Is Parallel Programming Hard, And, If So,
What Can You Do About It?

Edited by:

Paul E. McKenney
Linux Technology Center
IBM Beaverton
paulmck @linux.vnet.ibm.com

December 5, 2018

mailto:paulmck@linux.vnet.ibm.com

ii
Legal Statement

This work represents the views of the editor and the authors and does not necessarily
represent the view of their respective employers.

Trademarks:

e IBM, z Systems, and PowerPC are trademarks or registered trademarks of Inter-
national Business Machines Corporation in the United States, other countries, or
both.

e Linux is a registered trademark of Linus Torvalds.

e 1386 is a trademark of Intel Corporation or its subsidiaries in the United States,
other countries, or both.

e Other company, product, and service names may be trademarks or service marks
of such companies.

The non-source-code text and images in this document are provided under the terms
of the Creative Commons Attribution-Share Alike 3.0 United States license.! In brief,
you may use the contents of this document for any purpose, personal, commercial, or
otherwise, so long as attribution to the authors is maintained. Likewise, the document
may be modified, and derivative works and translations made available, so long as
such modifications and derivations are offered to the public on equal terms as the
non-source-code text and images in the original document.

Source code is covered by various versions of the GPL.> Some of this code is GPLv2-
only, as it derives from the Linux kernel, while other code is GPLv2-or-later. See the
comment headers of the individual source files within the CodeSamples directory in
the git archive® for the exact licenses. If you are unsure of the license for a given code
fragment, you should assume GPLv2-only.

Combined work © 2005-2018 by Paul E. McKenney.

! nttp://creativecommons.org/licenses/by-sa/3.0/us/
2 http://www.gnu.org/licenses/gpl-2.0.html
3 git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.gnu.org/licenses/gpl-2.0.html
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

Contents

1 How To Use This Book 1
1.1 Roadmap 1
1.2 Quick Quizzes. 2
1.3 Alternatives to ThisBook 3
1.4 Sample SourceCode, 4
1.5 Whose BookIs This? 4

2 Introduction 7
2.1 Historic Parallel Programming Difficulties 7
2.2 Parallel Programming Goals 9

22.1 Performance 9
222 Productivity 11
223 Generality 12
2.3 Alternatives to Parallel Programming 14
2.3.1 Multiple Instances of a Sequential Application 14
2.3.2 Use Existing Parallel Software 15
2.3.3 Performance Optimization 15
2.4 What Makes Parallel Programming Hard? 16
24.1 Work Partitioning oL 16
2.4.2 Parallel AccessControl 17
2.4.3 Resource Partitioning and Replication 18
244 Interacting With Hardware 18
2.4.5 Composite Capabilities 19
2.4.6 How Do Languages and Environments Assist With These Tasks? 19
25 Discussion. 19
3 Hardware and its Habits 21
31 Overview 21
3.1.1 PipelinedCPUs 21
3.1.2 Memory References 23
3.1.3 Atomic Operations 24
3.14 Memory Barriers o ool 25
3.1.5 CacheMisseso i it 26
3.1.6 I/OOperations 26
32 Overheads 27
3.2.1 Hardware System Architecture 27
322 Costsof Operations 29
3.2.3 Hardware Optimizations 30

iii

iv

3.3 Hardware Free Lunch?
33.1 3DIntegration
3.3.2 Novel Materials and Processes
3.3.3 Light, Not Electrons
3.3.4 Special-Purpose Accelerators
3.3.5 Existing Parallel Software
3.4 Software Design Implications
Tools of the Trade
4.1 Scripting Languages
4.2 POSIX Multiprocessing
4.2.1 POSIX Process Creation and Destruction
4.2.2 POSIX Thread Creation and Destruction
423 POSIXLocking.
4.2.4 POSIX Reader-Writer Locking
4.2.5 Atomic Operations (GCC Classic)
4.2.6 Atomic Operations (C11)
4.2.7 Atomic Operations (Modern GCC)
4.2.8 Per-Thread Variables
4.3 Alternatives to POSIX Operations
4.3.1 Organization and Initialization
4.3.2 Thread Creation, Destruction, and Control
433 Locking,
4.3.4 Accessing Shared Variables
4.3.5 Atomic Operations
4.3.6 Per-CPU Variables
4.4 The Right Tool for the Job: How to Choose?
Counting
5.1 Why Isn’t Concurrent Counting Trivial?
5.2 Statistical Counters
521 Design o o
5.2.2 Array-Based Implementation
5.2.3 Eventually Consistent Implementation
5.2.4 Per-Thread-Variable-Based Implementation
525 Discussiono
5.3 Approximate Limit Counters
53.1 Design
5.3.2 Simple Limit Counter Implementation
5.3.3 Simple Limit Counter Discussion
5.3.4 Approximate Limit Counter Implementation
5.3.5 Approximate Limit Counter Discussion
54 ExactLimitCounters
5.4.1 Atomic Limit Counter Implementation
5.4.2 Atomic Limit Counter Discussion
5.4.3 Signal-Theft Limit Counter Design
5.4.4 Signal-Theft Limit Counter Implementation
5.4.5 Signal-Theft Limit Counter Discussion
5.5 Applying Specialized Parallel Counters
5.6 Parallel Counting Discussion

CONTENTS

65

....... 66

CONTENTS

5.6.1 Parallel Counting Performance
5.6.2 Parallel Counting Specializations
5.6.3 Parallel Counting Lessons

6 Partitioning and Synchronization Design

6.1

6.2
6.3

6.4

6.5

Partitioning Exercises
6.1.1 Dining Philosophers Problem
6.1.2 Double-Ended Queue
6.1.3 Partitioning Example Discussion
Design Criteria e
Synchronization Granularity
6.3.1 Sequential Program
632 Codelocking.
633 Datalocking
6.3.4 DataOwnership
6.3.5 Locking Granularity and Performance
Parallel Fastpath
6.4.1 Reader/Writer Locking
6.4.2 Hierarchical Locking
6.4.3 Resource Allocator Caches
Beyond Partitioning oL o
6.5.1 Work-Queue Parallel Maze Solver
6.5.2 Alternative Parallel Maze Solver
6.5.3 Performance ComparisonI
6.5.4 Alternative Sequential Maze Solver
6.5.5 Performance Comparison I
6.5.6 Future Directions and Conclusions

6.6 Partitioning, Parallelism, and Optimization
7 Locking
7.1 Staying Alive L

7.2

7.3

7.4
7.5

7.6

7.1.1 Deadlock
7.1.2 Livelock and Starvation
7.1.3 Unfairness
7.1.4 Inefficiency
TypesofLocks
7.2.1 Exclusive Locks
7.2.2 Reader-Writer Locks
7.2.3 Beyond Reader-Writer Locks
724 ScopedLocking
Locking Implementation Issues
7.3.1 Sample Exclusive-Locking Implementation Based on Atomic

Exchange
7.3.2 Other Exclusive-Locking Implementations
Lock-Based Existence Guarantees

7.5.1 Locking For Applications: Hero!
7.5.2 Locking For Parallel Libraries: Just Another Tool
7.5.3 Locking For Parallelizing Sequential Libraries: Villain!
Summary e e

vi

8 Data Ownership

8.1 Multiple Processes
8.2 Partial Data Ownership and pthreads
8.3 Function Shipping
8.4 Designated Thread
85 Privatization o oL
8.6 Other Uses of Data Ownership

9 Deferred Processing

9.1 Running Example
9.2 Reference Counting
9.3 Hazard Pointers
94 Sequencelocks
9.5 Read-Copy Update (RCU)
9.5.1 IntroductiontoRCU
9.5.2 RCUFundamentals
953 RCUUsage
9.54 RCU Linux-Kernel API
9.55 RCURelatedWork
956 RCUExercises

10 Data Structures

10.1 Motivating Application
10.2 Partitionable Data Structures
10.2.1 Hash-Table Design
10.2.2 Hash-Table Implementation
10.2.3 Hash-Table Performance
10.3 Read-Mostly Data Structures

10.3.1 RCU-Protected Hash Table Implementation

10.3.2 RCU-Protected Hash Table Performance
10.3.3 RCU-Protected Hash Table Discussion
10.4 Non-Partitionable Data Structures
10.4.1 Resizable Hash Table Design.
10.4.2 Resizable Hash Table Implementation
10.4.3 Resizable Hash Table Discussion
10.4.4 Other Resizable Hash Tables
10.5 Other Data Structures
10.6 Micro-Optimization
10.6.1 Specialization
10.6.2 BitsandBytes
10.6.3 Hardware Considerations
10.7 Summary

11 Validation

11.1 Introduction
11.1.1 Where Do Bugs Come From?
11.1.2 RequiredMindset

CONTENTS

CONTENTS

11.1.4 The Open Source Way
11.2 Tracing e
11.3 ASSErtions L
11.4 Static Analysis
11.5 CodeReview
11.5.1 Inspection
11.5.2 Walkthroughs L.
11.5.3 Self-Inspection
11.6 Probability and Heisenbugs
11.6.1 Statistics for Discrete Testing
11.6.2 Abusing Statistics for Discrete Testing
11.6.3 Statistics for Continuous Testing
11.6.4 Hunting Heisenbugs
11.7 Performance Estimation.
11.7.1 Benchmarking
11.7.2 Profiling
11.7.3 Differential Profiling
11.7.4 Microbenchmarking
11.7.5 Isolation
11.7.6 Detecting Interference
11.8 Summary

12 Formal Verification
12.1 State-Space Search
12.1.1 PromelaandSpin
12.1.2 HowtoUsePromela
12.1.3 Promela Example: Locking
12.1.4 Promela Example: QRCU
12.1.5 Promela Parable: dynticks and Preemptible RCU
12.1.6 Validating Preemptible RCU and dynticks
12.2 Special-Purpose State-Space Search
12.2.1 AnatomyofalLitmusTest
12.2.2 What Does This Litmus Test Mean?
12.2.3 RunningaLitmusTest
12.2.4 PPCMEM Discussion
12.3 Axiomatic Approaches
12.3.1 Axiomatic Approaches and Locking
12.3.2 Axiomatic Approachesand RCU
12.4 SAT Solvers o o
12.5 Stateless Model Checkers
12.6 Summary e

13 Putting It All Together
13.1 Counter Conundrums
13.1.1 Counting Updates
13.1.2 Counting Lookups
13.2 Refurbish Reference Counting
13.2.1 Implementation of Reference-Counting Categories
13.2.2 Linux Primitives Supporting Reference Counting
13.2.3 Counter Optimizations v ...

vii

272
273
274
274
275
275
276
276
278
279
281
282
283
288
288
289
289
290
290
291
295

297
297
298
303
305
306
314
319
339
340
341
342
342
344
346
347
349
351
352

CONTENTS

13.3 RCURescues ittt e i e
13.3.1 RCU and Per-Thread-Variable-Based Statistical Counters . . .
13.3.2 RCU and Counters for Removable I/O Devices
1333 ArrayandLength L.
13.3.4 Correlated Fields

13.4 HashingHassles
13.4.1 Correlated Data Elements
13.4.2 Update-Friendly Hash-Table Traversal

14 Advanced Synchronization

14.1 AvoidingLocks
14.2 Non-Blocking Synchronization
14.2.1 Simple NBS
1422 NBSDiscussion
14.3 Parallel Real-Time Computing
14.3.1 What is Real-Time Computing?
14.3.2 Who Needs Real-Time Computing?
14.3.3 Who Needs Parallel Real-Time Computing?
14.3.4 Implementing Parallel Real-Time Systems
14.3.5 Implementing Parallel Real-Time Operating Systems
14.3.6 Implementing Parallel Real-Time Applications
14.3.7 Real Time vs. Real Fast: How to Choose?

15 Advanced Synchronization: Memory Ordering

15.1.1 Why Hardware Misordering?
15.1.2 How to Force Ordering?
15.1.3 BasicRulesof Thumb
152 Tricksand Traps
15.2.1 Variables With Multiple Values
15.2.2 Memory-Reference Reordering
15.2.3 Address Dependencies
15.2.4 DataDependencies
15.2.5 Control Dependencies
15.2.6 CacheCoherence
15.2.7 Multicopy Atomicity
15.3 Compile-Time Consternation
15.3.1 Memory-Reference Restrictions
15.3.2 Address- and Data-Dependency Difficulties
15.3.3 Control-Dependency Calamities
15.4 Hardware Specifics
1541 Alphao
1542 ARMV7-A/R
1543 ARMVE
1544 Ttanium
1545 MIPS
154.6 POWER /PowerPC.
1547 SPARCTSO
1548 x86
1549 zSystems

364
367
368
369
370
370
370

373
373
374
375
376
377
377
383
384
384
386
399
403

CONTENTS

16

17

Conflicting Visions of the Future

17.1 The Future of CPU Technology Ain’t What it UsedtoBe
17.1.1 Uniprocessor Uber Alles
17.1.2 Multithreaded Mania
17.1.3 MoreoftheSame
17.1.4 Crash Dummies Slamming into the Memory Wall

17.2 Transactional Memory i
17.2.1 OutsideWorld L.
17.2.2 Process Modification
17.2.3 Synchronization
17.2.4 Discussionot

17.3 Hardware Transactional Memory
17.3.1 HTM Benefits WRT to Locking
17.3.2 HTM Weaknesses WRT Locking
17.3.3 HTM Weaknesses WRT to Locking When Augmented
17.3.4 Where Does HTM Best FitIn?
17.3.5 Potential Game Changers
173.6 Conclusions

17.4.1 Automatic Translation
17.42 Environment
1743 Overhead
1744 Locate Bugs
17.4.5 Minimal Scaffolding
17.4.6 RelevantBugs
17.47 Formal Regression Scorecard
17.5 Functional Programming for Parallelism

Important Questions

A.1 What Does “After” Mean?
A.2 What is the Difference Between “Concurrent” and “Parallel”?
A3 WhatTimelIsIt?

“Toy” RCU Implementations

B.1 Lock-BasedRCU
B.2 Per-Thread Lock-BasedRCU
B.3 Simple Counter-Based RCU
B.4 Starvation-Free Counter-Based RCU
B.5 Scalable Counter-Based RCU
B.6 Scalable Counter-Based RCU With Shared Grace Periods
B.7 RCU Based on Free-Running Counter
B.8 Nestable RCU Based on Free-Running Counter
B.9 RCU Based on Quiescent States

iX

460

463
463
463
465

467
467
468
468
469
470
473
473
477
482
486
488
489
491
497
500
502
505
505
505
506
507
508
509
509
510
511

515
515
519
520

CONTENTS

B.10 Summary of Toy RCU Implementations 540
Why Memory Barriers? 543
C.1 CacheStructure 543
C.2 Cache-Coherence Protocols 545
C.2.1 MESIStates 546
C.2.2 MESIProtocol Messageso v ... 546
C.2.3 MESI State Diagram 547
C.24 MESI Protocol Example 549
C.3 Stores Result in Unnecessary Stalls 550
C3.1 StoreBuffers 551
C.3.2 Store Forwarding 551
C.3.3 Store Buffers and Memory Barriers 552
C.4 Store Sequences Result in Unnecessary Stalls 555
C4.1 InvalidateQueues 556
C.4.2 Invalidate Queues and Invalidate Acknowledge 556
C.4.3 Invalidate Queues and Memory Barriers 557
C.5 Read and Write Memory Barriers. 559
C.6 Example Memory-Barrier Sequences 560
C.6.1 Ordering-Hostile Architecture 560
C.6.2 Examplel 561
C.63 Example2 562
C.6.4 Example3 562
C.7 Are Memory Barriers Forever? 563
C.8 Advice to Hardware Designers 563
Style Guide 565
D.1 Paul’sConventions, 565
D.2 NISTStyleGuide 566
D.2.1 UnitSymbol, . 566
D.2.2 NIST Guide Yet ToBe Followed 568
D3 HEIgX Conventions 569
D.3.1 MonospaceFont 569
D.3.2 Non Breakable Spaces 575
D.3.3 Hyphenationand Dashes 575
D34 Punctuation 577
D.3.5 Floating Object Format 578
D.3.6 Improvement Candidates 578
Answers to Quick Quizzes 585
E.1 HowToUseThisBook 585
E.2 Introduction 586
E.3 HardwareanditsHabits. 592
E4 ToolsoftheTrade 596
ES5 Counting 605
E.6 Partitioning and Synchronization Design 624
E.7 Locking e 631
E.8 DataOwnership 641
E.9 Deferred Processing 643
E.10 Data Structures 659

CONTENTS xi

E.11 Validation 662
E.12 Formal Verification 669
E.13 Putting It All Together 677
E.14 Advanced Synchronization 681
E.15 Advanced Synchronization: Memory Ordering 684
E.l6 Easeof Use 696
E.17 Conflicting Visions of the Future 697
E.18 Important Questions ot 703
E.19 “Toy” RCU Implementations 704
E.20 Why Memory Barriers? 712
Glossary and Bibliography 717
G Credits 763
G.l BEIEX AAVISOr o e 763
G2 Reviewers e 763
G.3 MachineOwners i 764
G.4 Original Publications 764
G.5 FigureCredits 765

G.6 Other Support e 766

Xii

CONTENTS

Chapter 1

How To Use This Book

The purpose of this book is to help you program shared-memory parallel machines
without risking your sanity.! We hope that this book’s design principles will help
you avoid at least some parallel-programming pitfalls. That said, you should think
of this book as a foundation on which to build, rather than as a completed cathedral.
Your mission, if you choose to accept, is to help make further progress in the exciting
field of parallel programming—progress that will in time render this book obsolete.
Parallel programming is not as hard as some say, and we hope that this book makes your
parallel-programming projects easier and more fun.

In short, where parallel programming once focused on science, research, and grand-
challenge projects, it is quickly becoming an engineering discipline. We therefore
examine specific parallel-programming tasks and describe how to approach them. In
some surprisingly common cases, they can even be automated.

This book is written in the hope that presenting the engineering discipline underlying
successful parallel-programming projects will free a new generation of parallel hackers
from the need to slowly and painstakingly reinvent old wheels, enabling them to instead
focus their energy and creativity on new frontiers. We sincerely hope that parallel
programming brings you at least as much fun, excitement, and challenge that it has
brought to us!

1.1 Roadmap

This book is a handbook of widely applicable and heavily used design techniques, rather
than a collection of optimal algorithms with tiny areas of applicability. You are currently
reading Chapter 1, but you knew that already. Chapter 2 gives a high-level overview of
parallel programming.

Chapter 3 introduces shared-memory parallel hardware. After all, it is difficult
to write good parallel code unless you understand the underlying hardware. Because
hardware constantly evolves, this chapter will always be out of date. We will nevertheless
do our best to keep up. Chapter 4 then provides a very brief overview of common shared-
memory parallel-programming primitives.

Chapter 5 takes an in-depth look at parallelizing one of the simplest problems
imaginable, namely counting. Because almost everyone has an excellent grasp of

1 Or, perhaps more accurately, without much greater risk to your sanity than that incurred by non-parallel
programming. Which, come to think of it, might not be saying all that much.

1

2 CHAPTER 1. HOW TO USE THIS BOOK

counting, this chapter is able to delve into many important parallel-programming issues
without the distractions of more-typical computer-science problems. My impression is
that this chapter has seen the greatest use in parallel-programming coursework.

Chapter 6 introduces a number of design-level methods of addressing the issues
identified in Chapter 5. It turns out that it is important to address parallelism at the
design level when feasible: To paraphrase Dijkstra [Dij68], “retrofitted parallelism
considered grossly suboptimal” [McK12b].

The next three chapters examine three important approaches to synchronization.
Chapter 7 covers locking, which in 2014 is not only the workhorse of production-quality
parallel programming, but is also widely considered to be parallel programming’s worst
villain. Chapter 8 gives a brief overview of data ownership, an often overlooked but
remarkably pervasive and powerful approach. Finally, Chapter 9 introduces a number
of deferred-processing mechanisms, including reference counting, hazard pointers,
sequence locking, and RCU.

Chapter 10 applies the lessons of previous chapters to hash tables, which are heavily
used due to their excellent partitionability, which (usually) leads to excellent perfor-
mance and scalability.

As many have learned to their sorrow, parallel programming without validation is a
sure path to abject failure. Chapter 11 covers various forms of testing. It is of course
impossible to test reliability into your program after the fact, so Chapter 12 follows up
with a brief overview of a couple of practical approaches to formal verification.

Chapter 13 contains a series of moderate-sized parallel programming problems.
The difficulty of these problems vary, but should be appropriate for someone who has
mastered the material in the previous chapters.

Chapter 14 looks at advanced synchronization methods, including non-blocking
synchronization and parallel real-time computing, while Chapter 15 covers the advanced
topic of memory ordering. Chapter 16 follows up with some ease-of-use advice. Finally,
Chapter 17 looks at a few possible future directions, including shared-memory parallel
system design, software and hardware transactional memory, functional programming
for parallelism, and quantum computing.

This chapter is followed by a number of appendices. The most popular of these
appears to be Appendix C, which delves even further into memory ordering. Appendix E
contains the answers to the infamous Quick Quizzes, which are discussed in the next
section.

1.2 Quick Quizzes

“Quick quizzes” appear throughout this book, and the answers may be found in Appen-
dix E starting on page 585. Some of them are based on material in which that quick
quiz appears, but others require you to think beyond that section, and, in some cases,
beyond the realm of current knowledge. As with most endeavors, what you get out of
this book is largely determined by what you are willing to put into it. Therefore, readers
who make a genuine effort to solve a quiz before looking at the answer find their effort
repaid handsomely with increased understanding of parallel programming.

Quick Quiz 1.1: Where are the answers to the Quick Quizzes found? H

Quick Quiz 1.2: Some of the Quick Quiz questions seem to be from the viewpoint
of the reader rather than the author. Is that really the intent?

Quick Quiz 1.3: These Quick Quizzes are just not my cup of tea. What can I do
about it? l

1.3. ALTERNATIVES TO THIS BOOK 3

In short, if you need a deep understanding of the material, then you should invest
some time into answering the Quick Quizzes. Don’t get me wrong, passively reading
the material can be quite valuable, but gaining full problem-solving capability really
does require that you practice solving problems.

I learned this the hard way during coursework for my late-in-life Ph.D. I was
studying a familiar topic, and was surprised at how few of the chapter’s exercises I
could answer off the top of my head.? Forcing myself to answer the questions greatly
increased my retention of the material. So with these Quick Quizzes I am not asking
you to do anything that I have not been doing myself!

Finally, the most common learning disability is thinking that you already know. The
quick quizzes can be an extremely effective cure.

1.3 Alternatives to This Book

As Knuth learned, if you want your book to be finite, it must be focused. This book
focuses on shared-memory parallel programming, with an emphasis on software that
lives near the bottom of the software stack, such as operating-system kernels, parallel
data-management systems, low-level libraries, and the like. The programming language
used by this book is C.

If you are interested in other aspects of parallelism, you might well be better served
by some other book. Fortunately, there are many alternatives available to you:

1. If you prefer a more academic and rigorous treatment of parallel programming,
you might like Herlihy’s and Shavit’s textbook [HS08]. This book starts with
an interesting combination of low-level primitives at high levels of abstraction
from the hardware, and works its way through locking and simple data structures
including lists, queues, hash tables, and counters, culminating with transactional
memory. Michael Scott’s textbook [Scol3] approaches similar material with
more of a software-engineering focus, and, as far as I know, is the first formally
published academic textbook to include a section devoted to RCU.

2. If you would like an academic treatment of parallel programming from a program-
ming-language-pragmatics viewpoint, you might be interested in the concurrency
chapter from Scott’s textbook [Sco06] on programming-language pragmatics.

3. If you are interested in an object-oriented patternist treatment of parallel program-
ming focussing on C++, you might try Volumes 2 and 4 of Schmidt’s POSA
series [SSRB00, BHS07]. Volume 4 in particular has some interesting chapters
applying this work to a warehouse application. The realism of this example is
attested to by the section entitled ‘“Partitioning the Big Ball of Mud”, wherein the
problems inherent in parallelism often take a back seat to the problems inherent
in getting one’s head around a real-world application.

4. If you want to work with Linux-kernel device drivers, then Corbet’s, Rubini’s,
and Kroah-Hartman’s “Linux Device Drivers” [CRKHOS5] is indispensable, as is
the Linux Weekly News web site (http://1lwn.net/). There is a large number
of books and resources on the more general topic of Linux kernel internals.

2 So I suppose that it was just as well that my professors refused to let me waive that class!

http://lwn.net/

4 CHAPTER 1. HOW TO USE THIS BOOK

5. If your primary focus is scientific and technical computing, and you prefer a
patternist approach, you might try Mattson et al.’s textbook [MSMO5]. It covers
Java, C/C++, OpenMP, and MPI. Its patterns are admirably focused first on
design, then on implementation.

6. If your primary focus is scientific and technical computing, and you are interested
in GPUs, CUDA, and MPI, you might check out Norm Matloff’s ‘“Programming
on Parallel Machines” [Mat13]. Of course, the GPU vendors have quite a bit of
additional information [AMD17, Zell1, NVil7a, NVil7b].

7. If you are interested in POSIX Threads, you might take a look at David R. Buten-
hof’s book [But97]. In addition, W. Richard Stevens’s book [Ste92] covers UNIX
and POSIX, and Stewart Weiss’s lecture notes [Weil3] provide an thorough and
accessible introduction with a good set of examples.

8. If you are interested in C++11, you might like Anthony Williams’s “C++ Con-
currency in Action: Practical Multithreading” [Wil12].

9. If you are interested in C++, but in a Windows environment, you might try Herb
Sutter’s “Effective Concurrency” series in Dr. Dobbs Journal [Sut08]. This series
does a reasonable job of presenting a commonsense approach to parallelism.

10. If you want to try out Intel Threading Building Blocks, then perhaps James
Reinders’s book [Rei07] is what you are looking for.

11. Those interested in learning how various types of multi-processor hardware cache
organizations affect the implementation of kernel internals should take a look at
Curt Schimmel’s classic treatment of this subject [Sch94].

12. Finally, those using Java might be well-served by Doug Lea’s textbooks [Lea97,
GPB*07].

However, if you are interested in principles of parallel design for low-level software,
especially software written in C, read on!

1.4 Sample Source Code

This book discusses its fair share of source code, and in many cases this source code
may be found in the CodeSamples directory of this book’s git tree. For example, on
UNIX systems, you should be able to type the following:

find CodeSamples -name rcu_rcpls.c -print

This command will locate the file rcu_rcpls. c, which is called out in Appendix B.
Other types of systems have well-known ways of locating files by filename.

1.5 Whose Book Is This?

As the cover says, the editor is one Paul E. McKenney. However, the editor does
accept contributions via the perfbook@vger.kernel.org email list. These contribu-
tions can be in pretty much any form, with popular approaches including text emails,

mailto:perfbook@vger.kernel.org

1.5. WHOSE BOOK IS THIS? 5

Listing 1.1: Creating an Up-To-Date PDF

1 git clone git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
2 cd perfbook

3 # You may need to install a font here. See item 1 in FAQ.txt.

4 make

5 evince perfbook.pdf & # Two-column version

6 make perfbook-lc.pdf

7 evince perfbook-1c.pdf & # One-column version for e-readers

Listing 1.2: Generating an Updated PDF

1 git remote update

2 git checkout origin/master

3 make

4 evince perfbook.pdf & # Two-column version

5 make perfbook-lc.pdf

6 evince perfbook-l1c.pdf & # One-column version for e-readers

patches against the book’s IATEX source, and even git pull requests. Use whatever
form works best for you.

To create patches or git pull requests, you will need the ISIEX source to the book,
whichisatgit://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.
git. You will of course also need git and I4TEX, which are available as part of most
mainstream Linux distributions. Other packages may be required, depending on the
distribution you use. The required list of packages for a few popular distributions is
listed in the file FAQ-BUILD. txt in the IATEX source to the book.

To create and display a current ISTEX source tree of this book, use the list of Linux
commands shown in Listing 1.1. In some environments, the evince command that
displays perfbook.pdf may need to be replaced, for example, with acroread. The
git clone command need only be used the first time you create a PDF, subsequently,
you can run the commands shown in Listing 1.2 to pull in any updates and generate an
updated PDF. The commands in Listing 1.2 must be run within the perfbook directory
created by the commands shown in Listing 1.1.

PDFs of this book are sporadically posted at http://kernel.org/pub/linux/
kernel/people/paulmck/perfbook/perfbook.html and athttp://www.rdrop.
com/users/paulmck/perfbook/.

The actual process of contributing patches and sending git pull requests is
similar to that of the Linux kernel, which is documented in the Documentation/
SubmittingPatches file in the Linux source tree. One important requirement is
that each patch (or commit, in the case of a git pull request) must contain a valid
Signed-off-by: line, which has the following format:

Signed-off-by: My Name <mynameQexample.org>

Please see http://1kml.org/1kml/2007/1/15/219 for an example patch con-
taining a Signed-off-by: line.

It is important to note that the Signed-off-by: line has a very specific meaning,
namely that you are certifying that:

(a) The contribution was created in whole or in part by me and I have the right to
submit it under the open source license indicated in the file; or

(b) The contribution is based upon previous work that, to the best of my knowledge,
is covered under an appropriate open source License and I have the right under

git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www.rdrop.com/users/paulmck/perfbook/
http://www.rdrop.com/users/paulmck/perfbook/
http://lkml.org/lkml/2007/1/15/219

6 CHAPTER 1. HOW TO USE THIS BOOK

that license to submit that work with modifications, whether created in whole
or in part by me, under the same open source license (unless I am permitted to
submit under a different license), as indicated in the file; or

(c) The contribution was provided directly to me by some other person who certified
(a), (b) or (¢) and I have not modified it.

(d) Tunderstand and agree that this project and the contribution are public and that
a record of the contribution (including all personal information I submit with
it, including my sign-off) is maintained indefinitely and may be redistributed
consistent with this project or the open source license(s) involved.

This is quite similar to the Developer’s Certificate of Origin (DCO) 1.1 used by the
Linux kernel. You must use your real name: I unfortunately cannot accept pseudony-
mous or anonymous contributions.

The language of this book is American English, however, the open-source nature
of this book permits translations, and I personally encourage them. The open-source
licenses covering this book additionally allow you to sell your translation, if you wish. I
do request that you send me a copy of the translation (hardcopy if available), but this is
a request made as a professional courtesy, and is not in any way a prerequisite to the
permission that you already have under the Creative Commons and GPL licenses. Please
see the FAQ. txt file in the source tree for a list of translations currently in progress. I
consider a translation effort to be “in progress” once at least one chapter has been fully
translated.

As noted at the beginning of this section, I am this book’s editor. However, if you
choose to contribute, it will be your book as well. With that, I offer you Chapter 2, our
introduction.

If parallel programming is so hard, why are there any
parallel programs?

Unknown

Chapter 2

Introduction

Parallel programming has earned a reputation as one of the most difficult areas a hacker
can tackle. Papers and textbooks warn of the perils of deadlock, livelock, race conditions,
non-determinism, Amdahl’s-Law limits to scaling, and excessive realtime latencies. And
these perils are quite real; we authors have accumulated uncounted years of experience
dealing with them, and all of the emotional scars, grey hairs, and hair loss that go with
such experiences.

However, new technologies that are difficult to use at introduction invariably become
easier over time. For example, the once-rare ability to drive a car is now commonplace
in many countries. This dramatic change came about for two basic reasons: (1) cars
became cheaper and more readily available, so that more people had the opportunity
to learn to drive, and (2) cars became easier to operate due to automatic transmissions,
automatic chokes, automatic starters, greatly improved reliability, and a host of other
technological improvements.

The same is true of a many other technologies, including computers. It is no
longer necessary to operate a keypunch in order to program. Spreadsheets allow
most non-programmers to get results from their computers that would have required
a team of specialists a few decades ago. Perhaps the most compelling example is
web-surfing and content creation, which since the early 2000s has been easily done
by untrained, uneducated people using various now-commonplace social-networking
tools. As recently as 1968, such content creation was a far-out research project [Eng68],
described at the time as “like a UFO landing on the White House lawn”[Gri00].

Therefore, if you wish to argue that parallel programming will remain as difficult as
it is currently perceived by many to be, it is you who bears the burden of proof, keeping
in mind the many centuries of counter-examples in a variety of fields of endeavor.

2.1 Historic Parallel Programming Difficulties
As indicated by its title, this book takes a different approach. Rather than complain about
the difficulty of parallel programming, it instead examines the reasons why parallel

programming is difficult, and then works to help the reader to overcome these difficulties.
As will be seen, these difficulties have fallen into several categories, including:

1. The historic high cost and relative rarity of parallel systems.

7

8 CHAPTER 2. INTRODUCTION

2. The typical researcher’s and practitioner’s lack of experience with parallel sys-
tems.

3. The paucity of publicly accessible parallel code.
4. The lack of a widely understood engineering discipline of parallel programming.

