 01904 * puts ex.result #=> 100 01905 * end 01906 * 01907 */ 01908 01909 static VALUE 01910 stop_result(VALUE self) 01911 { 01912 return rb_attr_get(self, id_result); 01913 } 01914 01915 void 01916 InitVM_Enumerator(void) 01917 { 01918 rb_define_method(rb_mKernel, "to_enum", obj_to_enum, -1); 01919 rb_define_method(rb_mKernel, "enum_for", obj_to_enum, -1); 01920 01921 rb_cEnumerator = rb_define_class("Enumerator", rb_cObject); 01922 rb_include_module(rb_cEnumerator, rb_mEnumerable); 01923 01924 rb_define_alloc_func(rb_cEnumerator, enumerator_allocate); 01925 rb_define_method(rb_cEnumerator, "initialize", enumerator_initialize, -1); 01926 rb_define_method(rb_cEnumerator, "initialize_copy", enumerator_init_copy, 1); 01927 rb_define_method(rb_cEnumerator, "each", enumerator_each, -1); 01928 rb_define_method(rb_cEnumerator, "each_with_index", enumerator_each_with_index, 0); 01929 rb_define_method(rb_cEnumerator, "each_with_object", enumerator_with_object, 1); 01930 rb_define_method(rb_cEnumerator, "with_index", enumerator_with_index, -1); 01931 rb_define_method(rb_cEnumerator, "with_object", enumerator_with_object, 1); 01932 rb_define_method(rb_cEnumerator, "next_values", enumerator_next_values, 0); 01933 rb_define_method(rb_cEnumerator, "peek_values", enumerator_peek_values_m, 0); 01934 rb_define_method(rb_cEnumerator, "next", enumerator_next, 0); 01935 rb_define_method(rb_cEnumerator, "peek", enumerator_peek, 0); 01936 rb_define_method(rb_cEnumerator, "feed", enumerator_feed, 1); 01937 rb_define_method(rb_cEnumerator, "rewind", enumerator_rewind, 0); 01938 rb_define_method(rb_cEnumerator, "inspect", enumerator_inspect, 0); 01939 rb_define_method(rb_cEnumerator, "size", enumerator_size, 0); 01940 01941 /* Lazy */ 01942 rb_cLazy = rb_define_class_under(rb_cEnumerator, "Lazy", rb_cEnumerator); 01943 rb_define_method(rb_mEnumerable, "lazy", enumerable_lazy, 0); 01944 rb_define_method(rb_cLazy, "initialize", lazy_initialize, -1); 01945 rb_define_method(rb_cLazy, "to_enum", lazy_to_enum, -1); 01946 rb_define_method(rb_cLazy, "enum_for", lazy_to_enum, -1); 01947 rb_define_method(rb_cLazy, "map", lazy_map, 0); 01948 rb_define_method(rb_cLazy, "collect", lazy_map, 0); 01949 rb_define_method(rb_cLazy, "flat_map", lazy_flat_map, 0); 01950 rb_define_method(rb_cLazy, "collect_concat", lazy_flat_map, 0); 01951 rb_define_method(rb_cLazy, "select", lazy_select, 0); 01952 rb_define_method(rb_cLazy, "find_all", lazy_select, 0); 01953 rb_define_method(rb_cLazy, "reject", lazy_reject, 0); 01954 rb_define_method(rb_cLazy, "grep", lazy_grep, 1); 01955 rb_define_method(rb_cLazy, "zip", lazy_zip, -1); 01956 rb_define_method(rb_cLazy, "take", lazy_take, 1); 01957 rb_define_method(rb_cLazy, "take_while", lazy_take_while, 0); 01958 rb_define_method(rb_cLazy, "drop", lazy_drop, 1); 01959 rb_define_method(rb_cLazy, "drop_while", lazy_drop_while, 0); 01960 rb_define_method(rb_cLazy, "lazy", lazy_lazy, 0); 01961 rb_define_method(rb_cLazy, "chunk", lazy_super, -1); 01962 rb_define_method(rb_cLazy, "slice_before", lazy_super, -1); 01963 01964 rb_define_alias(rb_cLazy, "force", "to_a"); 01965 01966 rb_eStopIteration = rb_define_class("StopIteration", rb_eIndexError); 01967 rb_define_method(rb_eStopIteration, "result", stop_result, 0); 01968 01969 /* Generator */ 01970 rb_cGenerator = rb_define_class_under(rb_cEnumerator, "Generator", rb_cObject); 01971 rb_include_module(rb_cGenerator, rb_mEnumerable); 01972 rb_define_alloc_func(rb_cGenerator, generator_allocate); 01973 rb_define_method(rb_cGenerator, "initialize", generator_initialize, -1); 01974 rb_define_method(rb_cGenerator, "initialize_copy", generator_init_copy, 1); 01975 rb_define_method(rb_cGenerator, "each", generator_each, -1); 01976 01977 /* Yielder */ 01978 rb_cYielder = rb_define_class_under(rb_cEnumerator, "Yielder", rb_cObject); 01979 rb_define_alloc_func(rb_cYielder, yielder_allocate); 01980 rb_define_method(rb_cYielder, "initialize", yielder_initialize, 0); 01981 rb_define_method(rb_cYielder, "yield", yielder_yield, -2); 01982 rb_define_method(rb_cYielder, "<<", yielder_yield_push, -2); 01983 01984 rb_provide("enumerator.so"); /* for backward compatibility */ 01985 } 01986 01987 void 01988 Init_Enumerator(void) 01989 { 01990 id_rewind = rb_intern("rewind"); 01991 id_each = rb_intern("each"); 01992 id_call = rb_intern("call"); 01993 id_size = rb_intern("size"); 01994 id_yield = rb_intern("yield"); 01995 id_new = rb_intern("new"); 01996 id_initialize = rb_intern("initialize"); 01997 id_next = rb_intern("next"); 01998 id_result = rb_intern("result"); 01999 id_lazy = rb_intern("lazy"); 02000 id_eqq = rb_intern("==="); 02001 id_receiver = rb_intern("receiver"); 02002 id_arguments = rb_intern("arguments"); 02003 id_memo = rb_intern("memo"); 02004 id_method = rb_intern("method"); 02005 id_force = rb_intern("force"); 02006 id_to_enum = rb_intern("to_enum"); 02007 sym_each = ID2SYM(id_each); 02008 sym_cycle = ID2SYM(rb_intern("cycle")); 02009 02010 InitVM(Enumerator); 02011 } 02012
1.7.6.1