5. The high overhead of communication relative to that of processing, even in tightly
coupled shared-memory computers.

Many of these historic difficulties are well on the way to being overcome. First, over
the past few decades, the cost of parallel systems has decreased from many multiples of
that of a house to a fraction of that of a bicycle, courtesy of Moore’s Law. Papers calling
out the advantages of multicore CPUs were published as early as 1996 [ONH*96]. IBM
introduced simultaneous multi-threading into its high-end POWER family in 2000, and
multicore in 2001. Intel introduced hyperthreading into its commodity Pentium line
in November 2000, and both AMD and Intel introduced dual-core CPUs in 2005. Sun
followed with the multicore/multi-threaded Niagara in late 2005. In fact, by 2008, it
was becoming difficult to find a single-CPU desktop system, with single-core CPUs
being relegated to netbooks and embedded devices. By 2012, even smartphones were
starting to sport multiple CPUs.

Second, the advent of low-cost and readily available multicore systems means
that the once-rare experience of parallel programming is now available to almost all
researchers and practitioners. In fact, parallel systems are now well within the budget of
students and hobbyists. We can therefore expect greatly increased levels of invention
and innovation surrounding parallel systems, and that increased familiarity will over
time make the once prohibitively expensive field of parallel programming much more
friendly and commonplace.

Third, in the 20" century, large systems of highly parallel software were almost
always closely guarded proprietary secrets. In happy contrast, the 21 century has
seen numerous open-source (and thus publicly available) parallel software projects,
including the Linux kernel [Tor03], database systems [Pos08, MS08], and message-
passing systems [The08, UniO8a]. This book will draw primarily from the Linux kernel,
but will provide much material suitable for user-level applications.

Fourth, even though the large-scale parallel-programming projects of the 1980s and
1990s were almost all proprietary projects, these projects have seeded other communities
with a cadre of developers who understand the engineering discipline required to develop
production-quality parallel code. A major purpose of this book is to present this
engineering discipline.

Unfortunately, the fifth difficulty, the high cost of communication relative to that
of processing, remains largely in force. Although this difficulty has been receiving
increasing attention during the new millennium, according to Stephen Hawking, the
finite speed of light and the atomic nature of matter is likely to limit progress in this
area [Gar07, Moo03]. Fortunately, this difficulty has been in force since the late 1980s,
so that the aforementioned engineering discipline has evolved practical and effective
strategies for handling it. In addition, hardware designers are increasingly aware of
these issues, so perhaps future hardware will be more friendly to parallel software as
discussed in Section 3.3.

Quick Quiz 2.1: Come on now!!! Parallel programming has been known to be
exceedingly hard for many decades. You seem to be hinting that it is not so hard. What
sort of game are you playing? ll

2.2. PARALLEL PROGRAMMING GOALS 9

However, even though parallel programming might not be as hard as is commonly
advertised, it is often more work than is sequential programming.

Quick Quiz 2.2: How could parallel programming ever be as easy as sequential
programming? W

It therefore makes sense to consider alternatives to parallel programming. However,
it is not possible to reasonably consider parallel-programming alternatives without
understanding parallel-programming goals. This topic is addressed in the next section.

2.2 Parallel Programming Goals

The three major goals of parallel programming (over and above those of sequential
programming) are as follows:

1. Performance.
2. Productivity.

3. Generality.

Unfortunately, given the current state of the art, it is possible to achieve at best two
of these three goals for any given parallel program. These three goals therefore form the
iron triangle of parallel programming, a triangle upon which overly optimistic hopes all
too often come to grief.!

Quick Quiz 2.3: Oh, really??? What about correctness, maintainability, robustness,
and so on? l

Quick Quiz 2.4: And if correctness, maintainability, and robustness don’t make the
list, why do productivity and generality? ll

Quick Quiz 2.5: Given that parallel programs are much harder to prove correct than
are sequential programs, again, shouldn’t correctness really be on the list? ll

Quick Quiz 2.6: What about just having fun? ll

Each of these goals is elaborated upon in the following sections.

2.2.1 Performance

Performance is the primary goal behind most parallel-programming effort. After all, if
performance is not a concern, why not do yourself a favor: Just write sequential code,
and be happy? It will very likely be easier and you will probably get done much more
quickly.

Quick Quiz 2.7: Are there no cases where parallel programming is about something
other than performance? H

Note that “performance” is interpreted quite broadly here, including scalability
(performance per CPU) and efficiency (for example, performance per watt).

That said, the focus of performance has shifted from hardware to parallel software.
This change in focus is due to the fact that, although Moore’s Law continues to deliver
increases in transistor density, it has ceased to provide the traditional single-threaded

1 Kudos to Michael Wong for naming the iron triangle.

10 CHAPTER 2. INTRODUCTION

10000 7T T T T T 1T 3

CD
Q i w
= 1000 —
< i]
8 - p
(0] 100 | -
> - + 1
I -
10 + —
S [4+]
3 i # +]
=) 1 + —
S [+]

0.1 I N NN (R S N B
[Te] o To) o To) o To) o Te] o
N~ [e0] [e0] (o] () o o — — Al
D » » D » o o o o o
~— ~— - ~— — Al Al Al (aV] (q\}
Year

Figure 2.1: MIPS/Clock-Frequency Trend for Intel CPUs

performance increases. This can be seen in Figure 2.12, which shows that writing
single-threaded code and simply waiting a year or two for the CPUs to catch up may
no longer be an option. Given the recent trends on the part of all major manufacturers
towards multicore/multithreaded systems, parallelism is the way to go for those wanting
the avail themselves of the full performance of their systems.

Even so, the first goal is performance rather than scalability, especially given that the
easiest way to attain linear scalability is to reduce the performance of each CPU [TorO1].
Given a four-CPU system, which would you prefer? A program that provides 100
transactions per second on a single CPU, but does not scale at all? Or a program that
provides 10 transactions per second on a single CPU, but scales perfectly? The first
program seems like a better bet, though the answer might change if you happened to
have a 32-CPU system.

That said, just because you have multiple CPUs is not necessarily in and of itself
a reason to use them all, especially given the recent decreases in price of multi-CPU
systems. The key point to understand is that parallel programming is primarily a
performance optimization, and, as such, it is one potential optimization of many. If your
program is fast enough as currently written, there is no reason to optimize, either by
parallelizing it or by applying any of a number of potential sequential optimizations.
By the same token, if you are looking to apply parallelism as an optimization to a
sequential program, then you will need to compare parallel algorithms to the best
sequential algorithms. This may require some care, as far too many publications ignore
the sequential case when analyzing the performance of parallel algorithms.

2 This plot shows clock frequencies for newer CPUs theoretically capable of retiring one or more
instructions per clock, and MIPS (millions of instructions per second, usually from the old Dhrystone
benchmark) for older CPUs requiring multiple clocks to execute even the simplest instruction. The reason for
shifting between these two measures is that the newer CPUs’ ability to retire multiple instructions per clock is
typically limited by memory-system performance. Furthermore, the benchmarks commonly used on the older
CPUs are obsolete, and it is difficult to run the newer benchmarks on systems containing the old CPUs, in part
because it is hard to find working instances of the old CPUs.

3 Of course, if you are a hobbyist whose primary interest is writing parallel software, that is more than
enough reason to parallelize whatever software you are interested in.

2.2. PARALLEL PROGRAMMING GOALS 11

1e+06 F—r——T—T—T T T T T3
100000 [¥
L #-H_ .
10000 -
8 i e 4]
5 1000 - M =
Q- - -]
e 100 +ﬂ# .
= 10 ;_ ++‘;_:|-. _;
BT]
[+]

0.1 ' T R R R R
Yo} o Yo} o n o Yo} o Yo} o
N~ 0] 0] D D o o — — Al
(o)} (o)} (o)} (o)} (o)} o o o o o
-— ~— ~— ~— ~— Al Al (qV] Al Al

Year

Figure 2.2: MIPS per Die for Intel CPUs

2.2.2 Productivity

Quick Quiz 2.8: Why all this prattling on about non-technical issues??? And not just
any non-technical issue, but productivity of all things? Who cares? ll

Productivity has been becoming increasingly important in recent decades. To see
this, consider that the price of early computers was tens of millions of dollars at a time
when engineering salaries were but a few thousand dollars a year. If dedicating a team
of ten engineers to such a machine would improve its performance, even by only 10 %,
then their salaries would be repaid many times over.

One such machine was the CSIRAC, the oldest still-intact stored-program computer,
which was put into operation in 1949 [Mus04, Dep06]. Because this machine was built
before the transistor era, it was constructed of 2,000 vacuum tubes, ran with a clock
frequency of 1 kHz, consumed 30 kW of power, and weighed more than three metric
tons. Given that this machine had but 768 words of RAM, it is safe to say that it did
not suffer from the productivity issues that often plague today’s large-scale software
projects.

Today, it would be quite difficult to purchase a machine with so little computing
power. Perhaps the closest equivalents are 8-bit embedded microprocessors exemplified
by the venerable Z80 [WikO08], but even the old Z80 had a CPU clock frequency more
than 1,000 times faster than the CSIRAC. The Z80 CPU had 8,500 transistors, and could
be purchased in 2008 for less than $2 US per unit in 1,000-unit quantities. In stark
contrast to the CSIRAC, software-development costs are anything but insignificant for
the Z80.

The CSIRAC and the Z80 are two points in a long-term trend, as can be seen in
Figure 2.2. This figure plots an approximation to computational power per die over the
past four decades, showing an impressive six-order-of-magnitude increase over a period
of forty years. Note that the advent of multicore CPUs has permitted this increase to
continue apace despite the clock-frequency wall encountered in 2003, albeit courtesy of
dies supporting more than 50 hardware threads.

One of the inescapable consequences of the rapid decrease in the cost of hardware
is that software productivity becomes increasingly important. It is no longer sufficient

12 CHAPTER 2. INTRODUCTION

merely to make efficient use of the hardware: It is now necessary to make extremely
efficient use of software developers as well. This has long been the case for sequential
hardware, but parallel hardware has become a low-cost commodity only recently. There-
fore, only recently has high productivity become critically important when creating
parallel software.

Quick Quiz 2.9: Given how cheap parallel systems have become, how can anyone
afford to pay people to program them? Hll

Perhaps at one time, the sole purpose of parallel software was performance. Now,
however, productivity is gaining the spotlight.

2.2.3 Generality

One way to justify the high cost of developing parallel software is to strive for maximal
generality. All else being equal, the cost of a more-general software artifact can be
spread over more users than that of a less-general one. In fact, this economic force
explains much of the maniacal focus on portability, which can be seen as an important
special case of generality.*

Unfortunately, generality often comes at the cost of performance, productivity, or
both. For example, portability is often achieved via adaptation layers, which inevitably
exact a performance penalty. To see this more generally, consider the following popular
parallel programming environments:

C/C++ “Locking Plus Threads”: This category, which includes POSIX Threads
(pthreads) [Ope97], Windows Threads, and numerous operating-system kernel
environments, offers excellent performance (at least within the confines of a
single SMP system) and also offers good generality. Pity about the relatively low
productivity.

Java: This general purpose and inherently multithreaded programming environment
is widely believed to offer much higher productivity than C or C++, courtesy of
the automatic garbage collector and the rich set of class libraries. However, its
performance, though greatly improved in the early 2000s, lags that of C and C++.

MPI: This Message Passing Interface [MPI08] powers the largest scientific and tech-
nical computing clusters in the world and offers unparalleled performance and
scalability. In theory, it is general purpose, but it is mainly used for scientific and
technical computing. Its productivity is believed by many to be even lower than
that of C/C++ “locking plus threads” environments.

OpenMP: This set of compiler directives can be used to parallelize loops. It is thus
quite specific to this task, and this specificity often limits its performance. It is,
however, much easier to use than MPI or C/C++ “locking plus threads.”

SQL: Structured Query Language [Int92] is specific to relational database queries.
However, its performance is quite good as measured by the Transaction Processing
Performance Council (TPC) benchmark results [Tra0O1]. Productivity is excellent;
in fact, this parallel programming environment enables people to make good
use of a large parallel system despite having little or no knowledge of parallel
programming concepts.

4 Kudos to Michael Wong for pointing this out.

2.2. PARALLEL PROGRAMMING GOALS 13

Productivity

Performance
ITTETETS)

Figure 2.3: Software Layers and Performance, Productivity, and Generality

Special-Purpose
Env Productive
for User 1

N

Special-Purpose
Environment

/ \Productive for User 2
General-Purpose

Environment

Special-Purpose Environment

Productive for User 3 Special-Purpose

Environment
Productive for User 4

Figure 2.4: Tradeoff Between Productivity and Generality

The nirvana of parallel programming environments, one that offers world-class
performance, productivity, and generality, simply does not yet exist. Until such a
nirvana appears, it will be necessary to make engineering tradeoffs among performance,
productivity, and generality. One such tradeoff is shown in Figure 2.3, which shows how
productivity becomes increasingly important at the upper layers of the system stack,
while performance and generality become increasingly important at the lower layers
of the system stack. The huge development costs incurred at the lower layers must
be spread over equally huge numbers of users (hence the importance of generality),
and performance lost in lower layers cannot easily be recovered further up the stack.
In the upper layers of the stack, there might be very few users for a given specific
application, in which case productivity concerns are paramount. This explains the
tendency towards “bloatware” further up the stack: extra hardware is often cheaper than
the extra developers. This book is intended for developers working near the bottom of
the stack, where performance and generality are of great concern.

It is important to note that a tradeoff between productivity and generality has existed
for centuries in many fields. For but one example, a nailgun is more productive than
a hammer for driving nails, but in contrast to the nailgun, a hammer can be used for
many things besides driving nails. It should therefore be no surprise to see similar
tradeoffs appear in the field of parallel computing. This tradeoff is shown schematically
in Figure 2.4. Here, users 1, 2, 3, and 4 have specific jobs that they need the computer to
help them with. The most productive possible language or environment for a given user is

14 CHAPTER 2. INTRODUCTION

one that simply does that user’s job, without requiring any programming, configuration,
or other setup.

Quick Quiz 2.10: This is a ridiculously unachievable ideal! Why not focus on
something that is achievable in practice? l

Unfortunately, a system that does the job required by user 1 is unlikely to do
user 2’s job. In other words, the most productive languages and environments are
domain-specific, and thus by definition lacking generality.

Another option is to tailor a given programming language or environment to the
hardware system (for example, low-level languages such as assembly, C, C++, or Java)
or to some abstraction (for example, Haskell, Prolog, or Snobol), as is shown by the
circular region near the center of Figure 2.4. These languages can be considered to
be general in the sense that they are equally ill-suited to the jobs required by users 1,
2, 3, and 4. In other words, their generality is purchased at the expense of decreased
productivity when compared to domain-specific languages and environments. Worse yet,
a language that is tailored to a given abstraction is also likely to suffer from performance
and scalability problems unless and until someone figures out how to efficiently map
that abstraction to real hardware.

Is there no escape from iron triangle’s three conflicting goals of performance,
productivity, and generality?

It turns out that there often is an escape, for example, using the alternatives to
parallel programming discussed in the next section. After all, parallel programming can
be a great deal of fun, but it is not always the best tool for the job.

2.3 Alternatives to Parallel Programming

In order to properly consider alternatives to parallel programming, you must first decide
on what exactly you expect the parallelism to do for you. As seen in Section 2.2, the
primary goals of parallel programming are performance, productivity, and generality.
Because this book is intended for developers working on performance-critical code near
the bottom of the software stack, the remainder of this section focuses primarily on
performance improvement.

It is important to keep in mind that parallelism is but one way to improve perfor-
mance. Other well-known approaches include the following, in roughly increasing order
of difficulty:

1. Run multiple instances of a sequential application.
2. Make the application use existing parallel software.

3. Apply performance optimization to the serial application.

These approaches are covered in the following sections.

2.3.1 Multiple Instances of a Sequential Application

Running multiple instances of a sequential application can allow you to do parallel
programming without actually doing parallel programming. There are a large number
of ways to approach this, depending on the structure of the application.

If your program is analyzing a large number of different scenarios, or is analyzing a
large number of independent data sets, one easy and effective approach is to create a

2.3. ALTERNATIVES TO PARALLEL PROGRAMMING 15

single sequential program that carries out a single analysis, then use any of a number
of scripting environments (for example the bash shell) to run a number of instances of
that sequential program in parallel. In some cases, this approach can be easily extended
to a cluster of machines.

This approach may seem like cheating, and in fact some denigrate such programs
as “embarrassingly parallel”. And in fact, this approach does have some potential
disadvantages, including increased memory consumption, waste of CPU cycles recom-
puting common intermediate results, and increased copying of data. However, it is
often extremely productive, garnering extreme performance gains with little or no added
effort.

2.3.2 Use Existing Parallel Software

There is no longer any shortage of parallel software environments that can present
a single-threaded programming environment, including relational databases [Dat82],
web-application servers, and map-reduce environments. For example, a common design
provides a separate program for each user, each of which generates SQL programs.
These per-user SQL programs are run concurrently against a common relational data-
base, which automatically runs the users’ queries concurrently. The per-user programs
are responsible only for the user interface, with the relational database taking full
responsibility for the difficult issues surrounding parallelism and persistence.

In addition, there are a growing number of parallel library functions, particularly
for numeric computation. Even better, some libraries take advantage of special-purpose
hardware such as vector units and general-purpose graphical processing units (GPGPUs).

Taking this approach often sacrifices some performance, at least when compared to
carefully hand-coding a fully parallel application. However, such sacrifice is often well
repaid by a huge reduction in development effort.

Quick Quiz 2.11: Wait a minute! Doesn’t this approach simply shift the develop-
ment effort from you to whoever wrote the existing parallel software you are using?
]

2.3.3 Performance Optimization

Up through the early 2000s, CPU performance was doubling every 18 months. In such
an environment, it is often much more important to create new functionality than to do
careful performance optimization. Now that Moore’s Law is “only” increasing transistor
density instead of increasing both transistor density and per-transistor performance, it
might be a good time to rethink the importance of performance optimization. After
all, new hardware generations no longer bring significant single-threaded performance
improvements. Furthermore, many performance optimizations can also conserve energy.

From this viewpoint, parallel programming is but another performance optimization,
albeit one that is becoming much more attractive as parallel systems become cheaper and
more readily available. However, it is wise to keep in mind that the speedup available
from parallelism is limited to roughly the number of CPUs (but see Section 6.5 for an
interesting exception). In contrast, the speedup available from traditional single-threaded
software optimizations can be much larger. For example, replacing a long linked list with
a hash table or a search tree can improve performance by many orders of magnitude. This
highly optimized single-threaded program might run much faster than its unoptimized
parallel counterpart, making parallelization unnecessary. Of course, a highly optimized
parallel program would be even better, aside from the added development effort required.

16 CHAPTER 2. INTRODUCTION

Furthermore, different programs might have different performance bottlenecks. For
example, if your program spends most of its time waiting on data from your disk drive,
using multiple CPUs will probably just increase the time wasted waiting for the disks.
In fact, if the program was reading from a single large file laid out sequentially on a
rotating disk, parallelizing your program might well make it a lot slower due to the
added seek overhead. You should instead optimize the data layout so that the file can be
smaller (thus faster to read), split the file into chunks which can be accessed in parallel
from different drives, cache frequently accessed data in main memory, or, if possible,
reduce the amount of data that must be read.

Quick Quiz 2.12: What other bottlenecks might prevent additional CPUs from
providing additional performance? H

Parallelism can be a powerful optimization technique, but it is not the only such
technique, nor is it appropriate for all situations. Of course, the easier it is to parallelize
your program, the more attractive parallelization becomes as an optimization. Paral-
lelization has a reputation of being quite difficult, which leads to the question “exactly
what makes parallel programming so difficult?”

2.4 What Makes Parallel Programming Hard?

It is important to note that the difficulty of parallel programming is as much a human-
factors issue as it is a set of technical properties of the parallel programming problem.
We do need human beings to be able to tell parallel systems what to do, otherwise known
as programming. But parallel programming involves two-way communication, with
a program’s performance and scalability being the communication from the machine
to the human. In short, the human writes a program telling the computer what to do,
and the computer critiques this program via the resulting performance and scalability.
Therefore, appeals to abstractions or to mathematical analyses will often be of severely
limited utility.

In the Industrial Revolution, the interface between human and machine was eval-
uated by human-factor studies, then called time-and-motion studies. Although there
have been a few human-factor studies examining parallel programming [ENS05, ESOS,
HCS™05, SS94], these studies have been extremely narrowly focused, and hence unable
to demonstrate any general results. Furthermore, given that the normal range of pro-
grammer productivity spans more than an order of magnitude, it is unrealistic to expect
an affordable study to be capable of detecting (say) a 10 % difference in productivity.
Although the multiple-order-of-magnitude differences that such studies can reliably
detect are extremely valuable, the most impressive improvements tend to be based on a
long series of 10 % improvements.

We must therefore take a different approach.

One such approach is to carefully consider the tasks that parallel programmers must
undertake that are not required of sequential programmers. We can then evaluate how
well a given programming language or environment assists the developer with these
tasks. These tasks fall into the four categories shown in Figure 2.5, each of which is
covered in the following sections.

2.4.1 Work Partitioning

Work partitioning is absolutely required for parallel execution: if there is but one “glob”
of work, then it can be executed by at most one CPU at a time, which is by definition

2.4. WHAT MAKES PARALLEL PROGRAMMING HARD? 17

e N
Performance Productivity

Generality

AN J

Figure 2.5: Categories of Tasks Required of Parallel Programmers

sequential execution. However, partitioning the code requires great care. For example,
uneven partitioning can result in sequential execution once the small partitions have
completed [Amd67]. In less extreme cases, load balancing can be used to fully utilize
available hardware and restore performance and scalabilty.

Although partitioning can greatly improve performance and scalability, it can also
increase complexity. For example, partitioning can complicate handling of global errors
and events: A parallel program may need to carry out non-trivial synchronization in order
to safely process such global events. More generally, each partition requires some sort of
communication: After all, if a given thread did not communicate at all, it would have no
effect and would thus not need to be executed. However, because communication incurs
overhead, careless partitioning choices can result in severe performance degradation.

Furthermore, the number of concurrent threads must often be controlled, as each
such thread occupies common resources, for example, space in CPU caches. If too many
threads are permitted to execute concurrently, the CPU caches will overflow, resulting
in high cache miss rate, which in turn degrades performance. Conversely, large numbers
of threads are often required to overlap computation and I/O so as to fully utilize I/O
devices.

Quick Quiz 2.13: Other than CPU cache capacity, what might require limiting the
number of concurrent threads? Hl

Finally, permitting threads to execute concurrently greatly increases the program’s
state space, which can make the program difficult to understand and debug, degrading
productivity. All else being equal, smaller state spaces having more regular structure
are more easily understood, but this is a human-factors statement as much as it is a
technical or mathematical statement. Good parallel designs might have extremely large
state spaces, but nevertheless be easy to understand due to their regular structure, while
poor designs can be impenetrable despite having a comparatively small state space. The
best designs exploit embarrassing parallelism, or transform the problem to one having
an embarrassingly parallel solution. In either case, “embarrassingly parallel” is in fact
an embarrassment of riches. The current state of the art enumerates good designs; more
work is required to make more general judgments on state-space size and structure.

2.4.2 Parallel Access Control

Given a single-threaded sequential program, that single thread has full access to all of
the program’s resources. These resources are most often in-memory data structures, but

18 CHAPTER 2. INTRODUCTION

can be CPUs, memory (including caches), I/O devices, computational accelerators, files,
and much else besides.

The first parallel-access-control issue is whether the form of the access to a given
resource depends on that resource’s location. For example, in many message-passing
environments, local-variable access is via expressions and assignments, while remote-
variable access uses an entirely different syntax, usually involving messaging. The
POSIX Threads environment [Ope97], Structured Query Language (SQL) [Int92], and
partitioned global address-space (PGAS) environments such as Universal Parallel C
(UPC) [EGCDO3] offer implicit access, while Message Passing Interface (MPI) [MPIOS]
offers explicit access because access to remote data requires explicit messaging.

The other parallel-access-control issue is how threads coordinate access to the re-
sources. This coordination is carried out by the very large number of synchronization
mechanisms provided by various parallel languages and environments, including mes-
sage passing, locking, transactions, reference counting, explicit timing, shared atomic
variables, and data ownership. Many traditional parallel-programming concerns such as
deadlock, livelock, and transaction rollback stem from this coordination. This frame-
work can be elaborated to include comparisons of these synchronization mechanisms,
for example locking vs. transactional memory [MMWO7], but such elaboration is be-
yond the scope of this section. (See Sections 17.2 and 17.3 for more information on
transactional memory.)

Quick Quiz 2.14: Just what is “explicit timing”??? ll

2.4.3 Resource Partitioning and Replication

The most effective parallel algorithms and systems exploit resource parallelism, so much
so that it is usually wise to begin parallelization by partitioning your write-intensive
resources and replicating frequently accessed read-mostly resources. The resource in
question is most frequently data, which might be partitioned over computer systems,
mass-storage devices, NUMA nodes, CPU cores (or dies or hardware threads), pages,
cache lines, instances of synchronization primitives, or critical sections of code. For
example, partitioning over locking primitives is termed “data locking” [BK85].

Resource partitioning is frequently application dependent. For example, numerical
applications frequently partition matrices by row, column, or sub-matrix, while com-
mercial applications frequently partition write-intensive data structures and replicate
read-mostly data structures. Thus, a commercial application might assign the data for a
given customer to a given few computers out of a large cluster. An application might
statically partition data, or dynamically change the partitioning over time.

Resource partitioning is extremely effective, but it can be quite challenging for
complex multilinked data structures.

2.4.4 Interacting With Hardware

Hardware interaction is normally the domain of the operating system, the compiler,
libraries, or other software-environment infrastructure. However, developers working
with novel hardware features and components will often need to work directly with such
hardware. In addition, direct access to the hardware can be required when squeezing
the last drop of performance out of a given system. In this case, the developer may
need to tailor or configure the application to the cache geometry, system topology, or
interconnect protocol of the target hardware.

2.5. DISCUSSION 19

e N
Performance Productivity
—

Generality

AN J

Figure 2.6: Ordering of Parallel-Programming Tasks

In some cases, hardware may be considered to be a resource which is subject to
partitioning or access control, as described in the previous sections.

2.4.5 Composite Capabilities

Although these four capabilities are fundamental, good engineering practice uses com-
posites of these capabilities. For example, the data-parallel approach first partitions the
data so as to minimize the need for inter-partition communication, partitions the code
accordingly, and finally maps data partitions and threads so as to maximize throughput
while minimizing inter-thread communication, as shown in Figure 2.6. The developer
can then consider each partition separately, greatly reducing the size of the relevant state
space, in turn increasing productivity. Even though some problems are non-partitionable,
clever transformations into forms permitting partitioning can sometimes greatly enhance
both performance and scalability [Met99].

2.4.6 How Do Languages and Environments Assist With These Tasks?

Although many environments require the developer to deal manually with these tasks,
there are long-standing environments that bring significant automation to bear. The
poster child for these environments is SQL, many implementations of which auto-
matically parallelize single large queries and also automate concurrent execution of
independent queries and updates.

These four categories of tasks must be carried out in all parallel programs, but that
of course does not necessarily mean that the developer must manually carry out these
tasks. We can expect to see ever-increasing automation of these four tasks as parallel
systems continue to become cheaper and more readily available.

Quick Quiz 2.15: Are there any other obstacles to parallel programming? H

2.5 Discussion

This section has given an overview of the difficulties with, goals of, and alternatives
to parallel programming. This overview was followed by a discussion of what can
make parallel programming hard, along with a high-level approach for dealing with
parallel programming’s difficulties. Those who still insist that parallel programming

20 CHAPTER 2. INTRODUCTION

is impossibly difficult should review some of the older guides to parallel program-
mming [Seq88, Dig89, BK85, Inm85]. The following quote from Andrew Birrell’s
monograph [Dig89] is especially telling:

Writing concurrent programs has a reputation for being exotic and difficult.
I believe it is neither. You need a system that provides you with good
primitives and suitable libraries, you need a basic caution and carefulness,
you need an armory of useful techniques, and you need to know of the

common pitfalls. I hope that this paper has helped you towards sharing my
belief.

The authors of these older guides were well up to the parallel programming challenge
back in the 1980s. As such, there are simply no excuses for refusing to step up to the
parallel-programming challenge here in the 21 century!

We are now ready to proceed to the next chapter, which dives into the relevant
properties of the parallel hardware underlying our parallel software.

Premature abstraction is the root of all evil.

A cast of thousands

Chapter 3

Hardware and its Habits

Most people have an intuitive understanding that passing messages between systems is
considerably more expensive than performing simple calculations within the confines of
a single system. However, it is not always so clear that communicating among threads
within the confines of a single shared-memory system can also be quite expensive. This
chapter therefore looks at the cost of synchronization and communication within a
shared-memory system. These few pages can do no more than scratch the surface of
shared-memory parallel hardware design; readers desiring more detail would do well to
start with a recent edition of Hennessy and Patterson’s classic text [HP11, HP95].

Quick Quiz 3.1: Why should parallel programmers bother learning low-level prop-
erties of the hardware? Wouldn’t it be easier, better, and more general to remain at a
higher level of abstraction? l

3.1 Overview

Careless reading of computer-system specification sheets might lead one to believe that
CPU performance is a footrace on a clear track, as illustrated in Figure 3.1, where the
race always goes to the swiftest.

Although there are a few CPU-bound benchmarks that approach the ideal case
shown in Figure 3.1, the typical program more closely resembles an obstacle course than
a race track. This is because the internal architecture of CPUs has changed dramatically
over the past few decades, courtesy of Moore’s Law. These changes are described in the
following sections.

3.1.1 Pipelined CPUs

In the early 1980s, the typical microprocessor fetched an instruction, decoded it, and
executed it, typically taking ar least three clock cycles to complete one instruction
before proceeding to the next. In contrast, the CPU of the late 1990s and early 2000s
will be executing many instructions simultaneously, using a deep “pipeline” to control
the flow of instructions internally to the CPU. These modern hardware features can
greatly improve performance, as illustrated by Figure 3.2.

Achieving full performance with a CPU having a long pipeline requires highly
predictable control flow through the program. Suitable control flow can be provided
by a program that executes primarily in tight loops, for example, arithmetic on large

21

22 CHAPTER 3. HARDWARE AND ITS HABITS

Figure 3.1: CPU Performance at its Best

4,0 GHz clock, 20 M L3
cache, 20 stage pipeline...

The only pipeline | need
is to cool of f that hot-
headed brat.

Figure 3.2: CPUs Old and New

matrices or vectors. The CPU can then correctly predict that the branch at the end of the
loop will be taken in almost all cases, allowing the pipeline to be kept full and the CPU
to execute at full speed.

However, branch prediction is not always so easy. For example, consider a program
with many loops, each of which iterates a small but random number of times. For
another example, consider an object-oriented program with many virtual objects that can
reference many different real objects, all with different implementations for frequently
invoked member functions. In these cases, it is difficult or even impossible for the
CPU to predict where the next branch might lead. Then either the CPU must stall
waiting for execution to proceed far enough to be certain where that branch leads, or
it must guess. Although guessing works extremely well for programs with predictable
control flow, for unpredictable branches (such as those in binary search) the guesses will
frequently be wrong. A wrong guess can be expensive because the CPU must discard
any speculatively executed instructions following the corresponding branch, resulting in
a pipeline flush. If pipeline flushes appear too frequently, they drastically reduce overall
performance, as fancifully depicted in Figure 3.3.

3.1. OVERVIEW 23

Figure 3.3: CPU Meets a Pipeline Flush

Unfortunately, pipeline flushes are not the only hazards in the obstacle course that
modern CPUs must run. The next section covers the hazards of referencing memory.

3.1.2 Memory References

In the 1980s, it often took less time for a microprocessor to load a value from memory
than it did to execute an instruction. In 2006, a microprocessor might be capable of exe-
cuting hundreds or even thousands of instructions in the time required to access memory.
This disparity is due to the fact that Moore’s Law has increased CPU performance at a
much greater rate than it has decreased memory latency, in part due to the rate at which
memory sizes have grown. For example, a typical 1970s minicomputer might have 4 KB
(yes, kilobytes, not megabytes, let alone gigabytes) of main memory, with single-cycle
access.! In 2008, CPU designers still can construct a 4 KB memory with single-cycle
access, even on systems with multi-GHz clock frequencies. And in fact they frequently
do construct such memories, but they now call them “level-0 caches”, and they can be
quite a bit bigger than 4 KB.

Although the large caches found on modern microprocessors can do quite a bit to
help combat memory-access latencies, these caches require highly predictable data-
access patterns to successfully hide those latencies. Unfortunately, common operations
such as traversing a linked list have extremely unpredictable memory-access patterns—
after all, if the pattern was predictable, us software types would not bother with the
pointers, right? Therefore, as shown in Figure 3.4, memory references often pose severe
obstacles to modern CPUs.

Thus far, we have only been considering obstacles that can arise during a given
CPU’s execution of single-threaded code. Multi-threading presents additional obstacles
to the CPU, as described in the following sections.

1 Tt is only fair to add that each of these single cycles lasted no less than 1.6 microseconds.

24 CHAPTER 3. HARDWARE AND ITS HABITS

Figure 3.4: CPU Meets a Memory Reference

3.1.3 Atomic Operations

One such obstacle is atomic operations. The problem here is that the whole idea of an
atomic operation conflicts with the piece-at-a-time assembly-line operation of a CPU
pipeline. To hardware designers’ credit, modern CPUs use a number of extremely clever
tricks to make such operations look atomic even though they are in fact being executed
piece-at-a-time, with one common trick being to identify all the cachelines containing
the data to be atomically operated on, ensure that these cachelines are owned by the
CPU executing the atomic operation, and only then proceed with the atomic operation
while ensuring that these cachelines remained owned by this CPU. Because all the data
is private to this CPU, other CPUs are unable to interfere with the atomic operation
despite the piece-at-a-time nature of the CPU’s pipeline. Needless to say, this sort of
trick can require that the pipeline must be delayed or even flushed in order to perform
the setup operations that permit a given atomic operation to complete correctly.

In contrast, when executing a non-atomic operation, the CPU can load values from
cachelines as they appear and place the results in the store buffer, without the need
to wait for cacheline ownership. Fortunately, CPU designers have focused heavily on
atomic operations, so that as of early 2014 they have greatly reduced their overhead.
Even so, the resulting effect on performance is all too often as depicted in Figure 3.5.

Unfortunately, atomic operations usually apply only to single elements of data. Be-
cause many parallel algorithms require that ordering constraints be maintained between
updates of multiple data elements, most CPUs provide memory barriers. These memory
barriers also serve as performance-sapping obstacles, as described in the next section.

Quick Quiz 3.2: What types of machines would allow atomic operations on multiple
data elements? ll

3.1. OVERVIEW 25

Figure 3.5: CPU Meets an Atomic Operation

Figure 3.6: CPU Meets a Memory Barrier

3.1.4 Memory Barriers

Memory barriers will be considered in more detail in Chapter 15 and Appendix C. In
the meantime, consider the following simple lock-based critical section:

spin_lock(&mylock) ;
a=a+1;
spin_unlock(&mylock) ;

)

w

If the CPU were not constrained to execute these statements in the order shown, the
effect would be that the variable “a” would be incremented without the protection of
“mylock”, which would certainly defeat the purpose of acquiring it. To prevent such
destructive reordering, locking primitives contain either explicit or implicit memory
barriers. Because the whole purpose of these memory barriers is to prevent reorderings

26 CHAPTER 3. HARDWARE AND ITS HABITS

CACHE-
MISS

TOLL
BOOTH

Figure 3.7: CPU Meets a Cache Miss

that the CPU would otherwise undertake in order to increase performance, memory
barriers almost always reduce performance, as depicted in Figure 3.6.

As with atomic operations, CPU designers have been working hard to reduce
memory-barrier overhead, and have made substantial progress.

3.1.5 Cache Misses

An additional multi-threading obstacle to CPU performance is the “cache miss”. As
noted earlier, modern CPUs sport large caches in order to reduce the performance
penalty that would otherwise be incurred due to high memory latencies. However, these
caches are actually counter-productive for variables that are frequently shared among
CPUs. This is because when a given CPU wishes to modify the variable, it is most likely
the case that some other CPU has modified it recently. In this case, the variable will be
in that other CPU’s cache, but not in this CPU’s cache, which will therefore incur an
expensive cache miss (see Section C.1 for more detail). Such cache misses form a major
obstacle to CPU performance, as shown in Figure 3.7.

Quick Quiz 3.3: So have CPU designers also greatly reduced the overhead of cache
misses? H

3.1.6 I/O Operations

A cache miss can be thought of as a CPU-to-CPU I/O operation, and as such is one
of the cheapest I/O operations available. I/O operations involving networking, mass
storage, or (worse yet) human beings pose much greater obstacles than the internal
obstacles called out in the prior sections, as illustrated by Figure 3.8.

This is one of the differences between shared-memory and distributed-system paral-
lelism: shared-memory parallel programs must normally deal with no obstacle worse
than a cache miss, while a distributed parallel program will typically incur the larger
network communication latencies. In both cases, the relevant latencies can be thought
of as a cost of communication—a cost that would be absent in a sequential program.
Therefore, the ratio between the overhead of the communication to that of the actual

3.2. OVERHEADS 27

Please stay on the
line. Your call is very
important to us...

Figure 3.8: CPU Waits for /O Completion

work being performed is a key design parameter. A major goal of parallel hardware de-
sign is to reduce this ratio as needed to achieve the relevant performance and scalability
goals. In turn, as will be seen in Chapter 6, a major goal of parallel software design is to
reduce the frequency of expensive operations like communications cache misses.

Of course, it is one thing to say that a given operation is an obstacle, and quite
another to show that the operation is a significant obstacle. This distinction is discussed
in the following sections.

3.2 Overheads

This section presents actual overheads of the obstacles to performance listed out in the
previous section. However, it is first necessary to get a rough view of hardware system
architecture, which is the subject of the next section.

3.2.1 Hardware System Architecture

Figure 3.9 shows a rough schematic of an eight-core computer system. Each die has a
pair of CPU cores, each with its cache, as well as an interconnect allowing the pair of
CPUs to communicate with each other. The system interconnect in the middle of the
diagram allows the four dies to communicate, and also connects them to main memory.

Data moves through this system in units of “cache lines”, which are power-of-two
fixed-size aligned blocks of memory, usually ranging from 32 to 256 bytes in size.
When a CPU loads a variable from memory to one of its registers, it must first load
the cacheline containing that variable into its cache. Similarly, when a CPU stores a
value from one of its registers into memory, it must also load the cacheline containing
that variable into its cache, but must also ensure that no other CPU has a copy of that
cacheline.

For example, if CPU 0 were to perform a compare-and-swap (CAS) operation on
a variable whose cacheline resided in CPU 7’s cache, the following over-simplified
sequence of events might ensue:

28 CHAPTER 3. HARDWARE AND ITS HABITS

CPUO CPU 1 CPU 2 CPU3
Cache Cache Cache Cache
Interconnect Interconnect
~ =

Memory eﬂ System Interconnect }e> Memory

Interconnect Interconnect
Cache Cache Cache Cache
CPU 4 CPUS5 CPUG6 CPU7

Speed-of-Light Round-Trip Distance in Vacuum
for 1.8 GHz Clock Period (8 cm)

Figure 3.9: System Hardware Architecture

1. CPU 0 checks its local cache, and does not find the cacheline.

2. The request is forwarded to CPU 0’s and 1’s interconnect, which checks CPU 1’s
local cache, and does not find the cacheline.

3. The request is forwarded to the system interconnect, which checks with the other
three dies, learning that the cacheline is held by the die containing CPU 6 and 7.

4. The request is forwarded to CPU 6’s and 7’s interconnect, which checks both
CPUs’ caches, finding the value in CPU 7’s cache.

5. CPU 7 forwards the cacheline to its interconnect, and also flushes the cacheline
from its cache.

CPU 6’s and 7’s interconnect forwards the cacheline to the system interconnect.
The system interconnect forwards the cacheline to CPU 0’s and 1’s interconnect.

CPU 0’s and 1’s interconnect forwards the cacheline to CPU 0’s cache.

e

CPU 0 can now perform the CAS operation on the value in its cache.

Quick Quiz 3.4: This is a simplified sequence of events? How could it possibly be
any more complex? Hl

Quick Quiz 3.5: Why is it necessary to flush the cacheline from CPU 7’s cache? B

This simplified sequence is just the beginning of a discipline called cache-coherency
protocols [HP95, CSG99, MHS12, SHW11], which is discussed in more detail in
Appendix C. As can be seen in the sequence of events triggered by a CAS operation,
a single instruction can cause considerable protocol traffic, which can significantly
degrade your parallel program’s performance.

Fortunately, if a given variable is being frequently read during a time interval during
which it is never updated, that variable can be replicated across all CPUs’ caches.
This replication permits all CPUs to enjoy extremely fast access to this read-mostly
variable. Chapter 9 presents synchronization mechanisms that take full advantage of
this important hardware read-mostly optimization.

3.2. OVERHEADS 29

Table 3.1: Performance of Synchronization Mechanisms on 4-CPU 1.8 GHz AMD
Opteron 844 System

Ratio
Operation Cost (ns) (cost/clock)
Clock period 0.6 1.0
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0
Comms Fabric 5,000 8,330

Global Comms 195,000,000 325,000,000

3.2.2 Costs of Operations

The overheads of some common operations important to parallel programs are displayed
in Table 3.1. This system’s clock period rounds to 0.6 ns. Although it is not unusual
for modern microprocessors to be able to retire multiple instructions per clock period,
the operations’ costs are nevertheless normalized to a clock period in the third column,
labeled “Ratio”. The first thing to note about this table is the large values of many of the
ratios.

The best-case compare-and-swap (CAS) operation consumes almost forty nanosec-
onds, a duration more than sixty times that of the clock period. Here, “best case” means
that the same CPU now performing the CAS operation on a given variable was the
last CPU to operate on this variable, so that the corresponding cache line is already
held in that CPU’s cache. Similarly, the best-case lock operation (a “round trip” pair
consisting of a lock acquisition followed by a lock release) consumes more than sixty
nanoseconds, or more than one hundred clock cycles. Again, “best case” means that
the data structure representing the lock is already in the cache belonging to the CPU
acquiring and releasing the lock. The lock operation is more expensive than CAS
because it requires two atomic operations on the lock data structure.

An operation that misses the cache consumes almost one hundred and forty nanosec-
onds, or more than two hundred clock cycles. The code used for this cache-miss
measurement passes the cache line back and forth between a pair of CPUs, so this cache
miss is satisfied not from memory, but rather from the other CPU’s cache. A CAS
operation, which must look at the old value of the variable as well as store a new value,
consumes over three hundred nanoseconds, or more than five hundred clock cycles.
Think about this a bit. In the time required to do one CAS operation, the CPU could
have executed more than five hundred normal instructions. This should demonstrate the
limitations not only of fine-grained locking, but of any other synchronization mechanism
relying on fine-grained global agreement.

Quick Quiz 3.6: Surely the hardware designers could be persuaded to improve
this situation! Why have they been content with such abysmal performance for these
single-instruction operations? ll

I/O operations are even more expensive. As shown in the “Comms Fabric” row,
high performance (and expensive!) communications fabric, such as InfiniBand or any
number of proprietary interconnects, has a latency of roughly five microseconds for an
end-to-end round trip, during which time more than eight thousand instructions might
have been executed. Standards-based communications networks often require some

30 CHAPTER 3. HARDWARE AND ITS HABITS

sort of protocol processing, which further increases the latency. Of course, geographic
distance also increases latency, with the speed-of-light through optical fiber latency
around the world coming to roughly 195 milliseconds, or more than 300 million clock
cycles, as shown in the “Global Comms” row.

Quick Quiz 3.7: These numbers are insanely large! How can I possibly get my
head around them? M

3.2.3 Hardware Optimizations

It is only natural to ask how the hardware is helping, and the answer is “Quite a bit!”

One hardware optimization is large cachelines. This can provide a big performance
boost, especially when software is accessing memory sequentially. For example, given
a 64-byte cacheline and software accessing 64-bit variables, the first access will still be
slow due to speed-of-light delays (if nothing else), but the remaining seven can be quite
fast. However, this optimization has a dark side, namely false sharing, which happens
when different variables in the same cacheline are being updated by different CPUs,
resulting in a high cache-miss rate. Software can use the alignment directives available
in many compilers to avoid false sharing, and adding such directives is a common step
in tuning parallel software.

A second related hardware optimization is cache prefetching, in which the hardware
reacts to consecutive accesses by prefetching subsequent cachelines, thereby evading
speed-of-light delays for these subsequent cachelines. Of course, the hardware must use
simple heuristics to determine when to prefetch, and these heuristics can be fooled by
the complex data-access patterns in many applications. Fortunately, some CPU families
allow for this by providing special prefetch instructions. Unfortunately, the effectiveness
of these instructions in the general case is subject to some dispute.

A third hardware optimization is the store buffer, which allows a string of store
instructions to execute quickly even when the stores are to non-consecutive addresses
and when none of the needed cachelines are present in the CPU’s cache. The dark side
of this optimization is memory misordering, for which see Chapter 15.

A fourth hardware optimization is speculative execution, which can allow the
hardware to make good use of the store buffers without resulting in memory misordering.
The dark side of this optimization can be energy inefficiency and lowered performance
if the speculative execution goes awry and must be rolled back and retried. Worse yet,
the advent of Spectre and Meltdown [Hor18] made it apparent that hardware speculation
can also enable side-channel attacks that defeat memory-protection hardware so as to
allow unprivileged processes to read memory that they should not have access to. It is
clear that the combination of speculative execution and cloud computing needs more
than a bit of rework!

A fifth hardware optimization is large caches, allowing individual CPUs to operate
on larger datasets without incurring expensive cache misses. Although large caches
can degrade energy efficiency and cache-miss latency, the ever-growing cache sizes on
production microprocessors attests to the power of this optimization.

A final hardware optimization is read-mostly replication, in which data that is
frequently read but rarely updated is present in all CPUs’ caches. This optimization
allows the read-mostly data to be accessed exceedingly efficiently, and is the subject of
Chapter 9.

In short, hardware and software engineers are really fighting on the same side, trying
to make computers go fast despite the best efforts of the laws of physics, as fancifully

3.3. HARDWARE FREE LUNCH? 31

Figure 3.10: Hardware and Software: On Same Side

depicted in Figure 3.10 where our data stream is trying its best to exceed the speed of
light. The next section discusses some additional things that the hardware engineers
might (or might not) be able to do, depending on how well recent research translates to
practice. Software’s contribution to this fight is outlined in the remaining chapters of
this book.

3.3 Hardware Free Lunch?

The major reason that concurrency has been receiving so much focus over the past few
years is the end of Moore’s-Law induced single-threaded performance increases (or
“free lunch” [Sut08]), as shown in Figure 2.1 on page 10. This section briefly surveys a
few ways that hardware designers might be able to bring back some form of the “free
lunch”.

However, the preceding section presented some substantial hardware obstacles to
exploiting concurrency. One severe physical limitation that hardware designers face is
the finite speed of light. As noted in Figure 3.9 on page 28, light can travel only about
an 8-centimeters round trip in a vacuum during the duration of a 1.8 GHz clock period.
This distance drops to about 3 centimeters for a 5 GHz clock. Both of these distances
are relatively small compared to the size of a modern computer system.

To make matters even worse, electric waves in silicon move from three to thirty
times more slowly than does light in a vacuum, and common clocked logic constructs
run still more slowly, for example, a memory reference may need to wait for a local
cache lookup to complete before the request may be passed on to the rest of the system.
Furthermore, relatively low speed and high power drivers are required to move electrical
signals from one silicon die to another, for example, to communicate between a CPU
and main memory.

Quick Quiz 3.8: But individual electrons don’t move anywhere near that fast, even
in conductors!!! The electron drift velocity in a conductor under the low voltages found
in semiconductors is on the order of only one millimeter per second. What gives??? ll

There are nevertheless some technologies (both hardware and software) that might
help improve matters:

1. 3D integration,

2. Novel materials and processes,

32 CHAPTER 3. HARDWARE AND ITS HABITS

70 UTZ\

| | [~—=

3cm 1.5¢cm

Figure 3.11: Latency Benefit of 3D Integration

3. Substituting light for electricity,
4. Special-purpose accelerators, and
5. Existing parallel software.

Each of these is described in one of the following sections.

3.3.1 3D Integration

3-dimensional integration (3DI) is the practice of bonding very thin silicon dies to
each other in a vertical stack. This practice provides potential benefits, but also poses
significant fabrication challenges [KniO8].

Perhaps the most important benefit of 3DI is decreased path length through the
system, as shown in Figure 3.11. A 3-centimeter silicon die is replaced with a stack of
four 1.5-centimeter dies, in theory decreasing the maximum path through the system by
a factor of two, keeping in mind that each layer is quite thin. In addition, given proper
attention to design and placement, long horizontal electrical connections (which are
both slow and power hungry) can be replaced by short vertical electrical connections,
which are both faster and more power efficient.

However, delays due to levels of clocked logic will not be decreased by 3D in-
tegration, and significant manufacturing, testing, power-supply, and heat-dissipation
problems must be solved for 3D integration to reach production while still delivering on
its promise. The heat-dissipation problems might be solved using semiconductors based
on diamond, which is a good conductor for heat, but an electrical insulator. That said, it
remains difficult to grow large single diamond crystals, to say nothing of slicing them
into wafers. In addition, it seems unlikely that any of these technologies will be able to
deliver the exponential increases to which some people have become accustomed. That
said, they may be necessary steps on the path to the late Jim Gray’s “smoking hairy golf
balls” [Gra02].

3.3.2 Novel Materials and Processes

Stephen Hawking is said to have claimed that semiconductor manufacturers have but
two fundamental problems: (1) the finite speed of light and (2) the atomic nature of
matter [GarQ7]. It is possible that semiconductor manufacturers are approaching these
limits, but there are nevertheless a few avenues of research and development focused on
working around these fundamental limits.

One workaround for the atomic nature of matter are so-called “high-K dielectric”
materials, which allow larger devices to mimic the electrical properties of infeasibly

3.3. HARDWARE FREE LUNCH? 33

small devices. These materials pose some severe fabrication challenges, but nevertheless
may help push the frontiers out a bit farther. Another more-exotic workaround stores
multiple bits in a single electron, relying on the fact that a given electron can exist at a
number of energy levels. It remains to be seen if this particular approach can be made
to work reliably in production semiconductor devices.

Another proposed workaround is the “quantum dot” approach that allows much
smaller device sizes, but which is still in the research stage.

One challenge is that many recent hardware-device-level breakthroughs require very
tight control of which atoms are placed where [Kell7]. It therefore seems likely that
whoever finds a good way to hand-place atoms on each of the billions of devices on a
chip will have most excellent bragging rights, if nothing else!

3.3.3 Light, Not Electrons

Although the speed of light would be a hard limit, the fact is that semiconductor devices
are limited by the speed of electricity rather than that of light, given that electric waves
in semiconductor materials move at between 3 % and 30 % of the speed of light in a
vacuum. The use of copper connections on silicon devices is one way to increase the
speed of electricity, and it is quite possible that additional advances will push closer still
to the actual speed of light. In addition, there have been some experiments with tiny
optical fibers as interconnects within and between chips, based on the fact that the speed
of light in glass is more than 60 % of the speed of light in a vacuum. One obstacle to
such optical fibers is the inefficiency conversion between electricity and light and vice
versa, resulting in both power-consumption and heat-dissipation problems.

That said, absent some fundamental advances in the field of physics, any exponential
increases in the speed of data flow will be sharply limited by the actual speed of light in
a vacuum.

3.3.4 Special-Purpose Accelerators

A general-purpose CPU working on a specialized problem is often spending significant
time and energy doing work that is only tangentially related to the problem at hand. For
example, when taking the dot product of a pair of vectors, a general-purpose CPU will
normally use a loop (possibly unrolled) with a loop counter. Decoding the instructions,
incrementing the loop counter, testing this counter, and branching back to the top of the
loop are in some sense wasted effort: the real goal is instead to multiply corresponding
elements of the two vectors. Therefore, a specialized piece of hardware designed
specifically to multiply vectors could get the job done more quickly and with less energy
consumed.

This is in fact the motivation for the vector instructions present in many commodity
microprocessors. Because these instructions operate on multiple data items simultane-
ously, they would permit a dot product to be computed with less instruction-decode and
loop overhead.

Similarly, specialized hardware can more efficiently encrypt and decrypt, compress
and decompress, encode and decode, and many other tasks besides. Unfortunately, this
efficiency does not come for free. A computer system incorporating this specialized
hardware will contain more transistors, which will consume some power even when not
in use. Software must be modified to take advantage of this specialized hardware, and
this specialized hardware must be sufficiently generally useful that the high up-front
hardware-design costs can be spread over enough users to make the specialized hardware

34 CHAPTER 3. HARDWARE AND ITS HABITS

affordable. In part due to these sorts of economic considerations, specialized hardware
has thus far appeared only for a few application areas, including graphics processing
(GPUgs), vector processors (MMX, SSE, and VMX instructions), and, to a lesser extent,
encryption.

Unlike the server and PC arena, smartphones have long used a wide variety of
hardware accelerators. These hardware accelerators are often used for media decoding,
so much so that a high-end MP3 player might be able to play audio for several minutes
with its CPU fully powered off the entire time. The purpose of these accelerators is
to improve energy efficiency and thus extend battery life: special purpose hardware
can often compute more efficiently than can a general-purpose CPU. This is another
example of the principle called out in Section 2.2.3: Generality is almost never free.

Nevertheless, given the end of Moore’s-Law-induced single-threaded performance
increases, it seems safe to predict that there will be an increasing variety of special-
purpose hardware going forward.

3.3.5 Existing Parallel Software

Although multicore CPUs seem to have taken the computing industry by surprise, the
fact remains that shared-memory parallel computer systems have been commercially
available for more than a quarter century. This is more than enough time for significant
parallel software to make its appearance, and it indeed has. Parallel operating systems
are quite commonplace, as are parallel threading libraries, parallel relational database
management systems, and parallel numerical software. Use of existing parallel software
can go a long ways towards solving any parallel-software crisis we might encounter.

Perhaps the most common example is the parallel relational database management
system. It is not unusual for single-threaded programs, often written in high-level
scripting languages, to access a central relational database concurrently. In the resulting
highly parallel system, only the database need actually deal directly with parallelism. A
very nice trick when it works!

3.4 Software Design Implications

The values of the ratios in Table 3.1 are critically important, as they limit the efficiency
of a given parallel application. To see this, suppose that the parallel application uses
CAS operations to communicate among threads. These CAS operations will typically
involve a cache miss, that is, assuming that the threads are communicating primarily
with each other rather than with themselves. Suppose further that the unit of work
corresponding to each CAS communication operation takes 300 ns, which is sufficient
time to compute several floating-point transcendental functions. Then about half of the
execution time will be consumed by the CAS communication operations! This in turn
means that a two-CPU system running such a parallel program would run no faster than
a sequential implementation running on a single CPU.

The situation is even worse in the distributed-system case, where the latency of
a single communications operation might take as long as thousands or even millions
of floating-point operations. This illustrates how important it is for communications
operations to be extremely infrequent and to enable very large quantities of processing.

Quick Quiz 3.9: Given that distributed-systems communication is so horribly
expensive, why does anyone bother with such systems? Hl

3.4. SOFTWARE DESIGN IMPLICATIONS 35

The lesson should be quite clear: parallel algorithms must be explicitly designed with
these hardware properties firmly in mind. One approach is to run nearly independent
threads. The less frequently the threads communicate, whether by atomic operations,
locks, or explicit messages, the better the application’s performance and scalability will
be. This approach will be touched on in Chapter 5, explored in Chapter 6, and taken to
its logical extreme in Chapter 8.

Another approach is to make sure that any sharing be read-mostly, which allows the
CPUs’ caches to replicate the read-mostly data, in turn allowing all CPUs fast access.
This approach is touched on in Section 5.2.3, and explored more deeply in Chapter 9.

In short, achieving excellent parallel performance and scalability means striving for
embarrassingly parallel algorithms and implementations, whether by careful choice of
data structures and algorithms, use of existing parallel applications and environments, or
transforming the problem into one for which an embarrassingly parallel solution exists.

Quick Quiz 3.10: OK, if we are going to have to apply distributed-programming
techniques to shared-memory parallel programs, why not just always use these distrib-
uted techniques and dispense with shared memory? l

So, to sum up:

1. The good news is that multicore systems are inexpensive and readily available.

2. More good news: The overhead of many synchronization operations is much
lower than it was on parallel systems from the early 2000s.

3. The bad news is that the overhead of cache misses is still high, especially on large
systems.

The remainder of this book describes ways of handling this bad news.

In particular, Chapter 4 will cover some of the low-level tools used for parallel
programming, Chapter 5 will investigate problems and solutions to parallel counting,
and Chapter 6 will discuss design disciplines that promote performance and scalability.

36

CHAPTER 3. HARDWARE AND ITS HABITS

You are only as good as your tools, and your tools
are only as good as you are.

Unknown

Chapter 4

Tools of the Trade

This chapter provides a brief introduction to some basic tools of the parallel-programming
trade, focusing mainly on those available to user applications running on operating
systems similar to Linux. Section 4.1 begins with scripting languages, Section 4.2
describes the multi-process parallelism supported by the POSIX API and touches on
POSIX threads, Section 4.3 presents analogous operations in other environments, and
finally, Section 4.4 helps to choose the tool that will get the job done.

Quick Quiz 4.1: You call these tools??? They look more like low-level synchro-
nization primitives to me! l

Please note that this chapter provides but a brief introduction. More detail is available
from the references cited (and especially from Internet), and more information on how
best to use these tools will be provided in later chapters.

4.1 Scripting Languages

The Linux shell scripting languages provide simple but effective ways of managing
parallelism. For example, suppose that you had a program compute_it that you needed
to run twice with two different sets of arguments. This can be accomplished using UNIX
shell scripting as follows:

compute_it 1 > compute_it.l.out &
compute_it 2 > compute_it.2.out &
wait

cat compute_it.1l.out

cat compute_it.2.out

woE W =

Lines 1 and 2 launch two instances of this program, redirecting their output to two
separate files, with the & character directing the shell to run the two instances of the
program in the background. Line 3 waits for both instances to complete, and lines 4
and 5 display their output. The resulting execution is as shown in Figure 4.1: the two
instances of compute_it execute in parallel, wait completes after both of them do,
and then the two instances of cat execute sequentially.

Quick Quiz 4.2: But this silly shell script isn’t a real parallel program! Why bother
with such trivia??? B

Quick Quiz 4.3: Is there a simpler way to create a parallel shell script? If so, how?
If not, why not? l

37

38 CHAPTER 4. TOOLS OF THE TRADE

compute_it 1 > compute_it 2 >
compute_it.l.out & compute_it.2.out &

’cat compute_it.1l.out ‘

’cat compute_it.2.out ‘

Figure 4.1: Execution Diagram for Parallel Shell Execution

For another example, the make software-build scripting language provides a - j
option that specifies how much parallelism should be introduced into the build process.
For example, typing make -3j4 when building a Linux kernel specifies that up to four
parallel compiles be carried out concurrently.

It is hoped that these simple examples convince you that parallel programming need
not always be complex or difficult.

Quick Quiz 4.4: But if script-based parallel programming is so easy, why bother
with anything else? B

4.2 POSIX Multiprocessing

This section scratches the surface of the POSIX environment, including pthreads [Ope97],
as this environment is readily available and widely implemented. Section 4.2.1 provides
a glimpse of the POSIX fork() and related primitives, Section 4.2.2 touches on thread
creation and destruction, Section 4.2.3 gives a brief overview of POSIX locking, and,
finally, Section 4.2.4 describes a specific lock which can be used for data that is read by
many threads and only occasionally updated.

4.2.1 POSIX Process Creation and Destruction

Processes are created using the fork() primitive, they may be destroyed using the
kill () primitive, they may destroy themselves using the exit () primitive. A process
executing a fork () primitive is said to be the “parent” of the newly created process. A
parent may wait on its children using the wait () primitive.

Please note that the examples in this section are quite simple. Real-world applica-
tions using these primitives might need to manipulate signals, file descriptors, shared
memory segments, and any number of other resources. In addition, some applications
need to take specific actions if a given child terminates, and might also need to be
concerned with the reason that the child terminated. These concerns can of course
add substantial complexity to the code. For more information, see any of a number of
textbooks on the subject [Ste92, Weil3].

If fork () succeeds, it returns twice, once for the parent and again for the child.

4.2. POSIX MULTIPROCESSING 39

Listing 4.1: Using the fork () Primitive

1 pid = fork();

2 if (pid == 0) {

3 /* child */

4 } else if (pid < 0) {

5 /* parent, upon error */

6 perror("fork");

7 exit (EXIT_FAILURE);

8 } else {

9 /% parent, pid == child ID */
10 }

Listing 4.2: Using the wait () Primitive

int pid;

1

2 int status;

3

4 for (5;) {

5 pid = wait(&status);
6 if (pid == -1) {

7 if (errno == ECHILD)
8 break;

9 perror("wait");

10 exit (EXIT_FAILURE);
11 3

2}

The value returned from fork() allows the caller to tell the difference, as shown in
Listing 4.1 (forkjoin.c). Line 1 executes the fork () primitive, and saves its return
value in local variable pid. Line 2 checks to see if pid is zero, in which case, this is the
child, which continues on to execute line 3. As noted earlier, the child may terminate
via the exit () primitive. Otherwise, this is the parent, which checks for an error return
from the fork() primitive on line 4, and prints an error and exits on lines 5-7 if so.
Otherwise, the fork () has executed successfully, and the parent therefore executes
line 9 with the variable pid containing the process ID of the child.

The parent process may use the wait () primitive to wait for its children to complete.
However, use of this primitive is a bit more complicated than its shell-script counterpart,
as each invocation of wait () waits for but one child process. It is therefore customary
to wrap wait () into a function similar to the waitall () function shown in Listing 4.2
(api-pthread.h), with this waitall () function having semantics similar to the shell-
script wait command. Each pass through the loop spanning lines 4-12 waits on one
child process. Line 5 invokes the wait () primitive, which blocks until a child process
exits, and returns that child’s process ID. If the process ID is instead —1, this indicates
that the wait () primitive was unable to wait on a child. If so, line 7 checks for the
ECHILD errno, which indicates that there are no more child processes, so that line 8
exits the loop. Otherwise, lines 9 and 10 print an error and exit.

Quick Quiz 4.5: Why does this wait () primitive need to be so complicated? Why
not just make it work like the shell-script wait does? ll

It is critically important to note that the parent and child do not share memory. This
is illustrated by the program shown in Listing 4.3 (forkjoinvar. c), in which the child
sets a global variable x to 1 on line 9, prints a message on line 10, and exits on line 11.
The parent continues at line 20, where it waits on the child, and on line 21 finds that its
copy of the variable x is still zero. The output is thus as follows:

Child process set x=1
Parent process sees x=0

40 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.3: Processes Created Via fork () Do Not Share Memory

1 int x = 0;

int main(int argc, char *argv([])

3

4 {

5 int pid;

6

7 pid = fork();

8 if (pid == 0) { /* child */

9 x =1;

10 printf("Child process set x=1\n");
11 exit (EXIT_SUCCESS) ;

2}

13 if (pid < 0) { /* parent, upon error */
14 perror("fork");

Is exit (EXIT_FAILURE);

16}

18 /* parent */

20 waitall();
21 printf ("Parent process sees x=%d\n", x);

23 return EXIT_SUCCESS;

Quick Quiz 4.6: Isn’t there a lot more to fork () and wait () than discussed here?
]

The finest-grained parallelism requires shared memory, and this is covered in Sec-
tion 4.2.2. That said, shared-memory parallelism can be significantly more complex
than fork-join parallelism.

4.2.2 POSIX Thread Creation and Destruction

To create a thread within an existing process, invoke the pthread_create () primitive,
for example, as shown on lines 16 and 17 of Listing 4.4 (pcreate. c). The first argument
is a pointer to a pthread_t in which to store the ID of the thread to be created, the
second NULL argument is a pointer to an optional pthread_attr_t, the third argument
is the function (in this case, mythread ()) that is to be invoked by the new thread, and
the last NULL argument is the argument that will be passed to mythread.

In this example, mythread () simply returns, but it could instead call pthread_
exit ().

Quick Quiz 4.7: If the mythread () function in Listing 4.4 can simply return, why
bother with pthread_exit()? l

The pthread_join() primitive, shown on line 24, is analogous to the fork-join
wait () primitive. It blocks until the thread specified by the tid variable completes
execution, either by invoking pthread_exit () or by returning from the thread’s top-
level function. The thread’s exit value will be stored through the pointer passed as the
second argument to pthread_join(). The thread’s exit value is either the value passed
to pthread_exit () or the value returned by the thread’s top-level function, depending
on how the thread in question exits.

The program shown in Listing 4.4 produces output as follows, demonstrating that
memory is in fact shared between the two threads:

Child process set x=1
Parent process sees x=1

4.2. POSIX MULTIPROCESSING 41

Listing 4.4: Threads Created Via pthread_create() Share Memory

1 int x = 0;
2

3 void *mythread(void *arg)

4 {

5 x =1;

6 printf("Child process set x=1\n");
7 return NULL;

8 ¥

9

10 int main(int argc, char *argv([])

1 {

12 int en;

13 pthread_t tid;

14 void *vp;

15

16 if ((en = pthread_create(&tid, NULL,

17 mythread, NULL)) != 0) {

18 fprintf (stderr, "pthread_join: %s\n", strerror(en));
19 exit (EXIT_FAILURE);

20)

21

2 /* parent */

23

24 if ((en = pthread_join(tid, &vp)) != 0) {

25 fprintf (stderr, "pthread_join: %s\n", strerror(en));
26 exit (EXIT_FAILURE);
27 }

28 printf ("Parent process sees x=)d\n", x);
29

30 return EXIT_SUCCESS;

31}

Note that this program carefully makes sure that only one of the threads stores a
value to variable x at a time. Any situation in which one thread might be storing a
value to a given variable while some other thread either loads from or stores to that
same variable is termed a “data race”. Because the C language makes no guarantee that
the results of a data race will be in any way reasonable, we need some way of safely
accessing and modifying data concurrently, such as the locking primitives discussed in
the following section.

Quick Quiz 4.8: If the C language makes no guarantees in presence of a data race,
then why does the Linux kernel have so many data races? Are you trying to tell me that
the Linux kernel is completely broken??? ll

4.2.3 POSIX Locking

The POSIX standard allows the programmer to avoid data races via “POSIX locking”.
POSIX locking features a number of primitives, the most fundamental of which are
pthread_mutex_lock() and pthread_mutex_unlock(). These primitives operate
on locks, which are of type pthread_mutex_t. These locks may be declared statically
and initialized with PTHREAD_MUTEX_INITIALIZER, or they may be allocated dynami-
cally and initialized using the pthread_mutex_init () primitive. The demonstration
code in this section will take the former course.

The pthread_mutex_lock() primitive “acquires” the specified lock, and the
pthread_mutex_unlock() “releases” the specified lock. Because these are “exclu-
sive” locking primitives, only one thread at a time may “hold” a given lock at a given
time. For example, if a pair of threads attempt to acquire the same lock concurrently,
one of the pair will be “granted” the lock first, and the other will wait until the first
thread releases the lock. A simple and reasonably useful programming model permits a

42 CHAPTER 4. TOOLS OF THE TRADE

given data item to be accessed only while holding the corresponding lock [Hoa74].
Quick Quiz 4.9: What if I want several threads to hold the same lock at the same
time? H
This exclusive-locking property is demonstrated using the code shown in Listing 4.5
(lock.c). Line 1 defines and initializes a POSIX lock named lock_a, while line 2
similarly defines and initializes a lock named lock_b. Line 4 defines and initializes a
shared variable x.

Lines 6-33 defines a function lock_reader () which repeatedly reads the shared
variable x while holding the lock specified by arg. Line 12 casts arg to a pointer
to a pthread_mutex_t, as required by the pthread_mutex_lock() and pthread_
mutex_unlock() primitives.

Quick Quiz 4.10: Why not simply make the argument to 1lock_reader () on line 6
of Listing 4.5 be a pointer to a pthread_mutex_t? Hl

Quick Quiz 4.11: What is the READ_ONCE() on lines 20 and 47 and the WRITE _
ONCE() on line 47 of Listing 4.5?

Lines 14-18 acquire the specified pthread_mutex_t, checking for errors and
exiting the program if any occur. Lines 19-26 repeatedly check the value of x, printing
the new value each time that it changes. Line 25 sleeps for one millisecond, which
allows this demonstration to run nicely on a uniprocessor machine. Lines 27-31 release
the pthread_mutex_t, again checking for errors and exiting the program if any occur.
Finally, line 32 returns NULL, again to match the function type required by pthread_
create().

Quick Quiz 4.12: Writing four lines of code for each acquisition and release of a
pthread_mutex_t sure seems painful! Isn’t there a better way? Hl

Lines 35-56 of Listing 4.5 shows lock_writer (), which periodically update the
shared variable x while holding the specified pthread_mutex_t. As with lock_
reader (), line 39 casts arg to a pointer to pthread_mutex_t, lines 41-45 acquires
the specified lock, and lines 50-54 releases it. While holding the lock, lines 46-49
increment the shared variable x, sleeping for five milliseconds between each increment.
Finally, lines 50-54 release the lock.

Listing 4.6 shows a code fragment that runs lock_reader () and lock_writer ()
as threads using the same lock, namely, lock_a. Lines 2-6 create a thread run-
ning lock_reader (), and then Lines 7-11 create a thread running lock_writer ().
Lines 12-19 wait for both threads to complete. The output of this code fragment is as
follows:

Creating two threads using same lock:
lock_reader(): x = 0

Because both threads are using the same lock, the lock_reader () thread cannot
see any of the intermediate values of x produced by lock_writer () while holding the
lock.

Quick Quiz 4.13: Is “x = 0” the only possible output from the code fragment shown
in Listing 4.6? If so, why? If not, what other output could appear, and why? l

Listing 4.7 shows a similar code fragment, but this time using different locks:
lock_a for lock_reader () and lock_b for lock_writer (). The output of this
code fragment is as follows:

4.2. POSIX MULTIPROCESSING

43

Listing 4.5: Demonstration of Exclusive Locks

1 pthread_mutex_t lock_a = PTHREAD_MUTEX_INITIALIZER;
2 pthread_mutex_t lock_b = PTHREAD_MUTEX_INITIALIZER;
3

4 int x = 0;

5

6 void *lock_reader(void *arg)

7 {

8 int en;

9 int i;

10 int newx = -1;

11 int oldx = -1;

12 pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;
13

14 if ((en = pthread_mutex_lock(pmlp)) != 0) {

15 fprintf (stderr, "lock_reader:pthread_mutex_lock:
16 strerror(en));

17 exit (EXIT_FAILURE);

8}

19 for (i = 0; i < 100; i++) {

20 newx = READ_ONCE(x);

21 if (newx != oldx) {

2 printf("lock_reader(): x = %d\n", newx);

23

24 0ldx = newx;

25 poll(NULL, 0, 1);

26}

27 if ((en = pthread_mutex_unlock(pmlp)) != 0) {

28 fprintf (stderr, "lock_reader:pthread_mutex_lock:
29 strerror(en));

30 exit (EXIT_FAILURE);

31}

32 return NULL;

33}

34
35 void *lock_writer(void *arg)

36 {

37 int en;

38 int i;

39 pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;
40

41 if ((en = pthread_mutex_lock(pmlp)) !'= 0) {

42 fprintf(stderr, "lock_writer:pthread_mutex_lock:
43 strerror(en));

44 exit (EXIT_FAILURE) ;

45}

16 for (i = 0; i < 3; i++) {

47 WRITE_ONCE(x, READ_ONCE(x) + 1);

48 poll(NULL, 0, 5);

49)

50 if ((en = pthread_mutex_unlock(pmlp)) != 0) {

51 fprintf(stderr, "lock_writer:pthread_mutex_lock:
52 strerror(en));

53 exit (EXIT_FAILURE);

54 }

55 return NULL;
56}

%s\n",

%s\n",

%s\n",

%s\n",

44 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.6: Demonstration of Same Exclusive Lock

printf("Creating two threads using same lock:\n");

1

2 en = pthread_create(&tidl, NULL, lock_reader, &lock_a);
3 if (en !'= 0) {

4 fprintf (stderr, "pthread_create: %s\n", strerror(en));
5 exit (EXIT_FAILURE);

6 1}

7 en = pthread_create(&tid2, NULL, lock_writer, &lock_a);
8 if (en !'= 0) {

9 fprintf (stderr, "pthread_create: %s\n", strerror(en));
10 exit (EXIT_FAILURE);

o}

12 if ((en = pthread_join(tidl, &vp)) != 0) {

13 fprintf (stderr, "pthread_join: %s\n", strerror(en));
14 exit (EXIT_FAILURE);

15}

16 if ((en = pthread_join(tid2, &vp)) !'= 0) {

17 fprintf (stderr, "pthread_join: %s\n", strerror(en));
18 exit (EXIT_FAILURE);

19}

Listing 4.7: Demonstration of Different Exclusive Locks

1 printf("Creating two threads w/different locks:\n");

2 x = 0;

3 en = pthread_create(&tidl, NULL, lock_reader, &lock_a);
4 if (en '= 0) {

5 fprintf (stderr, "pthread_create: %s\n", strerror(en));
6 exit (EXIT_FAILURE);

5

8

9

}
en = pthread_create(&tid2, NULL, lock_writer, &lock_b);
if (en !'= 0) {
10 fprintf (stderr, "pthread_create: %s\n", strerror(en));
11 exit (EXIT_FAILURE);
12 }
13 if ((en = pthread_join(tidl, &vp)) !'= 0) {
14 fprintf (stderr, "pthread_join: %s\n", strerror(en));
15 exit (EXIT_FAILURE);
16}
17 if ((en = pthread_join(tid2, &vp)) != 0) {
18 fprintf(stderr, "pthread_join: %s\n", strerror(en));
19 exit (EXIT_FAILURE);

20 X

4.2. POSIX MULTIPROCESSING 45

Creating two threads w/different locks:
lock_reader(): x = 0
lock_reader():

bd 1
lock_reader(): x = 2
lock_reader(): x 3

Because the two threads are using different locks, they do not exclude each other, and
can run concurrently. The lock_reader () function can therefore see the intermediate
values of x stored by lock_writer().

Quick Quiz 4.14: Using different locks could cause quite a bit of confusion, what
with threads seeing each others’ intermediate states. So should well-written parallel
programs restrict themselves to using a single lock in order to avoid this kind of
confusion? l

Quick Quiz 4.15: In the code shown in Listing 4.7, is lock_reader () guaranteed
to see all the values produced by lock_writer()? Why or why not? l

Quick Quiz 4.16: Wait a minute here!!! Listing 4.6 didn’t initialize shared variable
x, so why does it need to be initialized in Listing 4.7? B

Although there is quite a bit more to POSIX exclusive locking, these primitives
provide a good start and are in fact sufficient in a great many situations. The next section
takes a brief look at POSIX reader-writer locking.

4.2.4 POSIX Reader-Writer Locking

The POSIX API provides a reader-writer lock, which is represented by a pthread_
rwlock_t. As with pthread_mutex_t, pthread_rwlock_t may be statically initial-
ized via PTHREAD _RWLOCK_INITIALIZER or dynamically initialized via the pthread_
rwlock_init () primitive. The pthread_rwlock_rdlock() primitive read-acquires
the specified pthread_rwlock_t, the pthread_rwlock_wrlock() primitive write-
acquires it, and the pthread_rwlock_unlock() primitive releases it. Only a single
thread may write-hold a given pthread_rwlock_t at any given time, but multiple
threads may read-hold a given pthread_rwlock_t, at least while there is no thread
currently write-holding it.

As you might expect, reader-writer locks are designed for read-mostly situations. In
these situations, a reader-writer lock can provide greater scalability than can an exclusive
lock because the exclusive lock is by definition limited to a single thread holding the
lock at any given time, while the reader-writer lock permits an arbitrarily large number
of readers to concurrently hold the lock. However, in practice, we need to know how
much additional scalability is provided by reader-writer locks.

Listing 4.8 (rwlockscale.c) shows one way of measuring reader-writer lock
scalability. Line 1 shows the definition and initialization of the reader-writer lock, line 2
shows the holdtime argument controlling the time each thread holds the reader-writer
lock, line 3 shows the thinktime argument controlling the time between the release
of the reader-writer lock and the next acquisition, line 4 defines the readcounts array
into which each reader thread places the number of times it acquired the lock, and line 5
defines the nreadersrunning variable, which determines when all reader threads have
started running.

Lines 7-10 define gof1lag, which synchronizes the start and the end of the test. This
variable is initially set to GOFLAG_INIT, then set to GOFLAG_RUN after all the reader
threads have started, and finally set to GOFLAG_STOP to terminate the test run.

46 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.8: Measuring Reader-Writer Lock Scalability

1 pthread_rwlock_t rwl = PTHREAD_RWLOCK_INITIALIZER;
2 int holdtime = 0; /* # loops holding lock. */

3 int thinktime = 0; /* # loops not holding lock. */
4 long long *readcounts;

5 int nreadersrunning = 0;

6

7

8

#define GOFLAG_INIT O
#define GOFLAG_RUN 1

9 #define GOFLAG_STOP 2

10 char goflag = GOFLAG_INIT;

12 void *reader(void *arg)

13 {
14 int en;
15 int i;

16 long long loopcnt = 0;
17 long me = (long)arg;
18

19 __sync_fetch_and_add(&nreadersrunning, 1);

20 while (READ_ONCE(goflag) == GOFLAG_INIT) {

21 continue;

22 X

23 while (READ_ONCE(goflag) == GOFLAG_RUN) {

24 if ((en = pthread_rwlock_rdlock(&rwl)) !'= 0) {
25 fprintf (stderr,

26 "pthread_rwlock_rdlock: %s\n", strerror(en));
27 exit (EXIT_FAILURE);

28 }

29 for (i = 1; i < holdtime; i++) {

30 barrier();

31 }

32 if ((en = pthread_rwlock_unlock(&rwl)) != 0) {
33 fprintf (stderr,

34 "pthread_rwlock_unlock: %s\n", strerror(en));
35 exit (EXIT_FAILURE);

36 }

37 for (i = 1; i < thinktime; i++) {

38 barrier();

39 ¥

40 loopcnt++;

41 X

42 readcounts[me] = loopcnt;
43 return NULL;

4.2. POSIX MULTIPROCESSING 47

11

"‘&1 %%‘; ideal
0.9 ‘;‘F ;‘i % -1
\

i %
A * ;‘%j*k*%%
0.8 F\ & -
@ | B
g ‘v%‘ * ﬂ**_,s:%g
€ 07H | 1 B Ty -
s '.‘ oy E% ﬂ%ﬁi% 100M
S osh* ¥ *‘%’* %
g } ‘l éEF +
g o5l e oM |
2 T +ﬂ‘¥+
® 04! -\- id et -
£ I i,
© o3} ¥ E B
,\, 4 M
02| Tk % .
L E%; o,
0.1 | ";.E

Number of CPUs (Threads)

Figure 4.2: Reader-Writer Lock Scalability

Lines 12-44 define reader (), which is the reader thread. Line 19 atomically
increments the nreadersrunning variable to indicate that this thread is now running,
and lines 20-22 wait for the test to start. The READ_ONCE () primitive forces the compiler
to fetch goflag on each pass through the loop—the compiler would otherwise be within
its rights to assume that the value of goflag would never change.

Quick Quiz 4.17: Instead of using READ_ONCE () everywhere, why not just declare
goflag as volatile on line 10 of Listing 4.87 M

Quick Quiz 4.18: READ_ONCE () only affects the compiler, not the CPU. Don’t we
also need memory barriers to make sure that the change in goflag’s value propagates
to the CPU in a timely fashion in Listing 4.8? l

Quick Quiz 4.19: Would it ever be necessary to use READ_ONCE () when accessing
a per-thread variable, for example, a variable declared using GCC’s __thread storage
class? H

The loop spanning lines 23-41 carries out the performance test. Lines 24-28 acquire
the lock, lines 29-31 hold the lock for the specified duration (and the barrier ()
directive prevents the compiler from optimizing the loop out of existence), lines 32-36
release the lock, and lines 37-39 wait for the specified duration before re-acquiring the
lock. Line 40 counts this lock acquisition.

Line 42 moves the lock-acquisition count to this thread’s element of the readcounts[]
array, and line 43 returns, terminating this thread.

Figure 4.2 shows the results of running this test on a 64-core POWERS system with
two hardware threads per core for a total of 128 software-visible CPUs. The thinktime
parameter was zero for all these tests, and the holdtime parameter set to values ranging
from one thousand (“1K” on the graph) to 100 million (“100M” on the graph). The
actual value plotted is:

Ly
NL, 4.1)

where N is the number of threads, Ly is the number of lock acquisitions by N threads,
and L is the number of lock acquisitions by a single thread. Given ideal hardware and

48 CHAPTER 4. TOOLS OF THE TRADE

software scalability, this value will always be 1.0.

As can be seen in the figure, reader-writer locking scalability is decidedly non-ideal,
especially for smaller sizes of critical sections. To see why read-acquisition can be so
slow, consider that all the acquiring threads must update the pthread_rwlock_t data
structure. Therefore, if all 128 executing threads attempt to read-acquire the reader-
writer lock concurrently, they must update this underlying pthread_rwlock_t one at
a time. One lucky thread might do so almost immediately, but the least-lucky thread
must wait for all the other 127 threads to do their updates. This situation will only get
worse as you add CPUs.

Quick Quiz 4.20: Isn’t comparing against single-CPU throughput a bit harsh? l

Quick Quiz 4.21: But 1,000 instructions is not a particularly small size for a critical
section. What do I do if I need a much smaller critical section, for example, one
containing only a few tens of instructions? W

Quick Quiz 4.22: In Figure 4.2, all of the traces other than the 100M trace deviate
gently from the ideal line. In contrast, the 100M trace breaks sharply from the ideal line
at 64 CPUs. In addition, the spacing between the 100M trace and the 10M trace is much
smaller than that between the 10M trace and the 1M trace. Why does the 100M trace
behave so much differently than the other traces? ll

Quick Quiz 4.23: POWERS is more than a decade old, and new hardware should
be faster. So why should anyone worry about reader-writer locks being slow? H

Despite these limitations, reader-writer locking is quite useful in many cases, for ex-
ample when the readers must do high-latency file or network I/O. There are alternatives,
some of which will be presented in Chapters 5 and 9.

4.2.5 Atomic Operations (GCC Classic)

Given that Figure 4.2 shows that the overhead of reader-writer locking is most severe
for the smallest critical sections, it would be nice to have some other way to protect
the tiniest of critical sections. One such way are atomic operations. We have seen one
atomic operations already, in the form of the __sync_fetch_and_add () primitive on
line 18 of Listing 4.8. This primitive atomically adds the value of its second argument
to the value referenced by its first argument, returning the old value (which was ignored
in this case). If a pair of threads concurrently execute __sync_fetch_and_add() on
the same variable, the resulting value of the variable will include the result of both
additions.

The GNU C compiler offers a number of additional atomic operations, includ-
ing __sync_fetch_and_sub(), __sync_fetch_and_or(), __sync_fetch_and_
and(), __sync_fetch_and_xor(), and __sync_fetch_and_nand(), all of which
return the old value. If you instead need the new value, you can instead use the __
sync_add_and_fetch(), __sync_sub_and_fetch(), __sync_or_and_fetch(),
__sync_and_and_fetch(), __sync_xor_and_fetch(), and __sync_nand_and_
fetch() primitives.

Quick Quiz 4.24: Is it really necessary to have both sets of primitives? ll

The classic compare-and-swap operation is provided by a pair of primitives, __
sync_bool_compare_and_swap() and __sync_val_compare_and_swap(). Both
of these primitive atomically update a location to a new value, but only if its prior value
was equal to the specified old value. The first variant returns 1 if the operation succeeded
and 0 if it failed, for example, if the prior value was not equal to the specified old value.
The second variant returns the prior value of the location, which, if equal to the specified

4.2. POSIX MULTIPROCESSING 49

Listing 4.9: Compiler Barrier Primitive (for GCC)

#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
#define READ_ONCE(x) \

({ typeof(x) ___x = ACCESS_ONCE(x); ___x; })
#define WRITE_ONCE(x, val) ({ ACCESS_ONCE(x) = (val); })

#define barrier() asm volatile__("": : :"memory")

old value, indicates that the operation succeeded. Either of the compare-and-swap
operation is “universal” in the sense that any atomic operation on a single location can
be implemented in terms of compare-and-swap, though the earlier operations are often
more efficient where they apply. The compare-and-swap operation is also capable of
serving as the basis for a wider set of atomic operations, though the more elaborate of
these often suffer from complexity, scalability, and performance problems [Her90].

Quick Quiz 4.25: Given that these atomic operations will often be able to generate
single atomic instructions that are directly supported by the underlying instruction set,
shouldn’t they be the fastest possible way to get things done? H

The __sync_synchronize () primitive issues a “memory barrier”, which con-
strains both the compiler’s and the CPU’s ability to reorder operations, as discussed in
Chapter 15. In some cases, it is sufficient to constrain the compiler’s ability to reorder
operations, while allowing the CPU free rein, in which case the barrier () primitive
may be used, as it in fact was on line 28 of Listing 4.8. In some cases, it is only necessary
to ensure that the compiler avoids optimizing away a given memory read, in which case
the READ_ONCE () primitive may be used, as it was on line 17 of Listing 4.5. Similarly,
the WRITE_ONCE() primitive may be used to prevent the compiler from optimizing
away a given memory write. These last three primitives are not provided directly by
GCC, but may be implemented straightforwardly as shown in Listing 4.9, and all three
are discussed at length in Section 4.3.4.

Quick Quiz 4.26: What happened to ACCESS_ONCE()? l

4.2.6 Atomic Operations (C11)

The C11 standard added atomic operations, including loads (atomic_load()), stores
(atomic_store()), memory barriers (atomic_thread_fence() and atomic_signal_
fence()), and read-modify-write atomics. The read-modify-write atomics include
atomic_fetch_add(), atomic_fetch_sub(),atomic_fetch_and(),atomic_fetch_
xor(),atomic_exchange (), atomic_compare_exchange_strong(),and atomic_
compare_exchange_weak (). These operate in a manner similar to those described
in Section 4.2.5, but with the addition of memory-order arguments to _explicit
variants of all of the operations. Without memory-order arguments, all the atomic
operations are fully ordered, and the arguments permit weaker orderings. For example,
“atomic_load_explicit(&a, memory_order_relaxed)” is vaguely similar to the
Linux kernel’s “READ_ONCE()™.!

4.2.7 Atomic Operations (Modern GCC)

One restriction of the C11 atomics is that they apply only to special atomic types,
which can be problematic. The GNU C compiler therefore provides atomic intrin-
sics, including __atomic_load(), __atomic_load_n(), __atomic_store(), __
atomic_store_n() __atomic_thread_fence(), etc. These intrinsics offer the

1 Memory ordering is described in more detail in Chapter 15 and Appendix C.

50 CHAPTER 4. TOOLS OF THE TRADE

same semantics as their C11 counterparts, but may be used on plain non-atomic objects.
Some of these intrinsics may be passed a memory-order argument from this list: __
ATOMIC_RELAXED, __ATOMIC_CONSUME, __ATOMIC_ACQUIRE, __ATOMIC_RELEASE,
__ATOMIC_ACQ_REL, and __ATOMIC_SEQ_CST.

4.2.8 Per-Thread Variables

Per-thread variables, also called thread-specific data, thread-local storage, and other
less-polite names, are used extremely heavily in concurrent code, as will be explored
in Chapters 5 and 8. POSIX supplies the pthread_key_create () function to create
a per-thread variable (and return the corresponding key), pthread_key_delete()
to delete the per-thread variable corresponding to key, pthread_setspecific() to
set the value of the current thread’s variable corresponding to the specified key, and
pthread_getspecific() to return that value.

A number of compilers (including GCC) provide a __thread specifier that may be
used in a variable definition to designate that variable as being per-thread. The name
of the variable may then be used normally to access the value of the current thread’s
instance of that variable. Of course, __thread is much easier to use than the POSIX
thead-specific data, and so __thread is usually preferred for code that is to be built
only with GCC or other compilers supporting __thread.

Fortunately, the C11 standard introduced a _Thread_local keyword that can be
used in place of __thread. In the fullness of time, this new keyword should combine
the ease of use of __thread with the portability of POSIX thread-specific data.

4.3 Alternatives to POSIX Operations

Unfortunately, threading operations, locking primitives, and atomic operations were in
reasonably wide use long before the various standards committees got around to them.
As a result, there is considerable variation in how these operations are supported. It is
still quite common to find these operations implemented in assembly language, either
for historical reasons or to obtain better performance in specialized circumstances. For
example, GCC’s __sync_ family of primitives all provide full memory-ordering seman-
tics, which in the past motivated many developers to create their own implementations
for situations where the full memory ordering semantics are not required. The following
sections show some alternatives from the Linux kernel and some historical primitives
used by this book’s sample code.

4.3.1 Organization and Initialization

Although many environments do not require any special initialization code, the code
samples in this book start with a call to smp_init (), which initializes a mapping from
pthread_t to consecutive integers. The userspace RCU library similarly requires a
call to rcu_init (). Although these calls can be hidden in environments (such as that
of GCC) that support constructors, most of the RCU flavors supported by the userspace
RCU library also require each thread invoke rcu_register_thread() upon thread
creation and rcu_unregister_thread() before thread exit.

In the case of the Linux kernel, it is a philosophical question as to whether the kernel
does not require calls to special initialization code or whether the kernel’s boot-time
code is in fact the required initialization code.

4.3. ALTERNATIVES TO POSIX OPERATIONS 51

Listing 4.10: Thread API

int smp_thread_id(void)

thread_id_t create_thread(void *(*func) (void *), void *arg)
for_each_thread(t)

for_each_running_thread(t)

void *wait_thread(thread_id_t tid)

void wait_all_threads(void)

4.3.2 Thread Creation, Destruction, and Control

The Linux kernel uses struct task_struct pointers to track kthreads, kthread_
create() to create them, kthread_should_stop() to externally suggest that they
stop (which has no POSIX equivalent), kthread_stop() to wait for them to stop,
and schedule_timeout_interruptible() for a timed wait. There are quite a few
additional kthread-management APIs, but this provides a good start, as well as good
search terms.

The CodeSamples API focuses on “threads”, which are a locus of control.2 Each
such thread has an identifier of type thread_id_t, and no two threads running at a
given time will have the same identifier. Threads share everything except for per-thread
local state,® which includes program counter and stack.

The thread API is shown in Listing 4.10, and members are described in the following
sections.

4.3.2.1 create_thread()

The create_thread () primitive creates a new thread, starting the new thread’s execu-
tion at the function func specified by create_thread()’s first argument, and passing
it the argument specified by create_thread()’s second argument. This newly created
thread will terminate when it returns from the starting function specified by func. The
create_thread() primitive returns the thread_id_t corresponding to the newly
created child thread.

This primitive will abort the program if more than NR_THREADS threads are created,
counting the one implicitly created by running the program. NR_THREADS is a compile-
time constant that may be modified, though some systems may have an upper bound for
the allowable number of threads.

4.3.2.2 smp_thread_id()

Because the thread_id_t returned from create_thread() is system-dependent, the
smp_thread_id () primitive returns a thread index corresponding to the thread making
the request. This index is guaranteed to be less than the maximum number of threads that
have been in existence since the program started, and is therefore useful for bitmasks,
array indices, and the like.

4.3.2.3 for_each_thread()

The for_each_thread() macro loops through all threads that exist, including all
threads that would exist if created. This macro is useful for handling per-thread variables
as will be seen in Section 4.2.8.

2 There are many other names for similar software constructs, including “process”, “task”, “fiber”,
“event”, and so on. Similar design principles apply to all of them.
3 How is that for a circular definition?

52 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.11: Example Child Thread

| void *thread_test(void *arg)
2 {
int myarg = (intptr_t)arg;

3
4
5 printf("child thread %d: smp_thread_id() = %d\n",
6 myarg, smp_thread_id());

7 return NULL;
8 }

4.3.2.4 for_each_running_thread()

The for_each_running_thread() macro loops through only those threads that cur-
rently exist. It is the caller’s responsibility to synchronize with thread creation and
deletion if required.

4.3.2.5 wait_thread()

The wait_thread() primitive waits for completion of the thread specified by the
thread_id_t passed to it. This in no way interferes with the execution of the specified
thread; instead, it merely waits for it. Note that wait_thread() returns the value that
was returned by the corresponding thread.

4.3.2.6 wait_all_threads()

The wait_all_threads() primitive waits for completion of all currently running
threads. It is the caller’s responsibility to synchronize with thread creation and deletion
if required. However, this primitive is normally used to clean up at the end of a run, so
such synchronization is normally not needed.

4.3.2.7 Example Usage

Listing 4.11 (threadcreate.c) shows an example hello-world-like child thread. As
noted earlier, each thread is allocated its own stack, so each thread has its own private
arg argument and myarg variable. Each child simply prints its argument and its smp_
thread_id () before exiting. Note that the return statement on line 7 terminates the
thread, returning a NULL to whoever invokes wait_thread () on this thread.

The parent program is shown in Listing 4.12. It invokes smp_init () to initialize the
threading system on line 6, parses arguments on lines 8-15, and announces its presence
on line 16. It creates the specified number of child threads on lines 18-19, and waits
for them to complete on line 21. Note that wait_all_threads () discards the threads
return values, as in this case they are all NULL, which is not very interesting.

Quick Quiz 4.27: What happened to the Linux-kernel equivalents to fork () and
wait(O?H

4.3.3 Locking

A good starting subset of the Linux kernel’s locking API is shown in Listing 4.13,
each API element being described in the following sections. This book’s CodeSamples
locking API closely follows that of the Linux kernel.

4.3. ALTERNATIVES TO POSIX OPERATIONS 53

Listing 4.12: Example Parent Thread

| int main(int argc, char *argv[])

2 {

3 int i;

4 int nkids = 1;

5

6 smp_init();

7

8 if (argec > 1) {

9 nkids = strtoul(argv[1i], NULL, 0);
10 if (nkids > NR_THREADS) {

11 fprintf (stderr, "nkids = %d too large, max = %d\n",
12 nkids, NR_THREADS);

13 usage (argv[0]);

14

15}

16 printf("Parent thread spawning %d threads.\n", nkids);

18 for (i = 0; i < nkids; i++)
19 create_thread(thread_test, (void *) (intptr_t)i);

21 wait_all_threads();
23 printf("All spawned threads completed.\n");

25 exit(0);
2% }

Listing 4.13: Locking API

void spin_lock_init(spinlock_t *sp);
void spin_lock(spinlock_t *sp);

int spin_trylock(spinlock_t *sp);
void spin_unlock(spinlock_t *sp);

4.3.3.1 spin_lock_init()

The spin_lock_init () primitive initializes the specified spinlock_t variable, and
must be invoked before this variable is passed to any other spinlock primitive.

4.3.3.2 spin_lock()

The spin_lock() primitive acquires the specified spinlock, if necessary, waiting until
the spinlock becomes available. In some environments, such as pthreads, this waiting
will involve “spinning”, while in others, such as the Linux kernel, it will involve
blocking.

The key point is that only one thread may hold a spinlock at any given time.

4.3.3.3 spin_trylock()

The spin_trylock() primitive acquires the specified spinlock, but only if it is im-
mediately available. It returns true if it was able to acquire the spinlock and false
otherwise.

4.3.3.4 spin_unlock()

The spin_unlock() primitive releases the specified spinlock, allowing other threads
to acquire it.

54 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.14: Living Dangerously Early 1990s Style

1 ptr = global_ptr;
2 if (ptr != NULL && ptr < high_address)
3 do_low(ptr);

Listing 4.15: C Compilers Can Invent Loads

| if (global_ptr != NULL &&
2 global_ptr < high_address)
3 do_low(global_ptr);

4.3.3.5 Example Usage

A spinlock named mutex may be used to protect a variable counter as follows:

spin_lock(&mutex) ;
counter++;
spin_unlock (&mutex) ;

Quick Quiz 4.28: What problems could occur if the variable counter were incre-
mented without the protection of mutex? Hl

However, the spin_lock() and spin_unlock() primitives do have performance
consequences, as will be seen in Chapter 10.

4.3.4 Accessing Shared Variables

The C standard defined semantics for concurrent read/write access to shared variables
only in 2011, but concurrent C code was being written at least a quarter century
earlier [BK85, Inm85]. This raises the question as to what today’s greybeards did back
in long-past pre-C11 days. A short answer to this question is “they lived dangerously”.

At least they would have been living dangerously had they been using 2018 com-
pilers. In (say) the early 1990s, compilers were less capable in part because much less
work had been done on them and in part because they were confined to the relatively
small memories of the day. Nevertheless, problems did arise, as shown in Listing 4.14,
which the compiler is within its rights to transform into Listing 4.15. As you can, the
temporary on line 1 of Listing 4.14 has been optimized away, so that global_ptr will
been loaded up to three times.

Quick Quiz 4.29: What is wrong with loading Listing 4.14’s global_ptr up to
three times? M

Section 4.3.4.1 describes additional problems caused by plain accesses, Sections 4.3.4.2
and 4.3.4.3 describe some pre-C11 solutions. Of course, where practical, the primitives
described in Section 4.2.5 or (especially) Section 4.2.6 should be instead be used to
avoid data races, that is, to ensure that if there are multiple concurrent accesses to a
given variable, all of those accesses are loads.

4.3.4.1 Shared-Variable Shenanigans

Given code that does plain loads and stores,* the compiler is within its rights to assume
that the affected variables are neither accessed nor modified by any other thread. This
assumption allows the compiler to carry out a large number of transformations, including
load tearing, store tearing, load fusing, store fusing, code reordering, invented loads,

4 That is, normal loads and stores instead of C11 atomics, inline assembly, or volatile accesses.

4.3. ALTERNATIVES TO POSIX OPERATIONS 55

Listing 4.16: C Compilers Can Fuse Loads

1 if ('need_to_stop)

2 for (53) {

3 do_something_quickly();
4 do_something_quickly();
5 do_something_quickly();
6
7
8

do_something_quickly();
do_something_quickly();
do_something_quickly();

9 do_something_quickly();
10 do_something_quickly();
1 do_something_quickly();
12 do_something_quickly();
13 do_something_quickly();
14 do_something_quickly();
15 do_something_quickly();
16 do_something_quickly();
17 do_something_quickly();
18 do_something_quickly();
19 }

and invented stores, all of which work just fine in single-threaded code. But concurrent
code can be broken by each of these transformations, or shared-variable shenanigans, as
described below.

Load tearing occurs when the compiler uses multiple load instructions for a single
access. For example, the compiler could in theory compile the load from global_ptr
(see line 1 of Listing 4.14) as a series of one-byte loads. If some other thread was
concurrently setting global_ptr to NULL, the result might have all but one byte of the
pointer set to zero, thus forming a “wild pointer”. Stores using such a wild pointer could
corrupt arbitrary regions of memory, resulting in rare and difficult-to-debug crashes.

Worse yet, on (say) an 8-bit system with 16-bit pointers, the compiler might have no
choice but to use a pair of 8-bit instructions to access a given pointer. Because the C
standard must support all manner of systems, the standard cannot rule out load tearing
in the general case.

Store tearing occurs when the compiler uses multiple store instructions for a single
access. For example, one thread might store 0x1234 to a four-byte integer variable at
the same time another thread stored Oxabcd. If the compiler used 16-bit stores for either
access, the result might well be 0x12cd, which could come as quite a surprise to code
loading from this integer. Again, the C standard simply has no choice in the general
case, given the possibility of code using 32-bit integers running on a 16-bit system.

Load fusing occurs when the compiler uses the result of a prior load from a given
variable instead of repeating the load. Not only is this sort of optimization just fine in
single-threaded code, it is often just fine in multithreaded code. Unfortunately, the word
“often” hides some truly annoying exceptions.

For example, suppose that a real-time system needs to invoke a function named
do_something_quickly () repeatedly until the variable need_to_stop was set, and
that the compiler can see that do_something_quickly () does not store to need_to_
stop. The compiler might reasonably unroll this loop sixteen times in order to reduce
the per-invocation of the backwards branch at the end of the loop. Worse yet, because
the compiler knows that do_something_quickly () does not store to need_to_stop,
the compiler could quite reasonably decide to check this variable only once, resulting in
the code shown in Listing 4.16. Once entered, the loop on lines 2-19 will never stop,
regardless of how many times some other thread stores a non-zero value to need_to_
stop. The result will at best be disappointment, and might well also include severe
physical damage.

56 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.17: C Compilers Can Fuse Non-Adjacent Loads

1 int *gp;

2
3 void t0(void)

4 {

5 WRITE_ONCE(gp, &myvar);
6

5

8 void t1(void)

9 {

10 pl = gp;

1 do_something(p1) ;

12 p2 = READ_ONCE(gp) ;

13 if (p2) {

14 do_something_else();
15 p3 = *gp;

16 X

17 }

Listing 4.18: C Compilers Can Fuse Stores

oid shut_it_down(void)

1 v
2 {
3 status = SHUTTING_DOWN; /% BUGGY!!! x/
4 start_shutdown();

5 while (!other_task_ready) /* BUGGY!!! */
6 continue;

7 finish_shutdown();

8 status = SHUT_DOWN; /* BUGGY!!! %/

9 do_something_else();

10 }

11

12 void work_until_shut_down(void)

13 {

14 while (status != SHUTTING_DOWN) /* BUGGY!!! x/
15 do_more_work() ;

16 other_task_ready = 1; /* BUGGY!!! */

17 }

The compiler can fuse loads across surprisingly large spans of code. For exam-
ple, in Listing 4.17, t0() and t1() run concurrently, and do_something() and do_
something_else () are inline functions. Line 1 declares pointer gp, which C initializes
to NULL by default. At some point, line 5 of t0() stores a non-NULL pointer to gp.
Meanwhile, t1() loads from gp three times on lines 10, 12, and 15. Given that line 13
finds that gp is non-NULL, one might hope that the dereference on line 15 would be
guaranteed never to fault. Unfortunately, the compiler is within its rights to fuse the read
on lines 10 and 15, which means that if line 10 loads NULL and line 12 loads &myvar,
line 15 could load NULL, resulting in a fault.’> Note that the intervening READ_ONCE ()
does not prevent the other two loads from being fused, despite the fact that all three are
loading from the same variable.

Quick Quiz 4.30: Why does it matter whether do_something() and do_something_
else() in Listing 4.17 are inline functions?

Store fusing can occur when the compiler notices a pair of successive stores to a
given variable with no intervening loads from that variable. In this case, the compiler is
within its rights to omit the first store. This is never a problem in single-threaded code,
and in fact it is usually the case that it is not a problem in correctly written concurrent
code. After all, if the two stores are executed in quick succession, there is very little
chance that some other thread could load the value from the first store.

However, there are exceptions, for example as shown in Listing 4.18. The func-

5 Will Deacon reports that this happened in the Linux kernel.

4.3. ALTERNATIVES TO POSIX OPERATIONS 57

Listing 4.19: Inviting an Invented Store

1 if (condition)

2 a=1;

3 else

4 do_a_bunch_of_stuff();

Listing 4.20: Compiler Invents an Invited Store
1 a=1;

2 if (!condition) {

3 a = 0;

4 do_a_bunch_of_stuff();

5}

tion shut_it_down() stores to the shared variable status on lines 3 and 8, and so
assuming that neither start_shutdown() nor finish_shutdown() access status,
the compiler could reasonably remove the store to status on line 3. Unfortunately,
this would mean that work_until_shut_down() would never exit its loop spanning
lines 14 and 15, and thus would never set other_task_ready, which would in turn
mean that shut_it_down() would never exit its loop spanning lines 5 and 6, even
if the compiler chooses not to fuse the successive loads from other_task_ready on
line 5.

And there are more problems with the code in Listing 4.18, including code reorder-
ing.

Code reordering is a common compilation technique used to combine common
subexpressions, reduce register pressure, and improve utilization of the many functional
units available on modern superscalar microprocessors. It is also another reason why
the code in Listing 4.18 is buggy. For example, suppose that the do_more_work ()
function on line 15 does not access other_task_ready. Then the compiler would be
within its rights to move the assignment to other_task_ready on line 16 to precede
line 14, which might be a great disappointment for anyone hoping that the last call
to do_more_work() on line 15 happens before the call to finish_shutdown() on
line 7.

Invented loads were illustrated by the code in Listings 4.14 and 4.15, in which the
compiler optimized away a temporary variable, thus loading from a shared variable
more often than intended.

Invented loads can also be a performance hazard. These hazards can occur when a
load of variable in a “hot” cacheline is hoisted out of an if statement. These hoisting
optimizations are not uncommon, and can cause significant increases in cache misses,
and thus significant degradation of both performance and scalability.

Invented stores can occur in a number of situations. For example, a compiler
emitting code for work_until_shut_down() in Listing 4.18 might notice that other_
task_ready is not accessed by do_more_work(), and stored to on line 16. If do_
more_work () was a complex inline function, it might be necessary to do a register spill,
in which case one attractive place to use for temporary storage is other_task_ready.
After all, there are no accesses to it, so what is the harm?

Of course, a non-zero store to this variable at just the wrong time would result in the
while loop on line 5 terminating prematurely, again allowing finish_shutdown ()
to run concurrently with do_more_work (). Given that the entire point of this while
appears to be to prevent such concurrency, this is not a good thing.

Using a stored-to variable as a temporary might seem outlandish, but it is permitted
by the standard. Nevertheless, readers might be justified in wanting a less outlandish

58 CHAPTER 4. TOOLS OF THE TRADE

example, which is provided by Listings 4.19 and 4.20.

A compiler emitting code for Listing 4.19 might know that the value of a is initially
zero, which might be a strong temptation to optimize away one branch by transforming
this code to that in Listing 4.20. Here, line 1 unconditionally stores 1 to a, then resets the
value back to zero on line 3 if condition was not set. This transforms the if-then-else
into an if-then, saving one branch.

Finally, pre-C11 compilers could invent writes to unrelated variables that happened
to be adjacent to written-to variables [Boe05, Section 4.2]. This variant of invented
stores has been outlawed by the prohibition against compiler optimizations that invent
data races.

Reliable concurrent code clearly needs a way to cause the compiler to preserve
both the number and order of important accesses, a topic taken up by Sections 4.3.4.2
and 4.3.4.3, which are up next.

4.3.4.2 A Volatile Solution

Although it is now much maligned, before the advent of C11 and C++11 [Becl1], the
volatile keyword was an indispensible tool in the parallel programmer’s toolbox. This
raises the question of exactly what volatile means, a question that is not answered
with excessive precision even by more recent versions of this standard [Smi18].° This
version guarantees that “Accesses through volatile glvalues are evaluated strictly
according to the rules of the abstract machine”, that volatile accesses are side effects,
that they are one of the four forward-progress indicators, and that their exact semantics
are implementation-defined. Perhaps the most clear guidance is provided by this non-
normative note:

volatile is a hint to the implementation to avoid aggressive optimization
involving the object because the value of the object might be changed by
means undetectable by an implementation. Furthermore, for some imple-
mentations, volatile might indicate that special hardware instructions are
required to access the object. See 6.8.1 for detailed semantics. In general,
the semantics of volatile are intended to be the same in C++ as they are
in C.

This wording might be reassuring to those writing low-level code, except for the
fact that compiler writers are free to completely ignore non-normative notes. Parallel
programmers might instead reassure themselves that compiler writers would like to
avoid breaking device drivers (though perhaps only after a few “frank and open” discus-
sions with device-driver developers), and device drivers impose at least the following
constraints [MWPF18a]:

1. Implementations are forbidden from tearing an aligned volatile access when
machine instructions of that access’s size and type are available.” Concurrent
code relies on this constraint to avoid unnecessary load and store tearing.

2. Implementations must not assume anything about the semantics of a volatile
access, nor, for any volatile access that returns a value, about the possible set

6 JF Bastien thoroughly documented the history and use cases for the volatile keyword in C++ [Bas18].
7 Note that this leaves unspecified what to do with 128-bit loads and stores on CPUs having 128-bit CAS
but not 128-bit loads and stores.

4.3. ALTERNATIVES TO POSIX OPERATIONS 59

Listing 4.21: Avoiding Danger, 2018 Style

I ptr = READ_ONCE(global_ptr);
2 if (ptr != NULL && ptr < high_address)
3 do_low(ptr);

Listing 4.22: Preventing Load Fusing

1 while (!READ_ONCE((!need_to_stop))
2 do_something_quickly();

Listing 4.23: Preventing Store Fusing and Invented Stores

| void shut_it_down(void)

2 {

3 WRITE_ONCE(status, SHUTTING_DOWN); /* BUGGY!!! x*/

4 start_shutdown();

5 while (!READ_ONCE(other_task_ready)) /* BUGGY!!! */
6 continue;

7 finish_shutdown();

8 WRITE_ONCE(status, SHUT_DOWN); /* BUGGY!!! x*/

9 do_something_else();

0}

11

12 void work_until_shut_down(void)

13 o

14 while (READ_ONCE(status) != SHUTTING_DOWN) /* BUGGY!!! */
15 do_more_work() ;

16 WRITE_ONCE(other_task_ready, 1); /* BUGGY!!! x/

17 }

of values that might be returned.® Concurrent code relies on this constraint to
avoid optimizations that are inapplicable given that other processors might be
concurrently accessing the location in question.

3. Aligned machine-sized non-mixed-size volatile accesses interact naturally with
volatile assembly-code sequences before and after. This is necessary because some
devices must be accessed using a combination of volatile MMIO accesses and
special-purpose assembly-language instructions. Concurrent code relies on this
constraint in order to achieve the desired ordering properties from combinations
of volatile accesses and other means discussed in Section 4.3.4.3.

Concurrent code also relies on the first two constraints to avoid undefined behavior
that could result due to data races if any of the accesses to a given object was either
non-atomic or non-volatile, assuming that all accesses are aligned and machine-sized.
The semantics of mixed-size accesses to the same locations are more complex, and are
left aside for the time being.

So how does volatile stack up against the earlier examples?

Using READ_ONCE () on line 1 of Listing 4.14 avoids invented loads, resulting in the
code shown in Listing 4.21.

As shown in Listing 4.22, READ_ONCE() can also prevent the loop unrolling in
Listing 4.16.

READ_ONCE() and WRITE_ONCE() can also be used to prevent the store fusing and
invented stores that were shown in Listing 4.18, with the result shown in Listing 4.23.
However, this does nothing to prevent code reordering, which requires some additional
tricks taught in Section 4.3.4.3.

8 This is strongly implied by the implementation-defined semantics called out above.

60 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.24: Disinviting an Invented Store

1 if (condition)

2 WRITE_ONCE(a, 1);

3 else

4 do_a_bunch_of_stuff();

Listing 4.25: Preventing C Compilers From Fusing Loads

I while (!'need_to_stop) {

2 barrier();

3 do_something_quickly();
4 barrier();

5

}

Finally, WRITE_ONCE () can be used to prevent the store invention shown in List-
ing 4.19, with the resulting code shown in Listing 4.24.

To summarize, the volatile keyword can prevent load tearing and store tearing in
cases where the loads and stores are machine-sized and properly aligned. It can also
prevent load fusing, store fusing, invented loads, and invented stores. However, although
it does prevent the compiler from reordering volatile accesses with each other, it does
nothing to prevent the CPU from reordering these accesses. Furthermore, it does nothing
to prevent either compiler or CPU from reordering non-volatile accesses with each
other or with volatile accesses. Preventing these types of reordering requires the
techniques described in the next section.

4.3.4.3 Assembling the Rest of a Solution

Additional ordering has traditionally been provided by recourse to assembly language,
for example, GCC asm directives. Oddly enough, these directives need not actually con-
tain assembly language, as exemplified by the barrier () macro shown in Listing 4.9.

In the barrier () macro, the __asm__ introduces the asm directive, the __volatile_
prevents the compiler from optimizing the asm away, the empty string specifies that
no actual instructions are to be emitted, and the final "memory" tells the compiler that
this do-nothing asm can arbitrarily change memory. In response, the compiler will
avoid moving any memory references across the barrier () macro. This means that
the real-time-destroying loop unrolling shown in Listing 4.16 can be prevented by
adding barrier () calls as shown on lines 2 and 4 of Listing 4.25. These two lines
of code prevent the compiler from pushing the load from need_to_stop into or past
do_something_quickly() from either direction.

However, this does nothing to prevent the CPU from reordering the references. In
many cases, this is not a problem because the hardware can only do a certain amount
of reordering. However, there are cases such as Listing 4.18 where the hardware must
be constrained. Listing 4.23 prevented store fusing and invention, and Listing 4.26
further prevents the remaining reordering by addition of smp_mb () on lines 4, 8, 10,
18, and 21. The smp_mb () macro is similar to barrier () shown in Listing 4.9, but
with the empty string replaced by a string containing the instruction for a full memory
barrier, for example, "mfence" on x86 or "sync" on PowerPC.

Quick Quiz 4.31: But aren’t full memory barriers very heavyweight? Isn’t there a
cheaper way to enforce the ordering needed in Listing 4.26?

Ordering is also provided by some read-modify-write atomic operations, some of
which are presented in Section 4.3.5. In the general case, memory ordering can be quite
subtle, as discussed in Chapter 15. The next section covers an alternative to memory

4.3. ALTERNATIVES TO POSIX OPERATIONS 61

Listing 4.26: Preventing Reordering

| void shut_it_down(void)

2 {

WRITE_ONCE(status, SHUTTING_DOWN) ;

smp_mb() ;

start_shutdown();

while (!READ_ONCE(other_task_ready))
continue;

smp_mb () ;

9 finish_shutdown();

10 smp_mb() H

11 WRITE_ONCE(status, SHUT_DOWN) ;

12 do_something_else();

L T N N

13}

14

15 void work_until_shut_down(void)

16 {

17 while (READ_ONCE(status) != SHUTTING_DOWN) {
18 smp_mb () ;

19 do_more_work();

20)

21 smp_mb () ;
22 WRITE_ONCE(other_task_ready, 1);

ordering, namely limiting or even entirely avoiding data races.

4.3.4.4 Avoiding Data Races

“Doctor, it hurts my head when I think about concurrently accessing shared variables!”

“Then stop concurrently accessing shared variables!!!”

The doctor’s advice might seem unhelpful, but simplification is often a very good
thing. And one time-tested way to avoid concurrently accessing shared variables is to
use locking, as will be discussed in Chapter 7. Another way is to access a given “shared”
variable from only one CPU or thread, as will be discussed in Chapter 8. It is possible
to combine these, for example, a given variable might be modified only by one CPU or
thread while holding a particular lock, and might be read either from that same CPU or
thread on the one hand, or while holding that same lock on the other.

In the spirit of “every little bit helps”, here is a list of ways of allowing plain
loads and stores in some cases, while requiring markings (such as READ_ONCE() and
WRITE_ONCE()) for other cases:

1. If a shared variable is only modified while holding a given lock by a given owning
CPU or thread, then all stores must use WRITE_ONCE() and non-owning CPUs
or threads that are not holding the lock must use READ_ONCE () for loads. The
owning CPU or thread may use plain loads, as may any CPU or thread holding
the lock.

2. If a shared variable is only modified while holding a given lock, then all stores
must use WRITE_ONCE (). CPUs or threads not holding the lock must use READ _
ONCE() for loads. CPUs or threads holding the lock may use plain loads.

3. If a shared variable is only modified by a given owning CPU or thread, then
all stores must use WRITE_ONCE() and non-owning CPUs or threads must use
READ_ONCE() for loads. The owning CPU or thread may use plain loads.

In most other cases, loads from and stores to a shared variable must use READ_
ONCE() and WRITE_ONCE() or stronger, respectively. But it bears repeating that neither

62 CHAPTER 4. TOOLS OF THE TRADE

Listing 4.27: Per-Thread-Variable API

DEFINE_PER_THREAD (type, name)
DECLARE_PER_THREAD (type, name)
per_thread(name, thread)
__get_thread_var (name)
init_per_thread(name, v)

READ_ONCE() nor WRITE_ONCE() provide any ordering guarantees. See the above
Section 4.3.4.3 or Chapter 15 for information on providing ordering guarantees.

One important special case is when a given variable is shared by process-level code
on the one hand and by an interrupt or signal handler on the other, but is never accessed
concurrently by some other CPU or thread. In this case, the process-level code must use
READ_ONCE() and WRITE_ONCE() or stronger to access this variable.

Quick Quiz 4.32: What needs to happen if a given interrupt or signal handler might
itself be interrupted? M

Examples of many of these data-race-avoidance patterns are presented in Chapter 5.

4.3.5 Atomic Operations

The Linux kernel provides a wide variety of atomic operations, but those defined on
type atomic_t provide a good start. Normal non-tearing reads and stores are provided
by atomic_read() and atomic_set (), respectively. Acquire load is provided by
smp_load_acquire() and release store by smp_store_release().

Non-value-returning fetch-and-add operations are provided by atomic_add(),
atomic_sub(), atomic_inc (), and atomic_dec (), among others. An atomic decre-
ment that returns a reached-zero indication is provided by both atomic_dec_and_
test () and atomic_sub_and_test(). An atomic add that returns the new value
is provided by atomic_add_return(). Both atomic_add_unless() and atomic_
inc_not_zero() provide conditional atomic operations, where nothing happens unless
the original value of the atomic variable is different than the value specified (these are
very handy for managing reference counters, for example).

An atomic exchange operation is provided by atomic_xchg(), and the celebrated
compare-and-swap (CAS) operation is provided by atomic_cmpxchg(). Both of these
return the old value. Many additional atomic RMW primitives are available in the Linux
kernel, see the Documentation/atomic_ops.txt file in the Linux-kernel source tree.

This book’s CodeSamples API closely follows that of the Linux kernel.

4.3.6 Per-CPU Variables

The Linux kernel uses DEFINE_PER_CPU() to define a per-CPU variable, this_cpu_
ptr () to form a reference to this CPU’s instance of a given per-CPU variable, per_
cpu() to access a specified CPU’s instance of a given per-CPU variable, along with
many other special-purpose per-CPU operations.

Listing 4.27 shows this book’s per-thread-variable API, which is patterned after the
Linux kernel’s per-CPU-variable API. This API provides the per-thread equivalent of
global variables. Although this API is, strictly speaking, not necessary?, it can provide a
good userspace analogy to Linux kernel code.

Quick Quiz 4.33: How could you work around the lack of a per-thread-variable
API on systems that do not provide it? ll

9 You could instead use __thread or _Thread_local.

4.3. ALTERNATIVES TO POSIX OPERATIONS 63

4.3.6.1 DEFINE_PER_THREAD()

The DEFINE_PER_THREAD () primitive defines a per-thread variable. Unfortunately, it is
not possible to provide an initializer in the way permitted by the Linux kernel’s DEFINE_
PER_CPU() primitive, but there is an init_per_thread() primitive that permits easy
runtime initialization.

4.3.6.2 DECLARE_PER_THREAD()

The DECLARE_PER_THREAD () primitive is a declaration in the C sense, as opposed
to a definition. Thus, a DECLARE_PER_THREAD () primitive may be used to access a
per-thread variable defined in some other file.

4.3.6.3 per_thread()

The per_thread () primitive accesses the specified thread’s variable.

4.3.6.4 __get_thread_var()

The __get_thread_var () primitive accesses the current thread’s variable.

4.3.6.5 init_per_thread()

The init_per_thread() primitive sets all threads’ instances of the specified variable
to the specified value. The Linux kernel accomplishes this via normal C initialization,
relying in clever use of linker scripts and code executed during the CPU-online process.

4.3.6.6 Usage Example

Suppose that we have a counter that is incremented very frequently but read out quite
rarely. As will become clear in Section 5.2, it is helpful to implement such a counter
using a per-thread variable. Such a variable can be defined as follows:

’DEFINE_PER_THREAD(int, counter) ; ‘

The counter must be initialized as follows:

init_per_thread(counter, 0);

A thread can increment its instance of this counter as follows:

p_counter = &__get_thread_var(counter);
WRITE_ONCE(*p_counter, *p_counter + 1);

The value of the counter is then the sum of its instances. A snapshot of the value of
the counter can thus be collected as follows:

for_each_thread(t)
sum += READ_ONCE(per_thread(counter, t));

Again, it is possible to gain a similar effect using other mechanisms, but per-thread
variables combine convenience and high performance, as will be shown in more detail
in Section 5.2.

64 CHAPTER 4. TOOLS OF THE TRADE

4.4 The Right Tool for the Job: How to Choose?

As a rough rule of thumb, use the simplest tool that will get the job done. If you can,
simply program sequentially. If that is insufficient, try using a shell script to mediate
parallelism. If the resulting shell-script fork ()/exec () overhead (about 480 microsec-
onds for a minimal C program on an Intel Core Duo laptop) is too large, try using
the C-language fork() and wait () primitives. If the overhead of these primitives
(about 80 microseconds for a minimal child process) is still too large, then you might
need to use the POSIX threading primitives, choosing the appropriate locking and/or
atomic-operation primitives. If the overhead of the POSIX threading primitives (typi-
cally sub-microsecond) is too great, then the primitives introduced in Chapter 9 may
be required. Of course, the actual overheads will depend not only on your hardware,
but most critically on the manner in which you use the primitives. Furthermore, always
remember that inter-process communication and message-passing can be good alter-
natives to shared-memory multithreaded execution, especially when your code makes
good use of the design principles called out in Chapter 6.

Quick Quiz 4.34: Wouldn’t the shell normally use vfork () rather than fork()?
]

Because concurrency was added to the C standard several decades after the C
language was first used to build concurrent systems, there are a number of ways of
concurrently accessing shared variables. All else being equal, the C11 standard opera-
tions described in Section 4.2.6 should be your first stop. If you need to access a given
shared variable both with plain accesses and atomically, then the modern GCC atomics
described in Section 4.2.7 might work well for you. If you are working on an old code
base that uses the classic GCC __sync API, then you should review Section 4.2.5 as
well as the relevant GCC documentation. If you are working on the Linux kernel or
similar code base that combines use of the volatile keyword with inline assembly,
or if you need dependencies to provide ordering, look at the material presented in
Section 4.3.4 as well as that in Chapter 15.

Whatever approach you take, please keep in mind that randomly hacking multi-
threaded code is a spectacularly bad idea, especially given that shared-memory parallel
systems use your own intelligence against you: The smarter you are, the deeper a hole
you will dig for yourself before you realize that you are in trouble [Pok16]. Therefore, it
is necessary to make the right design choices as well as the correct choice of individual
primitives, as will be discussed at length in subsequent chapters.

Aseasyas 1, 2, 3!

Unknown

Chapter 5

Counting

Counting is perhaps the simplest and most natural thing a computer can do. However,
counting efficiently and scalably on a large shared-memory multiprocessor can be quite
challenging. Furthermore, the simplicity of the underlying concept of counting allows
us to explore the fundamental issues of concurrency without the distractions of elaborate
data structures or complex synchronization primitives. Counting therefore provides an
excellent introduction to parallel programming.

This chapter covers a number of special cases for which there are simple, fast, and
scalable counting algorithms. But first, let us find out how much you already know
about concurrent counting.

Quick Quiz 5.1: Why on earth should efficient and scalable counting be hard? After
all, computers have special hardware for the sole purpose of doing counting, addition,
subtraction, and lots more besides, don’t they??? H

Quick Quiz 5.2: Network-packet counting problem. Suppose that you need
to collect statistics on the number of networking packets (or total number of bytes)
transmitted and/or received. Packets might be transmitted or received by any CPU on
the system. Suppose further that this large machine is capable of handling a million
packets per second, and that there is a systems-monitoring package that reads out the
count every five seconds. How would you implement this statistical counter?

Quick Quiz 5.3: Approximate structure-allocation limit problem. Suppose
that you need to maintain a count of the number of structures allocated in order to
fail any allocations once the number of structures in use exceeds a limit (say, 10,000).
Suppose further that these structures are short-lived, that the limit is rarely exceeded,
and that a “sloppy” approximate limit is acceptable. ll

Quick Quiz 5.4: Exact structure-allocation limit problem. Suppose that you
need to maintain a count of the number of structures allocated in order to fail any
allocations once the number of structures in use exceeds an exact limit (again, say
10,000). Suppose further that these structures are short-lived, and that the limit is rarely
exceeded, that there is almost always at least one structure in use, and suppose further
still that it is necessary to know exactly when this counter reaches zero, for example, in
order to free up some memory that is not required unless there is at least one structure
in use. W

Quick Quiz 5.5: Removable I/O device access-count problem. Suppose that
you need to maintain a reference count on a heavily used removable mass-storage device,
so that you can tell the user when it is safe to remove the device. This device follows
the usual removal procedure where the user indicates a desire to remove the device, and

65

66 CHAPTER 5. COUNTING

Listing 5.1: Just Count!

1 unsigned long counter = 0;

S}

tatic __inline__ void inc_count(void)

WRITE_ONCE(counter, READ_ONCE(counter) + 1);

tatic __inline__ unsigned long read_count(void)

return READ_ONCE(counter) ;

Listing 5.2: Just Count Atomically!

| atomic_t counter = ATOMIC_INIT(O);
2
3 static __inline_

void inc_count (void)

return atomic_read(&counter) ;

4+ {

5 atomic_inc(&counter) ;

6 r

7

8 static __inline__ long read_count(void)
9 {

0

1

the system tells the user when it is safe to do so. l

The remainder of this chapter will develop answers to these questions. Section 5.1
asks why counting on multicore systems isn’t trivial, and Section 5.2 looks into ways
of solving the network-packet counting problem. Section 5.3 investigates the approxi-
mate structure-allocation limit problem, while Section 5.4 takes on the exact structure-
allocation limit problem. Section 5.5 discusses how to use the various specialized
parallel counters introduced in the preceding sections. Finally, Section 5.6 concludes
the chapter with performance measurements.

Sections 5.1 and 5.2 contain introductory material, while the remaining sections are
more appropriate for advanced students.

5.1 Why Isn’t Concurrent Counting Trivial?

Let’s start with something simple, for example, the straightforward use of arithmetic
shown in Listing 5.1 (count_nonatomic.c). Here, we have a counter on line 1, we
increment it on line 5, and we read out its value on line 10. What could be simpler?

This approach has the additional advantage of being blazingly fast if you are doing
lots of reading and almost no incrementing, and on small systems, the performance is
excellent.

There is just one large fly in the ointment: this approach can lose counts. On my
dual-core laptop, a short run invoked inc_count () 100,014,000 times, but the final
value of the counter was only 52,909,118. Although approximate values do have their
place in computing, accuracies far greater than 50 % are almost always necessary.

Quick Quiz 5.6: But can’t a smart compiler prove line 5 of Listing 5.1 is equivalent
to the ++ operator and produce an x86 add-to-memory instruction? And won’t the CPU
cache cause this to be atomic? l

Quick Quiz 5.7: The 8-figure accuracy on the number of failures indicates that you
really did test this. Why would it be necessary to test such a trivial program, especially
when the bug is easily seen by inspection? ll

5.1. WHY ISN’T CONCURRENT COUNTING TRIVIAL? 67

900 T T T T T T
2 800 - +F
5 AT
§ 700 { -
2 600 | % -
© /
5 7
= 500 / -
5 T
£ 400 e .
2 300 .
& 200 A -
2 ;
= 100 —‘—///# —

0 JRNpRpRy [PRPRpRpN JRpepep | Lo -- | Ry G

Number of CPUs (Threads)

Figure 5.1: Atomic Increment Scalability on Nehalem

The straightforward way to count accurately is to use atomic operations, as shown
in Listing 5.2 (count_atomic.c). Line 1 defines an atomic variable, line 5 atomically
increments it, and line 10 reads it out. Because this is atomic, it keeps perfect count.
However, it is slower: on a Intel Core Duo laptop, it is about six times slower than
non-atomic increment when a single thread is incrementing, and more than fen times
slower if two threads are incrementing.

This poor performance should not be a surprise, given the discussion in Chapter 3,
nor should it be a surprise that the performance of atomic increment gets slower as
the number of CPUs and threads increase, as shown in Figure 5.1. In this figure, the
horizontal dashed line resting on the x axis is the ideal performance that would be
achieved by a perfectly scalable algorithm: with such an algorithm, a given increment
would incur the same overhead that it would in a single-threaded program. Atomic
increment of a single global variable is clearly decidedly non-ideal, and gets worse as
you add CPUs.

Quick Quiz 5.8: Why doesn’t the dashed line on the x axis meet the diagonal line
atx =171

Quick Quiz 5.9: But atomic increment is still pretty fast. And incrementing a single
variable in a tight loop sounds pretty unrealistic to me, after all, most of the program’s
execution should be devoted to actually doing work, not accounting for the work it has
done! Why should I care about making this go faster? l

For another perspective on global atomic increment, consider Figure 5.2. In order
for each CPU to get a chance to increment a given global variable, the cache line
containing that variable must circulate among all the CPUs, as shown by the red arrows.
Such circulation will take significant time, resulting in the poor performance seen in
Figure 5.1, which might be thought of as shown in Figure 5.3.

The following sections discuss high-performance counting, which avoids the delays
inherent in such circulation.

Quick Quiz 5.10: But why can’t CPU designers simply ship the addition operation

! Interestingly enough, a pair of threads non-atomically incrementing a counter will cause the counter to
increase more quickly than a pair of threads atomically incrementing the counter. Of course, if your only goal
is to make the counter increase quickly, an easier approach is to simply assign a large value to the counter.
Nevertheless, there is likely to be a role for algorithms that use carefully relaxed notions of correctness in
order to gain greater performance and scalability [And91, ACMSO03, Ungl1].

68 CHAPTER 5. COUNTING

[cFes)
CacyJ

One one thousand.
Two one thousand.
Three one thousand...

Figure 5.3: Waiting to Count

to the data, avoiding the need to circulate the cache line containing the global variable
being incremented? M

5.2 Statistical Counters

This section covers the common special case of statistical counters, where the count is
updated extremely frequently and the value is read out rarely, if ever. These will be used
to solve the network-packet counting problem posed in Quick Quiz 5.2.

5.2.1 Design

Statistical counting is typically handled by providing a counter per thread (or CPU, when
running in the kernel), so that each thread updates its own counter, as was foreshadowed
in Section 4.3.6. The aggregate value of the counters is read out by simply summing up
all of the threads’ counters, relying on the commutative and associative properties of
addition. This is an example of the Data Ownership pattern that will be introduced in

5.2. STATISTICAL COUNTERS 69

Listing 5.3: Array-Based Per-Thread Statistical Counters

| DEFINE_PER_THREAD (unsigned long, counter);
2

3 static __inline__ void inc_count(void)
4 {

5 unsigned long *p_counter = &__get_thread_var(counter);
6

7 WRITE_ONCE(*p_counter, *p_counter + 1);

8 }

9

10 static __inline__ unsigned long read_count(void)

i {

12 int t;

13 unsigned long sum = 0;

14

15 for_each_thread(t)

16 sum += READ_ONCE(per_thread(counter, t));
17 return sum;
18 X

Section 6.3.4.
Quick Quiz 5.11: But doesn’t the fact that C’s “integers” are limited in size compli-
cate things? H

5.2.2 Array-Based Implementation

One way to provide per-thread variables is to allocate an array with one element per
thread (presumably cache aligned and padded to avoid false sharing).

Quick Quiz 5.12: An array??? But doesn’t that limit the number of threads? l

Such an array can be wrapped into per-thread primitives, as shown in Listing 5.3
(count_stat.c). Line 1 defines an array containing a set of per-thread counters of
type unsigned long named, creatively enough, counter.

Lines 3-8 show a function that increments the counters, using the __get_thread_
var () primitive to locate the currently running thread’s element of the counter array.
Because this element is modified only by the corresponding thread, non-atomic incre-
ment suffices. However, this code uses WRITE_ONCE () to prevent destructive compiler
optimizations. For but one example, the compiler is within its rights to use a to-be-
stored-to location as temporary storage, thus writing what would be for all intents and
purposes garbage to that location just before doing the desired store. This could of
course be rather confusing to anything attempting to read out the count. The use of
WRITE_ONCE() prevents this optimization and others besides.

Quick Quiz 5.13: What other nasty optimizations could GCC apply? B

Lines 10-18 show a function that reads out the aggregate value of the counter,
using the for_each_thread () primitive to iterate over the list of currently running
threads, and using the per_thread () primitive to fetch the specified thread’s counter.
This code also uses READ_ONCE () to ensure that the compiler doesn’t optimize these
loads into oblivion. For but one example, a pair of consecutive calls to read_count ()
might be inlined, and an intrepid optimizer might notice that the same locations were
being summed and thus incorrectly conclude that it would be simply wonderful to sum
them once and use the resulting value twice. This sort of optimization might be rather
frustrating to people expecting later read_count () calls to return larger values. The
use of READ_ONCE () prevents this optimization and others besides.

Quick Quiz 5.14: How does the per-thread counter variable in Listing 5.3 get

70 CHAPTER 5. COUNTING

CPY0) cPYT P2 CPY3)
Cache Cache Cache Cache
Interconnect Interconnect
~ =

Memory <—>{ System Interconnect }e Memory

_ ™~

Z= N
Interconnect Interconnect

=] ™ i | |
lceual] [lcpus] logusel] [lagn]

Figure 5.4: Data Flow For Per-Thread Increment

initialized? W

Quick Quiz 5.15: How is the code in Listing 5.3 supposed to permit more than one
counter? Ml

This approach scales linearly with increasing number of updater threads invoking
inc_count (). Asis shown by the green arrows on each CPU in Figure 5.4, the reason
for this is that each CPU can make rapid progress incrementing its thread’s variable,
without any expensive cross-system communication. As such, this section solves the
network-packet counting problem presented at the beginning of this chapter.

Quick Quiz 5.16: The read operation takes time to sum up the per-thread values,
and during that time, the counter could well be changing. This means that the value
returned by read_count () in Listing 5.3 will not necessarily be exact. Assume that the
counter is being incremented at rate » counts per unit time, and that read_count ()’s
execution consumes 4 units of time. What is the expected error in the return value? B

However, this excellent update-side scalability comes at great read-side expense for
large numbers of threads. The next section shows one way to reduce read-side expense
while still retaining the update-side scalability.

5.2.3 Eventually Consistent Implementation

One way to retain update-side scalability while greatly improving read-side performance
is to weaken consistency requirements. The counting algorithm in the previous section
is guaranteed to return a value between the value that an ideal counter would have taken
on near the beginning of read_count ()’s execution and that near the end of read_
count () ’s execution. Eventual consistency [Vog09] provides a weaker guarantee: in
absence of calls to inc_count (), calls to read_count () will eventually return an
accurate count.

We exploit eventual consistency by maintaining a global counter. However, updaters
only manipulate their per-thread counters. A separate thread is provided to transfer
counts from the per-thread counters to the global counter. Readers simply access the
value of the global counter. If updaters are active, the value used by the readers will be
out of date, however, once updates cease, the global counter will eventually converge on
the true value—hence this approach qualifies as eventually consistent.

The implementation is shown in Listing 5.4 (count_stat_eventual.c). Lines 1-2
show the per-thread variable and the global variable that track the counter’s value, and

5.2. STATISTICAL COUNTERS 71

Listing 5.4: Array-Based Per-Thread Eventually Consistent Counters

1
2
3
4
5

12

14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

36

DEFINE_PER_THREAD (unsigned long, counter);
unsigned long global_count;
int stopflag;

static __inline__ void inc_count(void)
{

unsigned long *p_counter = &__get_thread_var(counter);

WRITE_ONCE(*p_counter, *p_counter + 1);

¥
static __inline__ unsigned long read_count(void)
{
return READ_ONCE(global_count);
¥
void *eventual(void *arg)
{
int t;

unsigned long sum;

while (READ_ONCE(stopflag) < 3) {
sum = 0;
for_each_thread(t)
sum += READ_ONCE(per_thread(counter, t));
WRITE_ONCE(global_count, sum);
poll(NULL, 0, 1);
if (READ_ONCE(stopflag)) {
smp_mb () ;
WRITE_ONCE(stopflag, stopflag + 1);
}
}
return NULL;
¥

void count_init(void)
{

int en;

thread_id_t tid;

en = pthread_create(&tid, NULL, eventual, NULL);
if (en !'= 0) {
fprintf (stderr, "pthread_create: %s\n", strerror(en));
exit (EXIT_FAILURE);
}
}

void count_cleanup(void)
{
WRITE_ONCE(stopflag, 1);
while (READ_ONCE(stopflag) < 3)
poll(NULL, 0, 1);
smp_mb () ;
}

72 CHAPTER 5. COUNTING

line 3 shows stopflag which is used to coordinate termination (for the case where
we want to terminate the program with an accurate counter value). The inc_count ()
function shown on lines 5-10 is similar to its counterpart in Listing 5.3. The read_
count () function shown on lines 12-15 simply returns the value of the global_count
variable.

However, the count_init () function on lines 36-46 creates the eventual ()
thread shown on lines 17-34, which cycles through all the threads, summing the
per-thread local counter and storing the sum to the global_count variable. The
eventual () thread waits an arbitrarily chosen one millisecond between passes. The
count_cleanup() function on lines 48-54 coordinates termination.

This approach gives extremely fast counter read-out while still supporting linear
counter-update performance. However, this excellent read-side performance and update-
side scalability comes at the cost of the additional thread running eventual ().

Quick Quiz 5.17: Why doesn’t inc_count () in Listing 5.4 need to use atomic
instructions? After all, we now have multiple threads accessing the per-thread counters!
]

Quick Quiz 5.18: Won’t the single global thread in the function eventual () of
Listing 5.4 be just as severe a bottleneck as a global lock would be? l

Quick Quiz 5.19: Won'’t the estimate returned by read_count () in Listing 5.4
become increasingly inaccurate as the number of threads rises? ll

Quick Quiz 5.20: Given that in the eventually-consistent algorithm shown in
Listing 5.4 both reads and updates have extremely low overhead and are extremely
scalable, why would anyone bother with the implementation described in Section 5.2.2,
given its costly read-side code? ll

5.2.4 Per-Thread-Variable-Based Implementation

Fortunately, GCC provides an __thread storage class that provides per-thread
storage. This can be used as shown in Listing 5.5 (count_end.c) to implement a
statistical counter that not only scales, but that also incurs little or no performance
penalty to incrementers compared to simple non-atomic increment.

Lines 1-4 define needed variables: counter is the per-thread counter variable,
the counterp[] array allows threads to access each others’ counters, finalcount
accumulates the total as individual threads exit, and final_mutex coordinates between
threads accumulating the total value of the counter and exiting threads.

Quick Quiz 5.21: Why do we need an explicit array to find the other threads’
counters? Why doesn’t GCC provide a per_thread () interface, similar to the Linux
kernel’s per_cpu() primitive, to allow threads to more easily access each others’
per-thread variables? H

The inc_count () function used by updaters is quite simple, as can be seen on
lines 6-9.

The read_count () function used by readers is a bit more complex. Line 16
acquires a lock to exclude exiting threads, and line 21 releases it. Line 17 initializes the
sum to the count accumulated by those threads that have already exited, and lines 18-20
sum the counts being accumulated by threads currently running. Finally, line 22 returns
the sum.

Quick Quiz 5.22: Doesn’t the check for NULL on line 19 of Listing 5.5 add extra
branch mispredictions? Why not have a variable set permanently to zero, and point

5.2. STATISTICAL COUNTERS 73

Listing 5.5: Per-Thread Statistical Counters

unsigned long __thread counter = 0;
unsigned long *counterp[NR_THREADS] = { NULL };
unsigned long finalcount = 0;
DEFINE_SPINLOCK (final_mutex);
static __inline__ void inc_count(void)
{
WRITE_ONCE(counter, counter + 1);
}

1
2
3
4
5
6
7
8
9

10

11 static __inline_
12 {

13 int t;

14 unsigned long sum;

unsigned long read_count(void)

16 spin_lock(&final_mutex);
17 sum = finalcount;
18 for_each_thread(t)

19 if (counterp[t] != NULL)

20 sum += READ_ONCE (*counterp[t]);
21 spin_unlock(&final_mutex);

22 return sum;

23}

25 void count_register_thread(unsigned long *p)
2 {
27 int idx = smp_thread_id();

29 spin_lock(&final_mutex) ;
30 counterplidx] = &counter;
31 spin_unlock(&final_mutex);

32 }

34 void count_unregister_thread(int nthreadsexpected)
35 {

36 int idx = smp_thread_id();

37

38 spin_lock(&final_mutex);

39 finalcount += counter;

40 counterp[idx] = NULL;

41 spin_unlock(&final_mutex);

42}

unused counter-pointers to that variable rather than setting them to NULL? W

Quick Quiz 5.23: Why on earth do we need something as heavyweight as a lock
guarding the summation in the function read_count () in Listing 5.5? H

Lines 25-32 show the count_register_thread() function, which must be called
by each thread before its first use of this counter. This function simply sets up this
thread’s element of the counterp[] array to point to its per-thread counter variable.

Quick Quiz 5.24: Why on earth do we need to acquire the lock in count_
register_thread() in Listing 5.57 It is a single properly aligned machine-word
store to a location that no other thread is modifying, so it should be atomic anyway,
right? l

Lines 34-42 show the count_unregister_thread() function, which must be
called prior to exit by each thread that previously called count_register_thread().
Line 38 acquires the lock, and line 41 releases it, thus excluding any calls to read_
count () as well as other calls to count_unregister_thread(). Line 39 adds
this thread’s counter to the global finalcount, and then line 40 NULLs out its
counterp[] array entry. A subsequent call to read_count () will see the exiting
thread’s count in the global finalcount, and will skip the exiting thread when sequenc-
ing through the counterp[] array, thus obtaining the correct total.

74 CHAPTER 5. COUNTING

This approach gives updaters almost exactly the same performance as a non-atomic
add, and also scales linearly. On the other hand, concurrent reads contend for a single
global lock, and therefore perform poorly and scale abysmally. However, this is not a
problem for statistical counters, where incrementing happens often and readout happens
almost never. Of course, this approach is considerably more complex than the array-
based scheme, due to the fact that a given thread’s per-thread variables vanish when that
thread exits.

Quick Quiz 5.25: Fine, but the Linux kernel doesn’t have to acquire a lock when
reading out the aggregate value of per-CPU counters. So why should user-space code
need to do this??? l

5.2.5 Discussion

These three implementations show that it is possible to obtain uniprocessor performance
for statistical counters, despite running on a parallel machine.

Quick Quiz 5.26: What fundamental difference is there between counting packets
and counting the total number of bytes in the packets, given that the packets vary in
size?

Quick Quiz 5.27: Given that the reader must sum all the threads’ counters, this
could take a long time given large numbers of threads. Is there any way that the
increment operation can remain fast and scalable while allowing readers to also enjoy
reasonable performance and scalability? ll

Given what has been presented in this section, you should now be able to answer the
Quick Quiz about statistical counters for networking near the beginning of this chapter.

5.3 Approximate Limit Counters

Another special case of counting involves limit-checking. For example, as noted in the
approximate structure-allocation limit problem in Quick Quiz 5.3, suppose that you need
to maintain a count of the number of structures allocated in order to fail any allocations
once the number of structures in use exceeds a limit, in this case, 10,000. Suppose
further that these structures are short-lived, that this limit is rarely exceeded, and that this
limit is approximate in that it is OK to exceed it sometimes by some bounded amount
(see Section 5.4 if you instead need the limit to be exact).

5.3.1 Design

One possible design for limit counters is to divide the limit of 10,000 by the number
of threads, and give each thread a fixed pool of structures. For example, given 100
threads, each thread would manage its own pool of 100 structures. This approach is
simple, and in some cases works well, but it does not handle the common case where
a given structure is allocated by one thread and freed by another [MS93]. On the one
hand, if a given thread takes credit for any structures it frees, then the thread doing
most of the allocating runs out of structures, while the threads doing most of the freeing
have lots of credits that they cannot use. On the other hand, if freed structures are
credited to the CPU that allocated them, it will be necessary for CPUs to manipulate
each others’ counters, which will require expensive atomic instructions or other means

5.3. APPROXIMATE LIMIT COUNTERS 75

of communicating between threads.?

In short, for many important workloads, we cannot fully partition the counter. Given
that partitioning the counters was what brought the excellent update-side performance for
the three schemes discussed in Section 5.2, this might be grounds for some pessimism.
However, the eventually consistent algorithm presented in Section 5.2.3 provides an
interesting hint. Recall that this algorithm kept two sets of books, a per-thread counter
variable for updaters and a global_count variable for readers, with an eventual ()
thread that periodically updated global_count to be eventually consistent with the
values of the per-thread counter. The per-thread counter perfectly partitioned the
counter value, while global_count kept the full value.

For limit counters, we can use a variation on this theme, in that we partially partition
the counter. For example, each of four threads could have a per-thread counter, but
each could also have a per-thread maximum value (call it countermax).

But then what happens if a given thread needs to increment its counter, but
counter is equal to its countermax? The trick here is to move half of that thread’s
counter value to a globalcount, then increment counter. For example, if a given
thread’s counter and countermax variables were both equal to 10, we do the follow-
ing:

1. Acquire a global lock.

2. Add five to globalcount.

3. To balance out the addition, subtract five from this thread’s counter.
4. Release the global lock.

5. Increment this thread’s counter, resulting in a value of six.

Although this procedure still requires a global lock, that lock need only be acquired
once for every five increment operations, greatly reducing that lock’s level of contention.
We can reduce this contention as low as we wish by increasing the value of countermax.
However, the corresponding penalty for increasing the value of countermax is reduced
accuracy of globalcount. To see this, note that on a four-CPU system, if countermax
is equal to ten, globalcount will be in error by at most 40 counts. In contrast, if
countermax is increased to 100, globalcount might be in error by as much as 400
counts.

This raises the question of just how much we care about globalcount’s deviation
from the aggregate value of the counter, where this aggregate value is the sum of
globalcount and each thread’s counter variable. The answer to this question depends
on how far the aggregate value is from the counter’s limit (call it globalcountmax).
The larger the difference between these two values, the larger countermax can be
without risk of exceeding the globalcountmax limit. This means that the value of a
given thread’s countermax variable can be set based on this difference. When far from
the limit, the countermax per-thread variables are set to large values to optimize for
performance and scalability, while when close to the limit, these same variables are set
to small values to minimize the error in the checks against the globalcountmax limit.

This design is an example of parallel fastpath, which is an important design pattern
in which the common case executes with no expensive instructions and no interactions

2 That said, if each structure will always be freed by the same CPU (or thread) that allocated it, then this
simple partitioning approach works extremely well.

76 CHAPTER 5. COUNTING

Listing 5.6: Simple Limit Counter Variables

unsigned long __thread counter = 0;

unsigned long __thread countermax = 0;
unsigned long globalcountmax = 10000;

unsigned long globalcount = 0;

unsigned long globalreserve = 0;

unsigned long *counterp[NR_THREADS] = { NULL };
DEFINE_SPINLOCK(gblcnt_mutex) ;

P T I SR S

Figure 5.5: Simple Limit Counter Variable Relationships

between threads, but where occasional use is also made of a more conservatively
designed (and higher overhead) global algorithm. This design pattern is covered in more
detail in Section 6.4.

5.3.2 Simple Limit Counter Implementation

Listing 5.6 shows both the per-thread and global variables used by this imple-
mentation. The per-thread counter and countermax variables are the correspond-
ing thread’s local counter and the upper bound on that counter, respectively. The
globalcountmax variable on line 3 contains the upper bound for the aggregate counter,
and the globalcount variable on line 4 is the global counter. The sum of globalcount
and each thread’s counter gives the aggregate value of the overall counter. The
globalreserve variable on line 5 is the sum of all of the per-thread countermax
variables. The relationship among these variables is shown by Figure 5.5:

1. The sum of globalcount and globalreserve must be less than or equal to
globalcountmax.

2. The sum of all threads’ countermax values must be less than or equal to
globalreserve.

3. Each thread’s counter must be less than or equal to that thread’s countermax.

5.3. APPROXIMATE LIMIT COUNTERS 77

Listing 5.7: Simple Limit Counter Add, Subtract, and Read

| static __inline__ int add_count(unsigned long delta)
2 {

3 if (countermax - counter >= delta) {

4 WRITE_ONCE(counter, counter + delta);

5 return 1;

6 1}

7 spin_lock(&gblcnt_mutex) ;

8 globalize_count();

9 if (globalcountmax -

10 globalcount - globalreserve < delta) {
11 spin_unlock(&gblcnt_mutex) ;

12 return 0O;

B3}

14 globalcount += delta;

15 balance_count();

16 spin_unlock(&gblcnt_mutex) ;
17 return 1;

18 X

19

20 static __inline__ int sub_count(unsigned long delta)
21 {

2 if (counter >= delta) {

23 WRITE_ONCE(counter, counter - delta);

24 return 1;

35}

26 spin_lock(&gblcnt_mutex) ;
27 globalize_count();
28 if (globalcount < delta) {

29 spin_unlock(&gblcnt_mutex) ;
30 return 0;

31}

32 globalcount -= delta;

33 balance_count();
34 spin_unlock(&gblcnt_mutex) ;
35 return 1;

36 }

37

38 static __inline__ unsigned long read_count(void)
39 {

40 int t;

41 unsigned long sum;

43 spin_lock(&gblcnt_mutex) ;

44 sum = globalcount;

45 for_each_thread(t)

46 if (counterp[t] != NULL)

47 sum += READ_ONCE (*counterp[t]);
48 spin_unlock(&gblcnt_mutex) ;

49 return sum;

Each element of the counterp[] array references the corresponding thread’s
counter variable, and, finally, the gblcnt_mutex spinlock guards all of the global
variables, in other words, no thread is permitted to access or modify any of the global
variables unless it has acquired gblcnt_mutex.

Listing 5.7 shows the add_count (), sub_count (), and read_count () functions
(count_lim.c).

Quick Quiz 5.28: Why does Listing 5.7 provide add_count () and sub_count ()
instead of the inc_count () and dec_count () interfaces show in Section 5.2? H

Lines 1-18 show add_count (), which adds the specified value delta to the counter.
Line 3 checks to see if there is room for delta on this thread’s counter, and, if so,
line 4 adds it and line 5 returns success. This is the add_counter () fastpath, and it
does no atomic operations, references only per-thread variables, and should not incur

78 CHAPTER 5. COUNTING

any cache misses.
Quick Quiz 5.29: What is with the strange form of the condition on line 3 of
Listing 5.7? Why not the following more intuitive form of the fastpath?

if (counter + delta <= countermax) {
counter += delta;
return 1;

}

o v B oW

|

If the test on line 3 fails, we must access global variables, and thus must acquire
gblcnt_mutex on line 7, which we release on line 11 in the failure case or on line 16
in the success case. Line 8 invokes globalize_count (), shown in Listing 5.8, which
clears the thread-local variables, adjusting the global variables as needed, thus simplify-
ing global processing. (But don’t take my word for it, try coding it yourself!) Lines 9
and 10 check to see if addition of delta can be accommodated, with the meaning of the
expression preceding the less-than sign shown in Figure 5.5 as the difference in height
of the two red (leftmost) bars. If the addition of delta cannot be accommodated, then
line 11 (as noted earlier) releases gblcnt_mutex and line 12 returns indicating failure.

Otherwise, we take the slowpath. Line 14 adds delta to globalcount, and then
line 15 invokes balance_count () (shown in Listing 5.8) in order to update both the
global and the per-thread variables. This call to balance_count () will usually set this
thread’s countermax to re-enable the fastpath. Line 16 then releases gblcnt_mutex
(again, as noted earlier), and, finally, line 17 returns indicating success.

Quick Quiz 5.30: Why does globalize_count () zero the per-thread variables,
only to later call balance_count () to refill them in Listing 5.7? Why not just leave
the per-thread variables non-zero? H

Lines 20-36 show sub_count (), which subtracts the specified delta from the
counter. Line 22 checks to see if the per-thread counter can accommodate this subtrac-
tion, and, if so, line 23 does the subtraction and line 24 returns success. These lines
form sub_count ()’s fastpath, and, as with add_count (), this fastpath executes no
costly operations.

If the fastpath cannot accommodate subtraction of delta, execution proceeds to the
slowpath on lines 26-35. Because the slowpath must access global state, line 26 acquires
gblcnt_mutex, which is released either by line 29 (in case of failure) or by line 34 (in
case of success). Line 27 invokes globalize_count (), shown in Listing 5.8, which
again clears the thread-local variables, adjusting the global variables as needed. Line 28
checks to see if the counter can accommodate subtracting delta, and, if not, line 29
releases gblcnt_mutex (as noted earlier) and line 30 returns failure.

Quick Quiz 5.31: Given that globalreserve counted against us in add_count (),
why doesn’t it count for us in sub_count () in Listing 5.7? W

Quick Quiz 5.32: Suppose that one thread invokes add_count () shown in List-
ing 5.7, and then another thread invokes sub_count (). Won’t sub_count () return
failure even though the value of the counter is non-zero? B

If, on the other hand, line 28 finds that the counter can accommodate subtracting
delta, we complete the slowpath. Line 32 does the subtraction and then line 33 invokes
balance_count () (shown in Listing 5.8) in order to update both global and per-thread
variables (hopefully re-enabling the fastpath). Then line 34 releases gblcnt_mutex,
and line 35 returns success.

Quick Quiz 5.33: Why have both add_count () and sub_count () in Listing 5.7?
Why not simply pass a negative number to add_count ()?

5.3. APPROXIMATE LIMIT COUNTERS 79

Listing 5.8: Simple Limit Counter Utility Functions

1 static __inline__ void globalize_count(void)
2 {

3 globalcount += counter;

4 counter = 0;

5 globalreserve -= countermax;

6 countermax = 0;

7}

8

9 static __inline__ void balance_count(void)
10 {

11 countermax = globalcountmax -

12 globalcount - globalreserve;

13 countermax /= num_online_threads();
14 globalreserve += countermax;

15 counter = countermax / 2;

16 if (counter > globalcount)

17 counter = globalcount;
18 globalcount -= counter;
19 }

21 void count_register_thread(void)
2 {
23 int idx = smp_thread_id();

25 spin_lock(&gblcnt_mutex) ;
26 counterpl[idx] = &counter;
27 spin_unlock(&gblcnt_mutex) ;

28 }

30 void count_unregister_thread(int nthreadsexpected)
31 {

32 int idx = smp_thread_id();

33

34 spin_lock(&gblcnt_mutex) ;

35 globalize_count();

36 counterp[idx] = NULL;

37 spin_unlock(&gblcnt_mutex) ;

Lines 38-50 show read_count (), which returns the aggregate value of the counter.
It acquires gblcnt_mutex on line 43 and releases it on line 48, excluding global opera-
tions from add_count () and sub_count (), and, as we will see, also excluding thread
creation and exit. Line 44 initializes local variable sum to the value of globalcount,
and then the loop spanning lines 45-47 sums the per-thread counter variables. Line 49
then returns the sum.

Listing 5.8 shows a number of utility functions used by the add_count (), sub_
count (), and read_count () primitives shown in Listing 5.7.

Lines 1-7 show globalize_count (), which zeros the current thread’s per-thread
counters, adjusting the global variables appropriately. It is important to note that this
function does not change the aggregate value of the counter, but instead changes how
the counter’s current value is represented. Line 3 adds the thread’s counter variable
to globalcount, and line 4 zeroes counter. Similarly, line 5 subtracts the per-thread
countermax from globalreserve, and line 6 zeroes countermax. It is helpful to
refer to Figure 5.5 when reading both this function and balance_count (), which is
next.

Lines 9-19 show balance_count (), which is roughly speaking the inverse of
globalize_count (). This function’s job is to set the current thread’s countermax
variable to the largest value that avoids the risk of the counter exceeding the globalcountmax
limit. Changing the current thread’s countermax variable of course requires corre-
sponding adjustments to counter, globalcount and globalreserve, as can be seen

80 CHAPTER 5. COUNTING

globalize_count () balance_count ()

Figure 5.6: Schematic of Globalization and Balancing

by referring back to Figure 5.5. By doing this, balance_count () maximizes use of
add_count ()’s and sub_count ()’s low-overhead fastpaths. As with globalize_
count (), balance_count () is not permitted to change the aggregate value of the
counter.

Lines 11-13 compute this thread’s share of that portion of globalcountmax that
is not already covered by either globalcount or globalreserve, and assign the
computed quantity to this thread’s countermax. Line 14 makes the corresponding
adjustment to globalreserve. Line 15 sets this thread’s counter to the middle of
the range from zero to countermax. Line 16 checks to see whether globalcount can
in fact accommodate this value of counter, and, if not, line 17 decreases counter
accordingly. Finally, in either case, line 18 makes the corresponding adjustment to
globalcount.

Quick Quiz 5.34: Why set counter to countermax / 2inline 15 of Listing 5.8?
Wouldn’t it be simpler to just take countermax counts? ll

It is helpful to look at a schematic depicting how the relationship of the counters
changes with the execution of first globalize_count () and then balance_count, as
shown in Figure 5.6. Time advances from left to right, with the leftmost configuration
roughly that of Figure 5.5. The center configuration shows the relationship of these
same counters after globalize_count () is executed by thread 0. As can be seen from
the figure, thread 0’s counter (“c 0” in the figure) is added to globalcount, while the
value of globalreserve is reduced by this same amount. Both thread 0’s counter
and its countermax (“cm 0 in the figure) are reduced to zero. The other three threads’
counters are unchanged. Note that this change did not affect the overall value of the
counter, as indicated by the bottommost dotted line connecting the leftmost and center
configurations. In other words, the sum of globalcount and the four threads’ counter

5.3. APPROXIMATE LIMIT COUNTERS 81

variables is the same in both configurations. Similarly, this change did not affect the
sum of globalcount and globalreserve, as indicated by the upper dotted line.

The rightmost configuration shows the relationship of these counters after balance_
count () is executed, again by thread 0. One-quarter of the remaining count, denoted
by the vertical line extending up from all three configurations, is added to thread 0’s
countermax and half of that to thread 0’s counter. The amount added to thread 0’s
counter is also subtracted from globalcount in order to avoid changing the overall
value of the counter (which is again the sum of globalcount and the three threads’
counter variables), again as indicated by the lowermost of the two dotted lines con-
necting the center and rightmost configurations. The globalreserve variable is also
adjusted so that this variable remains equal to the sum of the four threads’ countermax
variables. Because thread 0’s counter is less than its countermax, thread O can once
again increment the counter locally.

Quick Quiz 5.35: In Figure 5.6, even though a quarter of the remaining count up
to the limit is assigned to thread O, only an eighth of the remaining count is consumed,
as indicated by the uppermost dotted line connecting the center and the rightmost
configurations. Why is that? ll

Lines 21-28 show count_register_thread(), which sets up state for newly
created threads. This function simply installs a pointer to the newly created thread’s
counter variable into the corresponding entry of the counterp[] array under the
protection of gblcnt _mutex.

Finally, lines 30-38 show count_unregister_thread(), which tears down state
for a soon-to-be-exiting thread. Line 34 acquires gblcnt_mutex and line 37 releases
it. Line 35 invokes globalize_count () to clear out this thread’s counter state, and
line 36 clears this thread’s entry in the counterp[] array.

5.3.3 Simple Limit Counter Discussion

This type of counter is quite fast when aggregate values are near zero, with some over-
head due to the comparison and branch in both add_count ()’s and sub_count ()’s
fastpaths. However, the use of a per-thread countermax reserve means that add_
count () can fail even when the aggregate value of the counter is nowhere near
globalcountmax. Similarly, sub_count () can fail even when the aggregate value of
the counter is nowhere near zero.

In many cases, this is unacceptable. Even if the globalcountmax is intended to be
an approximate limit, there is usually a limit to exactly how much approximation can be
tolerated. One way to limit the degree of approximation is to impose an upper limit on
the value of the per-thread countermax instances. This task is undertaken in the next
section.

5.3.4 Approximate Limit Counter Implementation

Because this implementation (count_lim_app.c) is quite similar to that in the
previous section (Listings 5.6, 5.7, and 5.8), only the changes are shown here. List-
ing 5.9 is identical to Listing 5.6, with the addition of MAX_COUNTERMAX, which sets the
maximum permissible value of the per-thread countermax variable.

Similarly, Listing 5.10 is identical to the balance_count () function in Listing 5.8,
with the addition of lines 6 and 7, which enforce the MAX_COUNTERMAX limit on the
per-thread countermax variable.

82 CHAPTER 5. COUNTING

Listing 5.9: Approximate Limit Counter Variables

unsigned long __thread counter = 0;

unsigned long __thread countermax = 0;
unsigned long globalcountmax = 10000;

unsigned long globalcount = 0;

unsigned long globalreserve = 0;

6 unsigned long *counterp[NR_THREADS] = { NULL };
DEFINE_SPINLOCK (gblcnt_mutex);

#define MAX_COUNTERMAX 100

vk W =

© =

Listing 5.10: Approximate Limit Counter Balancing

| static void balance_count (void)

2 {

3 countermax = globalcountmax -

4 globalcount - globalreserve;
5 countermax /= num_online_threads();
6 if (countermax > MAX_COUNTERMAX)

7 countermax = MAX_COUNTERMAX;

8 globalreserve += countermax;

9 counter = countermax / 2;

10 if (counter > globalcount)

11 counter = globalcount;

12 globalcount -= counter;

13 }

5.3.5 Approximate Limit Counter Discussion

These changes greatly reduce the limit inaccuracy seen in the previous version, but
present another problem: any given value of MAX_COUNTERMAX will cause a workload-
dependent fraction of accesses to fall off the fastpath. As the number of threads increase,
non-fastpath execution will become both a performance and a scalability problem.
However, we will defer this problem and turn instead to counters with exact limits.

5.4 Exact Limit Counters

To solve the exact structure-allocation limit problem noted in Quick Quiz 5.4, we need a
limit counter that can tell exactly when its limits are exceeded. One way of implementing
such a limit counter is to cause threads that have reserved counts to give them up. One
way to do this is to use atomic instructions. Of course, atomic instructions will slow
down the fastpath, but on the other hand, it would be silly not to at least give them a try.

5.4.1 Atomic Limit Counter Implementation

Unfortunately, if one thread is to safely remove counts from another thread, both threads
will need to atomically manipulate that thread’s counter and countermax variables.
The usual way to do this is to combine these two variables into a single variable, for
example, given a 32-bit variable, using the high-order 16 bits to represent counter and
the low-order 16 bits to represent countermax.

Quick Quiz 5.36: Why is it necessary to atomically manipulate the thread’s
counter and countermax variables as a unit? Wouldn’t it be good enough to atomi-
cally manipulate them individually? l

The variables and access functions for a simple atomic limit counter are shown
in Listing 5.11 (count_lim_atomic.c). The counter and countermax variables in
earlier algorithms are combined into the single variable counterandmax shown on

5.4. EXACT LIMIT COUNTERS 83

Listing 5.11: Atomic Limit Counter Variables and Access Functions

| atomic_t __thread counterandmax = ATOMIC_INIT(O);
2 unsigned long globalcountmax = 1 << 25;

3 unsigned long globalcount = 0;
4
5

unsigned long globalreserve = 0;

atomic_t *counterp[NR_THREADS] = { NULL };
6 DEFINE_SPINLOCK(gblcnt_mutex) ;
7 #define CM_BITS (sizeof(atomic_t) * 4)
8 #define MAX_COUNTERMAX ((1 << CM_BITS) - 1)

10 static __inline__ void

11 split_counterandmax_int(int cami, int *c, int *cm)
12 {

13 *c = (cami >> CM_BITS) & MAX_COUNTERMAX;

14 *cm = cami & MAX_COUNTERMAX;

15)

17 static __inline__ void
18 split_counterandmax(atomic_t *cam, int *old, int *c, int *cm)
19 {

20 unsigned int cami = atomic_read(cam) ;

22 *0ld = cami;
23 split_counterandmax_int (cami, c, cm);

2% }

26 static __inline__ int merge_counterandmax(int c, int cm)
27 {

28 unsigned int camij;

30 cami = (c << CM_BITS) | cm;
31 return ((int)cami);

2}

line 1, with counter in the upper half and countermax in the lower half. This variable
is of type atomic_t, which has an underlying representation of int.

Lines 2-6 show the definitions for globalcountmax, globalcount, globalreserve,
counterp, and gblcnt_mutex, all of which take on roles similar to their counterparts
in Listing 5.9. Line 7 defines CM_BITS, which gives the number of bits in each half
of counterandmax, and line 8 defines MAX_COUNTERMAX, which gives the maximum
value that may be held in either half of counterandmax.

Quick Quiz 5.37: In what way does line 7 of Listing 5.11 violate the C standard?

Lines 10-15 show the split_counterandmax_int () function, which, when given
the underlying int from the atomic_t counterandmax variable, splits it into its
counter (c) and countermax (cm) components. Line 13 isolates the most-significant
half of this int, placing the result as specified by argument c, and line 14 isolates the
least-significant half of this int, placing the result as specified by argument cm.

Lines 17-24 show the split_counterandmax () function, which picks up the
underlying int from the specified variable on line 20, stores it as specified by the o1d
argument on line 22, and then invokes split_counterandmax_int () to split it on
line 23.

Quick Quiz 5.38: Given that there is only one counterandmax variable, why
bother passing in a pointer to it on line 18 of Listing 5.11? H

Lines 26-32 show the merge_counterandmax () function, which can be thought
of as the inverse of split_counterandmax(). Line 30 merges the counter and
countermax values passed in ¢ and cm, respectively, and returns the result.

Quick Quiz 5.39: Why does merge_counterandmax () in Listing 5.11 return an
int rather than storing directly into an atomic_t? M

Listing 5.12 shows the add_count () and sub_count () functions.

84 CHAPTER 5. COUNTING

Listing 5.12: Atomic Limit Counter Add and Subtract

1 int add_count(unsigned long delta)

2 {

3 int c;

4 int cm;

5 int old;

6 int new;

7

8 do {

9 split_counterandmax(&counterandmax, &old, &c, &cm);
10 if (delta > MAX_COUNTERMAX || c¢ + delta > cm)
11 goto slowpath;

12 new = merge_counterandmax(c + delta, cm);

13 } while (atomic_cmpxchg(&counterandmax,

14 0old, new) !'= old);

15 return 1;

16 slowpath:

17 spin_lock(&gblcnt_mutex) ;
18 globalize_count();
19 if (globalcountmax - globalcount -

20 globalreserve < delta) {

21 flush_local_count();

22 if (globalcountmax - globalcount -
23 globalreserve < delta) {

24 spin_unlock(&gblcnt_mutex) ;

25 return 0;

26 }

27}

28 globalcount += delta;

29 balance_count();

30 spin_unlock(&gblcnt_mutex) ;
31 return 1;

2}

34 int sub_count(unsigned long delta)
35 {

36 int c;

37 int cm;

38 int old;

39 int new;

40

41 do {

0 split_counterandmax(&counterandmax, &old, &c, &cm);
43 if (delta > c)

44 goto slowpath;

45 new = merge_counterandmax(c - delta, cm);

46 } while (atomic_cmpxchg(&counterandmax,

47 old, new) !'= old);

48 return 1;
49 slowpath:
50 spin_lock(&gblcnt_mutex);

51 globalize_count();

52 if (globalcount < delta) {

53 flush_local_count();

54 if (globalcount < delta) {

55 spin_unlock(&gblcnt_mutex) ;
56 return O;

57 }

ss

59 globalcount -= delta;

60 balance_count();

61 spin_unlock(&gblcnt_mutex) ;
62 return 1;

5.4. EXACT LIMIT COUNTERS 85

Listing 5.13: Atomic Limit Counter Read

| unsigned long read_count(void)
2 {

3 int c;

4 int cm;

5 int old;

6 int t;

7 unsigned long sum;

8

9 spin_lock(&gblcnt_mutex) ;
10 sum = globalcount;

11 for_each_thread(t)

12 if (counterp[t] !'= NULL) {

13 split_counterandmax (counterp[t], &old, &c, &cm);
14 sum += c;

15 }

16 spin_unlock(&gblcnt_mutex) ;

17 return sum;

18}

Lines 1-32 show add_count (), whose fastpath spans lines 8-15, with the remainder
of the function being the slowpath. Lines 8-14 of the fastpath form a compare-and-swap
(CAS) loop, with the atomic_cmpxchg() primitives on lines 13-14 performing the
actual CAS. Line 9 splits the current thread’s counterandmax variable into its counter
(in c¢) and countermax (in cm) components, while placing the underlying int into old.
Line 10 checks whether the amount delta can be accommodated locally (taking care to
avoid integer overflow), and if not, line 11 transfers to the slowpath. Otherwise, line 12
combines an updated counter value with the original countermax value into new. The
atomic_cmpxchg() primitive on lines 13-14 then atomically compares this thread’s
counterandmax variable to old, updating its value to new if the comparison succeeds.
If the comparison succeeds, line 15 returns success, otherwise, execution continues in
the loop at line 8.

Quick Quiz 5.40: Yecch! Why the ugly goto on line 11 of Listing 5.12? Haven’t
you heard of the break statement??? Hl

Quick Quiz 5.41: Why would the atomic_cmpxchg() primitive at lines 13-14
of Listing 5.12 ever fail? After all, we picked up its old value on line 9 and have not
changed it!

Lines 16-31 of Listing 5.12 show add_count ()’s slowpath, which is protected by
gblcnt_mutex, which is acquired on line 17 and released on lines 24 and 30. Line 18
invokes globalize_count (), which moves this thread’s state to the global counters.
Lines 19-20 check whether the delta value can be accommodated by the current
global state, and, if not, line 21 invokes flush_local_count () to flush all threads’
local state to the global counters, and then lines 22-23 recheck whether delta can be
accommodated. If, after all that, the addition of delta still cannot be accommodated,
then line 24 releases gblcnt_mutex (as noted earlier), and then line 25 returns failure.

Otherwise, line 28 adds delta to the global counter, line 29 spreads counts to the
local state if appropriate, line 30 releases gblcnt_mutex (again, as noted earlier), and
finally, line 31 returns success.

Lines 34-63 of Listing 5.12 show sub_count (), which is structured similarly to
add_count (), having a fastpath on lines 41-48 and a slowpath on lines 49-62. A
line-by-line analysis of this function is left as an exercise to the reader.

Listing 5.13 shows read_count (). Line 9 acquires gblcnt_mutex and line 16
releases it. Line 10 initializes local variable sum to the value of globalcount, and
the loop spanning lines 11-15 adds the per-thread counters to this sum, isolating each

86 CHAPTER 5. COUNTING

Listing 5.14: Atomic Limit Counter Utility Functions 1

1 static void globalize_count(void)

2 {

3 int c;

4 int cm;

5 int old;

6

7 split_counterandmax(&counterandmax, &old, &c, &cm);
8 globalcount += c;

9 globalreserve -= cm;

10 old = merge_counterandmax(o, 0);
11 atomic_set (&counterandmax, old);
12}

13

14 static void flush_local_count(void)
15 {

16 int c;

17 int cm;

18 int old;

19 int t;

20 int zero;

21

2 if (globalreserve == 0)

23 return;

24 zero = merge_counterandmax (0, 0);
25 for_each_thread(t)

26 if (counterp[t] != NULL) {

27 old = atomic_xchg(counterp[t], zero);
28 split_counterandmax_int(old, &c, &cm);
29 globalcount += c;

30 globalreserve -= cm;

31 ¥

2}

per-thread counter using split_counterandmax on line 13. Finally, line 17 returns
the sum.

Listings 5.14 and 5.15 shows the utility functions globalize_count (), flush_
local_count(),balance_count (), count_register_thread(), and count_unregister_
thread (). The code for globalize_count () is shown on lines 1-12, of Listing 5.14
and is similar to that of previous algorithms, with the addition of line 7, which is now
required to split out counter and countermax from counterandmax.

The code for f1lush_local_count (), which moves all threads’ local counter state
to the global counter, is shown on lines 14-32. Line 22 checks to see if the value of
globalreserve permits any per-thread counts, and, if not, line 23 returns. Otherwise,
line 24 initializes local variable zero to a combined zeroed counter and countermax.
The loop spanning lines 25-31 sequences through each thread. Line 26 checks to see if
the current thread has counter state, and, if so, lines 27-30 move that state to the global
counters. Line 27 atomically fetches the current thread’s state while replacing it with
zero. Line 28 splits this state into its counter (in local variable c) and countermax (in
local variable cm) components. Line 29 adds this thread’s counter to globalcount,
while line 30 subtracts this thread’s countermax from globalreserve.

Quick Quiz 5.42: What stops a thread from simply refilling its counterandmax
variable immediately after flush_local_count () on line 14 of Listing 5.14 empties
it? A

Quick Quiz 5.43: What prevents concurrent execution of the fastpath of either
add_count () or sub_count () from interfering with the counterandmax variable
while flush_local_count () is accessing it on line 27 of Listing 5.14 empties it? l

Lines 1-22 on Listing 5.15 show the code for balance_count (), which refills the
calling thread’s local counterandmax variable. This function is quite similar to that of

5.4. EXACT LIMIT COUNTERS 87

Listing 5.15: Atomic Limit Counter Utility Functions 2

static void balance_count(void)
{

int c;

int cm;

int old;

unsigned long limit;

limit = globalcountmax - globalcount -
globalreserve;

10 limit /= num_online_threads();

11 if (limit > MAX_COUNTERMAX)

1
2
3
4
5
6
7
8
9

12 cm = MAX_COUNTERMAX;
13 else
14 cm = limit;

15 globalreserve += cm;
16 c=cm/ 2;
17 if (¢ > globalcount)

18 c = globalcount;

19 globalcount -= c;

20 old = merge_counterandmax(c, cm) ;
21 atomic_set (&counterandmax, old);
2 }

24 void count_register_thread(void)

25 {

26 int idx = smp_thread_id();

28 spin_lock(&gblcnt_mutex);

29 counterp[idx] = &counterandmax;
30 spin_unlock(&gblcnt_mutex) ;
31}

33 void count_unregister_thread(int nthreadsexpected)
34 {

35 int idx = smp_thread_id();

36

37 spin_lock(&gblcnt_mutex) ;

38 globalize_count();

39 counterp[idx] = NULL;

40 spin_unlock(&gblcnt_mutex) ;

the preceding algorithms, with changes required to handle the merged counterandmax
variable. Detailed analysis of the code is left as an exercise for the reader, as it is
with the count_register_thread() function starting on line 24 and the count_
unregister_thread() function starting on line 33.

Quick Quiz 5.44: Given that the atomic_set () primitive does a simple store to
the specified atomic_t, how can line 21 of balance_count () in Listing 5.15 work
correctly in face of concurrent flush_local_count () updates to this variable? ll

The next section qualitatively evaluates this design.

5.4.2 Atomic Limit Counter Discussion

This is the first implementation that actually allows the counter to be run all the way
to either of its limits, but it does so at the expense of adding atomic operations to the
fastpaths, which slow down the fastpaths significantly on some systems. Although some
workloads might tolerate this slowdown, it is worthwhile looking for algorithms with
better read-side performance. One such algorithm uses a signal handler to steal counts
from other threads. Because signal handlers run in the context of the signaled thread,
atomic operations are not necessary, as shown in the next section.

Quick Quiz 5.45: But signal handlers can be migrated to some other CPU while

88 CHAPTER 5. COUNTING

done
ounting

Figure 5.7: Signal-Theft State Machine

running. Doesn’t this possibility require that atomic instructions and memory barriers are
required to reliably communicate between a thread and a signal handler that interrupts
that thread? Wl

5.4.3 Signal-Theft Limit Counter Design

Even though per-thread state will now be manipulated only by the corresponding thread,
there will still need to be synchronization with the signal handlers. This synchronization
is provided by the state machine shown in Figure 5.7. The state machine starts out in
the IDLE state, and when add_count () or sub_count () find that the combination
of the local thread’s count and the global count cannot accommodate the request, the
corresponding slowpath sets each thread’s theft state to REQ (unless that thread has no
count, in which case it transitions directly to READY). Only the slowpath, which holds
the gblcnt_mutex lock, is permitted to transition from the IDLE state, as indicated by
the green color.> The slowpath then sends a signal to each thread, and the corresponding
signal handler checks the corresponding thread’s theft and counting variables. If the
theft state is not REQ, then the signal handler is not permitted to change the state, and
therefore simply returns. Otherwise, if the counting variable is set, indicating that the
current thread’s fastpath is in progress, the signal handler sets the theft state to ACK,
otherwise to READY.

If the theft state is ACK, only the fastpath is permitted to change the theft state,
as indicated by the blue color. When the fastpath completes, it sets the theft state to
READY.

Once the slowpath sees a thread’s theft state is READY, the slowpath is permitted
to steal that thread’s count. The slowpath then sets that thread’s theft state to IDLE.

Quick Quiz 5.46: In Figure 5.7, why is the REQ theft state colored red? ll

Quick Quiz 5.47: In Figure 5.7, what is the point of having separate REQ and ACK
theft states? Why not simplify the state machine by collapsing them into a single

3 For those with black-and-white versions of this book, IDLE and READY are green, REQ is red, and
ACK is blue.

5.4. EXACT LIMIT COUNTERS 89

Listing 5.16: Signal-Theft Limit Counter Data

| #define THEFT_IDLE O
2 #define THEFT_REQ 1
3 #define THEFT_ACK 2
4
5

#define THEFT_READY 3

6 int __thread theft = THEFT_IDLE;

7 int __thread counting = 0;

8 unsigned long __thread counter = 0;

9 unsigned long __thread countermax = 0;

10 unsigned long globalcountmax = 10000;

11 unsigned long globalcount = 0;

12 unsigned long globalreserve = 0;

13 unsigned long *counterp[NR_THREADS] = { NULL };
14 unsigned long *countermaxp[NR_THREADS] = { NULL };
15 int *theftp[NR_THREADS] = { NULL };

16 DEFINE_SPINLOCK(gblcnt_mutex);

17 #define MAX_COUNTERMAX 100

REQACK state? Then whichever of the signal handler or the fastpath gets there first
could set the state to READY. H

5.4.4 Signal-Theft Limit Counter Implementation

Listing 5.16 (count_lim_sig. c) shows the data structures used by the signal-theft
based counter implementation. Lines 1-7 define the states and values for the per-thread
theft state machine described in the preceding section. Lines 8-17 are similar to earlier
implementations, with the addition of lines 14 and 15 to allow remote access to a
thread’s countermax and theft variables, respectively.

Listing 5.17 shows the functions responsible for migrating counts between per-thread
variables and the global variables. Lines 1-7 shows globalize_count (), which is
identical to earlier implementations. Lines 9-19 shows flush_local_count_sig(),
which is the signal handler used in the theft process. Lines 11 and 12 check to see if
the theft state is REQ, and, if not returns without change. Line 13 executes a memory
barrier to ensure that the sampling of the theft variable happens before any change to
that variable. Line 14 sets the theft state to ACK, and, if line 15 sees that this thread’s
fastpaths are not running, line 16 sets the theft state to READY.

Quick Quiz 5.48: In Listing 5.17 function flush_local_count_sig(), why
are there READ_ONCE() and WRITE_ONCE() wrappers around the uses of the theft
per-thread variable? ll

Lines 21-49 shows flush_local_count (), which is called from the slowpath to
flush all threads’ local counts. The loop spanning lines 26-34 advances the theft state
for each thread that has local count, and also sends that thread a signal. Line 27 skips
any non-existent threads. Otherwise, line 28 checks to see if the current thread holds
any local count, and, if not, line 29 sets the thread’s theft state to READY and line 30
skips to the next thread. Otherwise, line 32 sets the thread’s theft state to REQ and
line 33 sends the thread a signal.

Quick Quiz 5.49: In Listing 5.17, why is it safe for line 28 to directly access the
other thread’s countermax variable? ll

Quick Quiz 5.50: In Listing 5.17, why doesn’t line 33 check for the current thread
sending itself a signal? Il

Quick Quiz 5.51: The code in Listing 5.17, works with GCC and POSIX. What
would be required to make it also conform to the ISO C standard? H

The loop spanning lines 35-48 waits until each thread reaches READY state, then

90 CHAPTER 5. COUNTING

Listing 5.17: Signal-Theft Limit Counter Value-Migration Functions

| static void globalize_count(void)
2 {

3 globalcount += counter;

4 counter = 0;

5 globalreserve -= countermax;

6 countermax = 0O;

7

8

9

¥
static void flush_local_count_sig(int unused)
10 {
11 if (READ_ONCE(theft) != THEFT_REQ)
12 return;
13 smp_mb();

14 WRITE_ONCE(theft, THEFT_ACK);
15 if (!counting) {

16 WRITE_ONCE(theft, THEFT_READY);
17}

18 smp_mb () ;

19 }

20

21 static void flush_local_count(void)
2 {

23 int t;

24 thread_id_t tid;
25
26 for_each_tid(t, tid)

27 if (theftp[t] != NULL) {

28 if (*countermaxp[t] == 0) {

29 WRITE_ONCE(*theftp[t], THEFT_READY);
30 continue;

31 }

32 WRITE_ONCE(*theftp[t], THEFT_REQ);

33 pthread_kill(tid, SIGUSR1);

34 }

35 for_each_tid(t, tid) {

36 if (theftp[t] == NULL)

37 continue;

38 while (READ_ONCE(*theftp[t]) != THEFT_READY) {
39 poll(NULL, 0, 1);

40 if (READ_ONCE(xtheftp[t]) == THEFT_REQ)
41 pthread_kill(tid, SIGUSR1);

42 }

43 globalcount += *counterpl[t];

44 xcounterp[t] = 0;

45 globalreserve -= *countermaxpl[t];

46 *countermaxp[t] = 0;

47 WRITE_ONCE(*theftp[t], THEFT_IDLE);
4}

49 }

50

51 static void balance_count(void)

52 {

53 countermax = globalcountmax - globalcount -
54 globalreserve;

55 countermax /= num_online_threads();
56 if (countermax > MAX_COUNTERMAX)

57 countermax = MAX_COUNTERMAX;

58 globalreserve += countermax;

59 counter = countermax / 2;

60 if (counter > globalcount)

61 counter = globalcount;

62 globalcount -= counter;

5.4. EXACT LIMIT COUNTERS 91

Listing 5.18: Signal-Theft Limit Counter Add Function

int add_count (unsigned long delta)
{
int fastpath = 0;

barrier();
if (READ_ONCE(theft) <= THEFT_REQ &&
countermax - counter >= delta) {
9 WRITE_ONCE(counter, counter + delta);
10 fastpath = 1;
o}
12 barrier();
13 WRITE_ONCE(counting, 0);
14 barrier();
15 if (READ_ONCE(theft) == THEFT_ACK) {

1
2
3
4
5 WRITE_ONCE(counting, 1);
6
7
8

16 smp_mb () ;

17 WRITE_ONCE(theft, THEFT_READY);
8}

19 if (fastpath)

20 return 1;

21 spin_lock(&gblcnt_mutex) ;
2 globalize_count();
23 if (globalcountmax - globalcount -

24 globalreserve < delta) {

25 flush_local_count();

26 if (globalcountmax - globalcount -
27 globalreserve < delta) {

28 spin_unlock(&gblcnt_mutex) ;

29 return 0;

30 }

31 }

32 globalcount += delta;

33 balance_count();

34 spin_unlock(&gblcnt_mutex) ;
35 return 1;

36 }

steals that thread’s count. Lines 36-37 skip any non-existent threads, and the loop
spanning lines 38-42 wait until the current thread’s theft state becomes READY.
Line 39 blocks for a millisecond to avoid priority-inversion problems, and if line 40
determines that the thread’s signal has not yet arrived, line 41 resends the signal.
Execution reaches line 43 when the thread’s theft state becomes READY, so lines 43-
46 do the thieving. Line 47 then sets the thread’s theft state back to IDLE.

Quick Quiz 5.52: In Listing 5.17, why does line 41 resend the signal? ll

Lines 51-63 show balance_count (), which is similar to that of earlier examples.

Listing 5.18 shows the add_count () function. The fastpath spans lines 5-20, and
the slowpath lines 21-35. Line 5 sets the per-thread counting variable to 1 so that
any subsequent signal handlers interrupting this thread will set the theft state to ACK
rather than READY, allowing this fastpath to complete properly. Line 6 prevents the
compiler from reordering any of the fastpath body to precede the setting of counting.
Lines 7 and 8 check to see if the per-thread data can accommodate the add_count ()
and if there is no ongoing theft in progress, and if so line 9 does the fastpath addition
and line 10 notes that the fastpath was taken.

In either case, line 12 prevents the compiler from reordering the fastpath body to
follow line 13, which permits any subsequent signal handlers to undertake theft. Line 14
again disables compiler reordering, and then line 15 checks to see if the signal handler
deferred the theft state-change to READY, and, if so, line 16 executes a memory
barrier to ensure that any CPU that sees line 17 setting state to READY also sees the
effects of line 9. If the fastpath addition at line 9 was executed, then line 20 returns

92 CHAPTER 5. COUNTING

Listing 5.19: Signal-Theft Limit Counter Subtract Function

int sub_count(unsigned long delta)
{
int fastpath = 0;

barrier();
if (READ_ONCE(theft) <= THEFT_REQ &&
counter >= delta) {
WRITE_ONCE(counter, counter - delta);
10 fastpath = 1;
o}
12 barrier();
13 WRITE_ONCE(counting, 0);
14 barrier();
15 if (READ_ONCE(theft) == THEFT_ACK) {

1
2
3
4
5 WRITE_ONCE(counting, 1);
6
7
8
9

16 smp_mb() ;

17 WRITE_ONCE(theft, THEFT_READY);
18 X

19 if (fastpath)

20 return 1;

21 spin_lock(&gblcnt_mutex);
2 globalize_count();
23 if (globalcount < delta) {

24 flush_local_count();

25 if (globalcount < delta) {

26 spin_unlock(&gblcnt_mutex) ;
27 return 0O;

28 }

29 3}

30 globalcount -= delta;

31 balance_count();

32 spin_unlock(&gblcnt_mutex) ;
33 return 1;

Listing 5.20: Signal-Theft Limit Counter Read Function

| unsigned long read_count(void)

2 {

int t;
unsigned long sum;

sum = globalcount;
for_each_thread(t)
if (counterp[t] != NULL)
10 sum += READ_ONCE (*counterp[t]);
11 spin_unlock(&gblcnt_mutex) ;
12 return sum;

3
4
5
6 spin_lock(&gblcnt_mutex);
5
8
9

Success.

Otherwise, we fall through to the slowpath starting at line 21. The structure of the
slowpath is similar to those of earlier examples, so its analysis is left as an exercise
to the reader. Similarly, the structure of sub_count () on Listing 5.19 is the same as
that of add_count (), so the analysis of sub_count () is also left as an exercise for the
reader, as is the analysis of read_count () in Listing 5.20.

Lines 1-12 of Listing 5.21 show count_init (), which set up flush_local_
count_sig() as the signal handler for SIGUSR1, enabling the pthread_kill () calls
in flush_local_count () to invoke flush_local_count_sig(). The code for
thread registry and unregistry is similar to that of earlier examples, so its analysis
is left as an exercise for the reader.

5.4. EXACT LIMIT COUNTERS 93

Listing 5.21: Signal-Theft Limit Counter Initialization Functions

| void count_init(void)

2 {

3 struct sigaction sa;

4

5 sa.sa_handler = flush_local_count_sig;
6 sigemptyset(&sa.sa_mask);

7 sa.sa_flags = 0;

8 if (sigaction(SIGUSR1, &sa, NULL) != 0) {
9 perror("sigaction");

10 exit (EXIT_FAILURE);

o}

12}

13

14 void count_register_thread(void)
15 {

16 int idx = smp_thread_id();

17

18 spin_lock(&gblcnt_mutex) ;

19 counterp[idx] = &counter;

20 countermaxp[idx] = &countermax;
21 theftp[idx] = &theft;

2 spin_unlock(&gblcnt_mutex) ;

23 }

24

25 void count_unregister_thread(int nthreadsexpected)
2% {

27 int idx = smp_thread_id();

28

29 spin_lock(&gblcnt_mutex) ;

30 globalize_count();

31 counterp[idx] = NULL;

32 countermaxp[idx] = NULL;

33 theftp[idx] = NULL;

34 spin_unlock(&gblcnt_mutex) ;

35)

5.4.5 Signal-Theft Limit Counter Discussion

The signal-theft implementation runs more than twice as fast as the atomic implementa-
tion on my Intel Core Duo laptop. Is it always preferable?

The signal-theft implementation would be vastly preferable on Pentium-4 systems,
given their slow atomic instructions, but the old 80386-based Sequent Symmetry sys-
tems would do much better with the shorter path length of the atomic implementation.
However, this increased update-side performance comes at the prices of higher read-side
overhead: Those POSIX signals are not free. If ultimate performance is of the essence,
you will need to measure them both on the system that your application is to be deployed
on.

Quick Quiz 5.53: Not only are POSIX signals slow, sending one to each thread
simply does not scale. What would you do if you had (say) 10,000 threads and needed
the read side to be fast? H

This is but one reason why high-quality APIs are so important: they permit imple-
mentations to be changed as required by ever-changing hardware performance charac-
teristics.

Quick Quiz 5.54: What if you want an exact limit counter to be exact only for its
lower limit, but to allow the upper limit to be inexact? l

94 CHAPTER 5. COUNTING

5.5 Applying Specialized Parallel Counters

Although the exact limit counter implementations in Section 5.4 can be very useful, they
are not much help if the counter’s value remains near zero at all times, as it might when
counting the number of outstanding accesses to an I/O device. The high overhead of
such near-zero counting is especially painful given that we normally don’t care how
many references there are. As noted in the removable I/O device access-count problem
posed by Quick Quiz 5.5, the number of accesses is irrelevant except in those rare cases
when someone is actually trying to remove the device.

One simple solution to this problem is to add a large “bias” (for example, one
billion) to the counter in order to ensure that the value is far enough from zero that
the counter can operate efficiently. When someone wants to remove the device, this
bias is subtracted from the counter value. Counting the last few accesses will be quite
inefficient, but the important point is that the many prior accesses will have been counted
at full speed.

Quick Quiz 5.55: What else had you better have done when using a biased counter?
]

Although a biased counter can be quite helpful and useful, it is only a partial
solution to the removable I/O device access-count problem called out on page 65. When
attempting to remove a device, we must not only know the precise number of current
I/O accesses, we also need to prevent any future accesses from starting. One way to
accomplish this is to read-acquire a reader-writer lock when updating the counter, and to
write-acquire that same reader-writer lock when checking the counter. Code for doing
I/O might be as follows:

read_lock(&mylock) ;

if (removing) {
read_unlock(&mylock) ;
cancel_io();

} else {
add_count (1) ;
read_unlock(&mylock) ;
do_io();
sub_count (1) ;

S 0 % w9 E W N

Line 1 read-acquires the lock, and either line 3 or 7 releases it. Line 2 checks to
see if the device is being removed, and, if so, line 3 releases the lock and line 4 cancels
the I/O, or takes whatever action is appropriate given that the device is to be removed.
Otherwise, line 6 increments the access count, line 7 releases the lock, line 8 performs
the I/0O, and line 9 decrements the access count.

Quick Quiz 5.56: This is ridiculous! We are read-acquiring a reader-writer lock to
update the counter? What are you playing at??? ll

The code to remove the device might be as follows:

write_lock(&mylock) ;

removing = 1;

sub_count (mybias) ;

write_unlock(&mylock) ;

while (read_count() !'= 0) {
poll(NULL, 0, 1);

}

remove_device();

% 9 wm AW —

5.6. PARALLEL COUNTING DISCUSSION 95

Table 5.1: Statistical Counter Performance on POWER6

Reads (ns)
Algorithm Section Updates (ns) 1 Core 32 Cores
count_stat.c 522 11.5 408 409
count_stat_eventual.c 523 11.6 1 1
count_end.c 5.2.4 6.3 389 51,200
count_end_rcu.c 13.3.1 5.7 354 501

Line 1 write-acquires the lock and line 4 releases it. Line 2 notes that the device is
being removed, and the loop spanning lines 5-7 wait for any I/O operations to complete.
Finally, line 8 does any additional processing needed to prepare for device removal.

Quick Quiz 5.57: What other issues would need to be accounted for in a real
system? H

5.6 Parallel Counting Discussion

This chapter has presented the reliability, performance, and scalability problems with
traditional counting primitives. The C-language ++ operator is not guaranteed to function
reliably in multithreaded code, and atomic operations to a single variable neither perform
nor scale well. This chapter therefore presented a number of counting algorithms that
perform and scale extremely well in certain special cases.

It is well worth reviewing the lessons from these counting algorithms. To that
end, Section 5.6.1 summarizes performance and scalability, Section 5.6.2 discusses the
need for specialization, and finally, Section 5.6.3 enumerates lessons learned and calls
attention to later chapters that will expand on these lessons.

5.6.1 Parallel Counting Performance

Table 5.1 shows the performance of the four parallel statistical counting algorithms.
All four algorithms provide near-perfect linear scalability for updates. The per-thread-
variable implementation (count_end.c) is significantly faster on updates than the
array-based implementation (count_stat. c), but is slower at reads on large numbers
of core, and suffers severe lock contention when there are many parallel readers. This
contention can be addressed using the deferred-processing techniques introduced in
Chapter 9, as shown on the count_end_rcu. c row of Table 5.1. Deferred processing
also shines on the count_stat_eventual. c row, courtesy of eventual consistency.

Quick Quiz 5.58: On the count_stat.c row of Table 5.1, we see that the read-
side scales linearly with the number of threads. How is that possible given that the more
threads there are, the more per-thread counters must be summed up? l

Quick Quiz 5.59: Even on the last row of Table 5.1, the read-side performance of
these statistical counter implementations is pretty horrible. So why bother with them? Hl

Table 5.2 shows the performance of the parallel limit-counting algorithms. Exact
enforcement of the limits incurs a substantial performance penalty, although on this
4.7 GHz POWERG system that penalty can be reduced by substituting signals for atomic
operations. All of these implementations suffer from read-side lock contention in the

96 CHAPTER 5. COUNTING

Table 5.2: Limit Counter Performance on POWERG6

Reads (ns)
Algorithm Section Exact? Updates (ns) 1 Core 64 Cores
count_lim.c 5.3.2 N 3.6 375 50,700
count_lim_app.c 534 N 11.7 369 51,000
count_lim_atomic.c 5.4.1 Y 51.4 427 49400
count_lim_sig.c 5.4.4 Y 10.2 370 54,000

face of concurrent readers.

Quick Quiz 5.60: Given the performance data shown in Table 5.2, we should
always prefer signals over atomic operations, right? ll

Quick Quiz 5.61: Can advanced techniques be applied to address the lock con-
tention for readers seen in Table 5.27 H

In short, this chapter has demonstrated a number of counting algorithms that perform
and scale extremely well in a number of special cases. But must our parallel counting
be confined to special cases? Wouldn’t it be better to have a general algorithm that
operated efficiently in all cases? The next section looks at these questions.

5.6.2 Parallel Counting Specializations

The fact that these algorithms only work well in their respective special cases might
be considered a major problem with parallel programming in general. After all, the
C-language ++ operator works just fine in single-threaded code, and not just for special
cases, but in general, right?

This line of reasoning does contain a grain of truth, but is in essence misguided.
The problem is not parallelism as such, but rather scalability. To understand this, first
consider the C-language ++ operator. The fact is that it does not work in general, only
for a restricted range of numbers. If you need to deal with 1,000-digit decimal numbers,
the C-language ++ operator will not work for you.

Quick Quiz 5.62: The ++ operator works just fine for 1,000-digit numbers! Haven’t
you heard of operator overloading??? ll

This problem is not specific to arithmetic. Suppose you need to store and query
data. Should you use an ASCII file? XML? A relational database? A linked list? A
dense array? A B-tree? A radix tree? Or one of the plethora of other data structures and
environments that permit data to be stored and queried? It depends on what you need
to do, how fast you need it done, and how large your data set is—even on sequential
systems.

Similarly, if you need to count, your solution will depend on how large of numbers
you need to work with, how many CPUs need to be manipulating a given number
concurrently, how the number is to be used, and what level of performance and scalability
you will need.

Nor is this problem specific to software. The design for a bridge meant to allow
people to walk across a small brook might be a simple as a single wooden plank. But
you would probably not use a plank to span the kilometers-wide mouth of the Columbia
River, nor would such a design be advisable for bridges carrying concrete trucks. In
short, just as bridge design must change with increasing span and load, so must software
design change as the number of CPUs increases. That said, it would be good to automate

5.6. PARALLEL COUNTING DISCUSSION 97

this process, so that the software adapts to changes in hardware configuration and in
workload. There has in fact been some research into this sort of automation [AHS*03,
SAH'*03], and the Linux kernel does some boot-time reconfiguration, including limited
binary rewriting. This sort of adaptation will become increasingly important as the
number of CPUs on mainstream systems continues to increase.

In short, as discussed in Chapter 3, the laws of physics constrain parallel software
just as surely as they constrain mechanical artifacts such as bridges. These constraints
force specialization, though in the case of software it might be possible to automate the
choice of specialization to fit the hardware and workload in question.

Of course, even generalized counting is quite specialized. We need to do a great
number of other things with computers. The next section relates what we have learned
from counters to topics taken up later in this book.

5.6.3 Parallel Counting Lessons

The opening paragraph of this chapter promised that our study of counting would
provide an excellent introduction to parallel programming. This section makes explicit
connections between the lessons from this chapter and the material presented in a
number of later chapters.

The examples in this chapter have shown that an important scalability and perfor-
mance tool is partitioning. The counters might be fully partitioned, as in the statistical
counters discussed in Section 5.2, or partially partitioned as in the limit counters dis-
cussed in Sections 5.3 and 5.4. Partitioning will be considered in far greater depth
in Chapter 6, and partial parallelization in particular in Section 6.4, where it is called
parallel fastpath.

Quick Quiz 5.63: But if we are going to have to partition everything, why bother
with shared-memory multithreading? Why not just partition the problem completely
and run as multiple processes, each in its own address space? Hl

The partially partitioned counting algorithms used locking to guard the global data,
and locking is the subject of Chapter 7. In contrast, the partitioned data tended to be fully
under the control of the corresponding thread, so that no synchronization whatsoever
was required. This data ownership will be introduced in Section 6.3.4 and discussed in
more detail in Chapter 8.

Because integer addition and subtraction are extremely cheap operations compared
to typical synchronization operations, achieving reasonable scalability requires synchro-
nization operations be used sparingly. One way of achieving this is to batch the addition
and subtraction operations, so that a great many of these cheap operations are handled
by a single synchronization operation. Batching optimizations of one sort or another are
used by each of the counting algorithms listed in Tables 5.1 and 5.2.

Finally, the eventually consistent statistical counter discussed in Section 5.2.3
showed how deferring activity (in that case, updating the global counter) can pro-
vide substantial performance and scalability benefits. This approach allows common
case code to use much cheaper synchronization operations than would otherwise be
possible. Chapter 9 will examine a number of additional ways that deferral can improve
performance, scalability, and even real-time response.

Summarizing the summary:

1. Partitioning promotes performance and scalability.

2. Partial partitioning, that is, partitioning applied only to common code paths, works
almost as well.

98

CHAPTER 5. COUNTING

/ Batch
’_*

\

Partition

AN J

Figure 5.8: Optimization and the Four Parallel-Programming Tasks

. Partial partitioning can be applied to code (as in Section 5.2’s statistical counters’

partitioned updates and non-partitioned reads), but also across time (as in Sec-
tion 5.3’s and Section 5.4’s limit counters running fast when far from the limit,
but slowly when close to the limit).

. Partitioning across time often batches updates locally in order to reduce the num-

ber of expensive global operations, thereby decreasing synchronization overhead,
in turn improving performance and scalability. All the algorithms shown in
Tables 5.1 and 5.2 make heavy use of batching.

. Read-only code paths should remain read-only: Spurious synchronization writes

to shared memory kill performance and scalability, as seen in the count_end.c
row of Table 5.1.

. Judicious use of delay promotes performance and scalability, as seen in Sec-

tion 5.2.3.

. Parallel performance and scalability is usually a balancing act: Beyond a certain

point, optimizing some code paths will degrade others. The count_stat.c and
count_end_rcu.c rows of Table 5.1 illustrate this point.

. Different levels of performance and scalability will affect algorithm and data-

structure design, as do a large number of other factors. Figure 5.1 illustrates this
point: Atomic increment might be completely acceptable for a two-CPU system,
but be completely inadequate for an eight-CPU system.

Summarizing still further, we have the “big three” methods of increasing perfor-

mance and scalability, namely (1) partitioning over CPUs or threads, (2) batching
so that more work can be done by each expensive synchronization operations, and
(3) weakening synchronization operations where feasible. As a rough rule of thumb, you
should apply these methods in this order, as was noted earlier in the discussion of Fig-
ure 2.6 on page 19. The partitioning optimization applies to the “Resource Partitioning
and Replication” bubble, the batching optimization to the “Work Partitioning” bubble,
and the weakening optimization to the “Parallel Access Control” bubble, as shown in
Figure 5.8. Of course, if you are using special-purpose hardware such as digital signal
processors (DSPs), field-programmable gate arrays (FPGAs), or general-purpose graph-
ical processing units (GPGPUs), you may need to pay close attention to the “Interacting

5.6. PARALLEL COUNTING DISCUSSION 99

With Hardware” bubble throughout the design process. For example, the structure of a
GPGPU’s hardware threads and memory connectivity might richly reward very careful
partitioning and batching design decisions.

In short, as noted at the beginning of this chapter, the simplicity of counting have
allowed us to explore many fundamental concurrency issues without the distraction of
complex synchronization primitives or elaborate data structures. Such synchronization
primitives and data structures are covered in later chapters.

100 CHAPTER 5. COUNTING

Divide and rule.

Philip 11 of Macedon

Chapter 6

Partitioning and
Synchronization Design

This chapter describes how to design software to take advantage of the multiple CPUs
that are increasingly appearing in commodity systems. It does this by presenting a
number of idioms, or “design patterns” [Ale79, GHIV95, SSRBO00] that can help you
balance performance, scalability, and response time. As noted in earlier chapters, the
most important decision you will make when creating parallel software is how to carry
out the partitioning. Correctly partitioned problems lead to simple, scalable, and high-
performance solutions, while poorly partitioned problems result in slow and complex
solutions. This chapter will help you design partitioning into your code, with some
discussion of batching and weakening as well. The word “design” is very important:
You should partition first, batch second, weaken third, and code fourth. Changing this
order often leads to poor performance and scalability along with great frustration.

To this end, Section 6.1 presents partitioning exercises, Section 6.2 reviews partition-
ability design criteria, Section 6.3 discusses selecting an appropriate synchronization
granularity, Section 6.4 gives an overview of important parallel-fastpath designs that
provide speed and scalability in the common case with a simpler but less-scalable
fallback “slow path” for unusual situations, and finally Section 6.5 takes a brief look
beyond partitioning.

6.1 Partitioning Exercises

This section uses a pair of exercises (the classic Dining Philosophers problem and a
double-ended queue) to demonstrate the value of partitioning.

6.1.1 Dining Philosophers Problem

Figure 6.1 shows a diagram of the classic Dining Philosophers problem [Dij71]. This
problem features five philosophers who do nothing but think and eat a “very difficult
kind of spaghetti” which requires two forks to eat. A given philosopher is permitted to
use only the forks to his or her immediate right and left, and once a philosopher picks

101

102 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Figure 6.2: Partial Starvation Is Also Bad

up a fork, he or she will not put it down until sated.'

The object is to construct an algorithm that, quite literally, prevents starvation. One
starvation scenario would be if all of the philosophers picked up their leftmost forks
simultaneously. Because none of them would put down their fork until after they ate, and
because none of them may pick up their second fork until at least one has finished eating,
they all starve. Please note that it is not sufficient to allow at least one philosopher to
eat. As Figure 6.2 shows, starvation of even a few of the philosophers is to be avoided.

Dijkstra’s solution used a global semaphore, which works fine assuming negligible
communications delays, an assumption that became invalid in the late 1980s or early
1990s.2 Therefore, recent solutions number the forks as shown in Figure 6.3. Each
philosopher picks up the lowest-numbered fork next to his or her plate, then picks up
the highest-numbered fork. The philosopher sitting in the uppermost position in the

! Readers who have difficulty imagining a food that requires two forks are invited to instead think in
terms of chopsticks.

2 1t is all too easy to denigrate Dijkstra from the viewpoint of the year 2012, more than 40 years after the
fact. If you still feel the need to denigrate Dijkstra, my advice is to publish something, wait 40 years, and then
see how your words stood the test of time.

6.1. PARTITIONING EXERCISES 103

Figure 6.3: Dining Philosophers Problem, Textbook Solution

diagram thus picks up the leftmost fork first, then the rightmost fork, while the rest of the
philosophers instead pick up their rightmost fork first. Because two of the philosophers
will attempt to pick up fork 1 first, and because only one of those two philosophers will
succeed, there will be five forks available to four philosophers. At least one of these
four will be guaranteed to have two forks, and thus be able to proceed eating.

This general technique of numbering resources and acquiring them in numerical
order is heavily used as a deadlock-prevention technique. However, it is easy to imagine
a sequence of events that will result in only one philosopher eating at a time even though
all are hungry:

—_—

. P2 picks up fork 1, preventing P1 from taking a fork.
2. P3 picks up fork 2.

3. P4 picks up fork 3.

4. PS5 picks up fork 4.

5. P5 picks up fork 5 and eats.

6. P5 puts down forks 4 and 5.

N |

. P4 picks up fork 4 and eats.

In short, this algorithm can result in only one philosopher eating at a given time,
even when all five philosophers are hungry, despite the fact that there are more than
enough forks for two philosophers to eat concurrently.

Please think about ways of partitioning the Dining Philosophers Problem before
reading further.

104 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

(Intentional blank page)

6.1. PARTITIONING EXERCISES 105

Figure 6.4: Dining Philosophers Problem, Partitioned

One approach is shown in Figure 6.4, which includes four philosophers rather than
five to better illustrate the partition technique. Here the upper and rightmost philosophers
share a pair of forks, while the lower and leftmost philosophers share another pair of
forks. If all philosophers are simultaneously hungry, at least two will always be able to
eat concurrently. In addition, as shown in the figure, the forks can now be bundled so
that the pair are picked up and put down simultaneously, simplifying the acquisition and
release algorithms.

Quick Quiz 6.1: Is there a better solution to the Dining Philosophers Problem? W

This is an example of “horizontal parallelism” [Inm85] or “data parallelism”, so
named because there is no dependency among the pairs of philosophers. In a horizontally
parallel data-processing system, a given item of data would be processed by only one of
a replicated set of software components.

Quick Quiz 6.2: And in just what sense can this “horizontal parallelism” be said to
be “horizontal”? l

6.1.2 Double-Ended Queue

A double-ended queue is a data structure containing a list of elements that may be
inserted or removed from either end [Knu73]. It has been claimed that a lock-based
implementation permitting concurrent operations on both ends of the double-ended
queue is difficult [GroO7]. This section shows how a partitioning design strategy can
result in a reasonably simple implementation, looking at three general approaches in the
following sections.

6.1.2.1 Left- and Right-Hand Locks

One seemingly straightforward approach would be to use a doubly linked list with a
left-hand lock for left-hand-end enqueue and dequeue operations along with a right-hand
lock for right-hand-end operations, as shown in Figure 6.5. However, the problem with
this approach is that the two locks’ domains must overlap when there are fewer than
four elements on the list. This overlap is due to the fact that removing any given element

106 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Lock L Lock R
Header L Header R

Lock L Lock R
Header L | 0 I Header R

Lock L Lock R

HeaderL [=] 0 [S =] 1 [=] HeaderR

Lock L Lock R

Header L u - g ! Header R

Lock L Lock R

Header L u - ! ~| HeaderR

Figure 6.5: Double-Ended Queue With Left- and Right-Hand Locks

Lock L Lock R

Figure 6.6: Compound Double-Ended Queue

affects not only that element, but also its left- and right-hand neighbors. These domains
are indicated by color in the figure, with blue with downward stripes indicating the
domain of the left-hand lock, red with upward stripes indicating the domain of the
right-hand lock, and purple (with no stripes) indicating overlapping domains. Although
it is possible to create an algorithm that works this way, the fact that it has no fewer than
five special cases should raise a big red flag, especially given that concurrent activity at
the other end of the list can shift the queue from one special case to another at any time.
It is far better to consider other designs.

6.1.2.2 Compound Double-Ended Queue

One way of forcing non-overlapping lock domains is shown in Figure 6.6. Two separate
double-ended queues are run in tandem, each protected by its own lock. This means
that elements must occasionally be shuttled from one of the double-ended queues to
the other, in which case both locks must be held. A simple lock hierarchy may be used
to avoid deadlock, for example, always acquiring the left-hand lock before acquiring
the right-hand lock. This will be much simpler than applying two locks to the same
double-ended queue, as we can unconditionally left-enqueue elements to the left-hand
queue and right-enqueue elements to the right-hand queue. The main complication
arises when dequeuing from an empty queue, in which case it is necessary to:

1. If holding the right-hand lock, release it and acquire the left-hand lock.

6.1. PARTITIONING EXERCISES 107

DEQO DEQ2 | DEQ3

Lock 0 Lock2 | Lock 3

Index L

Index R

Lock L Lock R

Figure 6.7: Hashed Double-Ended Queue

2. Acquire the right-hand lock.
3. Rebalance the elements across the two queues.
4. Remove the required element if there is one.

5. Release both locks.

Quick Quiz 6.3: In this compound double-ended queue implementation, what
should be done if the queue has become non-empty while releasing and reacquiring the
lock?

The resulting code (Locktdeq. c) is quite straightforward. The rebalancing opera-
tion might well shuttle a given element back and forth between the two queues, wasting
time and possibly requiring workload-dependent heuristics to obtain optimal perfor-
mance. Although this might well be the best approach in some cases, it is interesting to
try for an algorithm with greater determinism.

6.1.2.3 Hashed Double-Ended Queue

One of the simplest and most effective ways to deterministically partition a data structure
is to hash it. It is possible to trivially hash a double-ended queue by assigning each
element a sequence number based on its position in the list, so that the first element left-
enqueued into an empty queue is numbered zero and the first element right-enqueued
into an empty queue is numbered one. A series of elements left-enqueued into an
otherwise-idle queue would be assigned decreasing numbers (-1, =2, =3, ...), while
a series of elements right-enqueued into an otherwise-idle queue would be assigned
increasing numbers (2, 3, 4, ...). A key point is that it is not necessary to actually
represent a given element’s number, as this number will be implied by its position in the
queue.

Given this approach, we assign one lock to guard the left-hand index, one to guard
the right-hand index, and one lock for each hash chain. Figure 6.7 shows the resulting
data structure given four hash chains. Note that the lock domains do not overlap, and
that deadlock is avoided by acquiring the index locks before the chain locks, and by
never acquiring more than one lock of each type (index or chain) at a time.

Each hash chain is itself a double-ended queue, and in this example, each holds
every fourth element. The uppermost portion of Figure 6.8 shows the state after a
single element (“R;”) has been right-enqueued, with the right-hand index having been
incremented to reference hash chain 2. The middle portion of this same figure shows
the state after three more elements have been right-enqueued. As you can see, the

108 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

R1

DEQO | DEQ1 | DEQ2 | DEQ3

Index L Index R

R4 R1 R2 Rs3

DEQO | DEQ1 | DEQ2 | DEQ 3

Index L Index R
R4 Rs Rs R3
Lo Ry Lo L_4

DEQO | DEQ1 | DEQ2 | DEQ3

Index L Index R

Figure 6.8: Hashed Double-Ended Queue After Insertions

indexes are back to their initial states (see Figure 6.7), however, each hash chain is
now non-empty. The lower portion of this figure shows the state after three additional
elements have been left-enqueued and an additional element has been right-enqueued.

From the last state shown in Figure 6.8, a left-dequeue operation would return
element “L_,” and leave the left-hand index referencing hash chain 2, which would
then contain only a single element (“R;”). In this state, a left-enqueue running concur-
rently with a right-enqueue would result in lock contention, but the probability of such
contention can be reduced to arbitrarily low levels by using a larger hash table.

Figure 6.9 shows how 16 elements would be organized in a four-hash-bucket parallel
double-ended queue. Each underlying single-lock double-ended queue holds a one-
quarter slice of the full parallel double-ended queue.

Listing 6.1 shows the corresponding C-language data structure, assuming an existing
struct deq that provides a trivially locked double-ended-queue implementation. This

6.1. PARTITIONING EXERCISES 109

Re| Rs | Re | Ry

Lo Ry Ra2 Rs3

Lg| L3 Lo | Ly

Leg| L7| Lg| Ls

Figure 6.9: Hashed Double-Ended Queue With 16 Elements

Listing 6.1: Lock-Based Parallel Double-Ended Queue Data Structure

1 struct pdeq {

2 spinlock_t llock;

int lidx;

spinlock_t rlock;

int ridx;

struct deq bkt [PDEQ_N_BKTS];

PO R

data structure contains the left-hand lock on line 2, the left-hand index on line 3, the
right-hand lock on line 4 (which is cache-aligned in the actual implementation), the
right-hand index on line 5, and, finally, the hashed array of simple lock-based double-
ended queues on line 6. A high-performance implementation would of course use
padding or special alignment directives to avoid false sharing.

Listing 6.2 (1ockhdeq. c) shows the implementation of the enqueue and dequeue
functions.® Discussion will focus on the left-hand operations, as the right-hand opera-
tions are trivially derived from them.

Lines 1-13 show pdeq_pop_1(), which left-dequeues and returns an element if
possible, returning NULL otherwise. Line 6 acquires the left-hand spinlock, and line 7
computes the index to be dequeued from. Line 8 dequeues the element, and, if line 9
finds the result to be non-NULL, line 10 records the new left-hand index. Either way,
line 11 releases the lock, and, finally, line 12 returns the element if there was one, or
NULL otherwise.

Lines 29-38 shows pdeq_push_1(), which left-enqueues the specified element.
Line 33 acquires the left-hand lock, and line 34 picks up the left-hand index. Line 35 left-
enqueues the specified element onto the double-ended queue indexed by the left-hand
index. Line 36 then updates the left-hand index and line 37 releases the lock.

As noted earlier, the right-hand operations are completely analogous to their left-
handed counterparts, so their analysis is left as an exercise for the reader.

Quick Quiz 6.4: Is the hashed double-ended queue a good solution? Why or why
not? A

6.1.2.4 Compound Double-Ended Queue Revisited

This section revisits the compound double-ended queue, using a trivial rebalancing
scheme that moves all the elements from the non-empty queue to the now-empty queue.
Quick Quiz 6.5: Move all the elements to the queue that became empty? In what
possible universe is this brain-dead solution in any way optimal??? ll
In contrast to the hashed implementation presented in the previous section, the
compound implementation will build on a sequential implementation of a double-ended

3 One could easily create a polymorphic implementation in any number of languages, but doing so is left
as an exercise for the reader.

110 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Listing 6.2: Lock-Based Parallel Double-Ended Queue Implementation

1 struct cds_list_head *pdeq_pop_l(struct pdeq *d)
2 {

3 struct cds_list_head x*e;

4 int i;

5

6 spin_lock(&d->1lock) ;

i = moveright(d->1idx);

8 e = deq_pop_l(&d->bkt[il);
9 if (e !'= NULL)

-

10 d->1lidx = i;

11 spin_unlock(&d->1lock) ;

12 return e;

13}

14

15 struct cds_list_head *pdeq_pop_r(struct pdeq *d)
16 {

17 struct cds_list_head x*e;

18 int i;

20 spin_lock(&d->rlock) ;

21 i = moveleft(d->ridx);

2 e = deq_pop_r(&d->bkt[il);
23 if (e != NULL)

24 d->ridx = i;

25 spin_unlock(&d->rlock) ;

26 return e;

27 }

28

29 void pdeq_push_l(struct cds_list_head *e, struct pdeq *d)
30 {

31 int i;

33 spin_lock(&d->1lock) ;

34 i = d->1lidx;

35 deq_push_1(e, &d->bkt[il);
36 d->1lidx = moveleft(d->1lidx);
37 spin_unlock(&d->1lock) ;

38 }

40 void pdeq_push_r(struct cds_list_head *e, struct pdeq *d)
41

42 int i;

43

44 spin_lock(&d->rlock) ;

45 i = d->ridx;

46 deq_push_r(e, &d->bkt[il);

47 d->ridx = moveright(d->ridx);

48 spin_unlock(&d->rlock) ;

49 ¥

6.1. PARTITIONING EXERCISES 111

Listing 6.3: Compound Parallel Double-Ended Queue Implementation

struct cds_list_head *pdeq_pop_l(struct pdeq *d)
{

struct cds_list_head *e;

e = deq_pop_l(&d->1deq);
if (e == NULL) {
spin_lock(&d->rlock) ;

1

2

3

4

5 spin_lock(&d->1lock) ;

6

7

8

9 e = deq_pop_1(&d->rdeq) ;

10 cds_list_splice(&d->rdeq.chain, &d->ldeq.chain);
11 CDS_INIT_LIST_HEAD(&d->rdeq.chain);

12 spin_unlock(&d->rlock) ;

B3}

14 spin_unlock(&d->1lock) ;

15 return e;

16 }

18 struct cds_list_head *pdeq_pop_r(struct pdeq *d)
19 {

20 struct cds_list_head *e;

2 spin_lock(&d->rlock) ;
23 e = deq_pop_r(&d->rdeq);
24 if (e == NULL) {

25 spin_unlock(&d->rlock) ;

26 spin_lock(&d->1lock);

27 spin_lock(&d->rlock);

28 e = deq_pop_r(&d->rdeq) ;

29 if (e == NULL) {

30 e = deq_pop_r(&d->1deq);

31 cds_list_splice(&d->ldeq.chain, &d->rdeq.chain);
32 CDS_INIT_LIST_HEAD(&d->1ldeq.chain);
33 }

34 spin_unlock(&d->1lock) ;

35}

36 spin_unlock(&d->rlock);
37 return e;

38)
40 void pdeq_push_l(struct cds_list_head *e, struct pdeq *d)

2 spin_lock(&d->1lock) ;

43 deq_push_1(e, &d->1deq);
44 spin_unlock(&d->1lock) ;
45}

47 void pdeq_push_r(struct cds_list_head *e, struct pdeq *d)
49 spin_lock(&d->rlock) ;

50 deq_push_r(e, &d->rdeq);
51 spin_unlock(&d->rlock) ;

queue that uses neither locks nor atomic operations.

Listing 6.3 shows the implementation. Unlike the hashed implementation, this
compound implementation is asymmetric, so that we must consider the pdeq_pop_1()
and pdeq_pop_r () implementations separately.

Quick Quiz 6.6: Why can’t the compound parallel double-ended queue implemen-
tation be symmetric? ll

The pdeq_pop_1() implementation is shown on lines 1-16 of the figure. Line 5
acquires the left-hand lock, which line 14 releases. Line 6 attempts to left-dequeue an
element from the left-hand underlying double-ended queue, and, if successful, skips
lines 8-13 to simply return this element. Otherwise, line 8 acquires the right-hand
lock, line 9 left-dequeues an element from the right-hand queue, and line 10 moves any
remaining elements on the right-hand queue to the left-hand queue, line 11 initializes

112 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

the right-hand queue, and line 12 releases the right-hand lock. The element, if any, that
was dequeued on line 9 will be returned.

The pdeq_pop_r () implementation is shown on lines 18-38 of the figure. As
before, line 22 acquires the right-hand lock (and line 36 releases it), and line 23 attempts
to right-dequeue an element from the right-hand queue, and, if successful, skips lines 25-
35 to simply return this element. However, if line 24 determines that there was no
element to dequeue, line 25 releases the right-hand lock and lines 26-27 acquire both
locks in the proper order. Line 28 then attempts to right-dequeue an element from the
right-hand list again, and if line 29 determines that this second attempt has failed, line 30
right-dequeues an element from the left-hand queue (if there is one available), line 31
moves any remaining elements from the left-hand queue to the right-hand queue, and
line 32 initializes the left-hand queue. Either way, line 34 releases the left-hand lock.

Quick Quiz 6.7: Why is it necessary to retry the right-dequeue operation on line 28
of Listing 6.3?

Quick Quiz 6.8: Surely the left-hand lock must sometimes be available!!! So why
is it necessary that line 25 of Listing 6.3 unconditionally release the right-hand lock? l

The pdeq_push_1() implementation is shown on lines 40-45 of Listing 6.3. Line 42
acquires the left-hand spinlock, line 43 left-enqueues the element onto the left-hand
queue, and finally line 44 releases the lock. The pdeq_push_r() implementation
(shown on lines 47-52) is quite similar.

Quick Quiz 6.9: But in the case where data is flowing in only one direction, the
algorithm shown in Listing 6.3 will have both ends attempting to acquire the same lock
whenever the consuming end empties its underlying double-ended queue. Doesn’t that
mean that sometimes this algorithm fails to provide concurrent access to both ends of
the queue even when the queue contains an arbitrarily large number of elements? l

6.1.2.5 Double-Ended Queue Discussion

The compound implementation is somewhat more complex than the hashed variant
presented in Section 6.1.2.3, but is still reasonably simple. Of course, a more intelligent
rebalancing scheme could be arbitrarily complex, but the simple scheme shown here
has been shown to perform well compared to software alternatives [DCW*11] and even
compared to algorithms using hardware assist [DLM™*10]. Nevertheless, the best we
can hope for from such a scheme is 2x scalability, as at most two threads can be holding
the dequeue’s locks concurrently. This limitation also applies to algorithms based on
non-blocking synchronization, such as the compare-and-swap-based dequeue algorithm
of Michael [Mic03].*

Quick Quiz 6.10: Why are there not one but two solutions to the double-ended
queue problem? W

In fact, as noted by Dice et al. [DLM*10], an unsynchronized single-threaded
double-ended queue significantly outperforms any of the parallel implementations they
studied. Therefore, the key point is that there can be significant overhead enqueuing to
or dequeuing from a shared queue, regardless of implementation. This should come as
no surprise given the material in Chapter 3, given the strict FIFO nature of these queues.

Furthermore, these strict FIFO queues are strictly FIFO only with respect to lin-
earization points [HW90]? that are not visible to the caller, in fact, in these examples,

4 This paper is interesting in that it showed that special double-compare-and-swap (DCAS) instructions are
not needed for lock-free implementations of double-ended queues. Instead, the common compare-and-swap
(e.g., x86 cmpxchg) suffices.

3 In short, a linearization point is a single point within a given function where that function can be said

6.2. DESIGN CRITERIA 113

the linearization points are buried in the lock-based critical sections. These queues
are not strictly FIFO with respect to (say) the times at which the individual operations
started [HKLP12]. This indicates that the strict FIFO property is not all that valuable in
concurrent programs, and in fact, Kirsch et al. present less-strict queues that provide
improved performance and scalability [KLP12].® All that said, if you are pushing all
the data used by your concurrent program through a single queue, you really need to
rethink your overall design.

6.1.3 Partitioning Example Discussion

The optimal solution to the dining philosophers problem given in the answer to the
Quick Quiz in Section 6.1.1 is an excellent example of “horizontal parallelism” or “data
parallelism”. The synchronization overhead in this case is nearly (or even exactly)
zero. In contrast, the double-ended queue implementations are examples of “vertical
parallelism” or “pipelining”, given that data moves from one thread to another. The
tighter coordination required for pipelining in turn requires larger units of work to obtain
a given level of efficiency.

Quick Quiz 6.11: The tandem double-ended queue runs about twice as fast as
the hashed double-ended queue, even when I increase the size of the hash table to an
insanely large number. Why is that? ll

Quick Quiz 6.12: Is there a significantly better way of handling concurrency for
double-ended queues? H

These two examples show just how powerful partitioning can be in devising parallel
algorithms. Section 6.3.5 looks briefly at a third example, matrix multiply. However, all
three of these examples beg for more and better design criteria for parallel programs, a
topic taken up in the next section.

6.2 Design Criteria

One way to obtain the best performance and scalability is to simply hack away until
you converge on the best possible parallel program. Unfortunately, if your program is
other than microscopically tiny, the space of possible parallel programs is so huge that
convergence is not guaranteed in the lifetime of the universe. Besides, what exactly is
the “best possible parallel program”? After all, Section 2.2 called out no fewer than
three parallel-programming goals of performance, productivity, and generality, and
the best possible performance will likely come at a cost in terms of productivity and
generality. We clearly need to be able to make higher-level choices at design time in
order to arrive at an acceptably good parallel program before that program becomes
obsolete.

However, more detailed design criteria are required to actually produce a real-world
design, a task taken up in this section. This being the real world, these criteria often
conflict to a greater or lesser degree, requiring that the designer carefully balance the
resulting tradeofts.

to have taken effect. In this lock-based implementation, the linearization points can be said to be anywhere
within the critical section that does the work.

6 Nir Shavit produced relaxed stacks for roughly the same reasons [Shall]. This situation leads some to
believe that the linearization points are useful to theorists rather than developers, and leads others to wonder
to what extent the designers of such data structures and algorithms were considering the needs of their users.

114 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

As such, these criteria may be thought of as the “forces” acting on the design, with
particularly good tradeoffs between these forces being called “design patterns” [Ale79,
GHIJV95].

The design criteria for attaining the three parallel-programming goals are speedup,
contention, overhead, read-to-write ratio, and complexity:

Speedup: As noted in Section 2.2, increased performance is the major reason to go to
all of the time and trouble required to parallelize it. Speedup is defined to be the
ratio of the time required to run a sequential version of the program to the time
required to run a parallel version.

Contention: If more CPUs are applied to a parallel program than can be kept busy
by that program, the excess CPUs are prevented from doing useful work by
contention. This may be lock contention, memory contention, or a host of other
performance killers.

Work-to-Synchronization Ratio: A uniprocessor, single-threaded, non-preemptible,
and non-interruptible’ version of a given parallel program would not need any
synchronization primitives. Therefore, any time consumed by these primitives
(including communication cache misses as well as message latency, locking
primitives, atomic instructions, and memory barriers) is overhead that does not
contribute directly to the useful work that the program is intended to accomplish.
Note that the important measure is the relationship between the synchroniza-
tion overhead and the overhead of the code in the critical section, with larger
critical sections able to tolerate greater synchronization overhead. The work-to-
synchronization ratio is related to the notion of synchronization efficiency.

Read-to-Write Ratio: A data structure that is rarely updated may often be replicated
rather than partitioned, and furthermore may be protected with asymmetric syn-
chronization primitives that reduce readers’ synchronization overhead at the
expense of that of writers, thereby reducing overall synchronization overhead.
Corresponding optimizations are possible for frequently updated data structures,
as discussed in Chapter 5.

Complexity: A parallel program is more complex than an equivalent sequential pro-
gram because the parallel program has a much larger state space than does the
sequential program, although these larger state spaces can in some cases be easily
understood given sufficient regularity and structure. A parallel programmer must
consider synchronization primitives, messaging, locking design, critical-section
identification, and deadlock in the context of this larger state space.

This greater complexity often translates to higher development and maintenance
costs. Therefore, budgetary constraints can limit the number and types of modifi-
cations made to an existing program, since a given degree of speedup is worth
only so much time and trouble. Worse yet, added complexity can actually reduce
performance and scalability.

Therefore, beyond a certain point, there may be potential sequential optimizations
that are cheaper and more effective than parallelization. As noted in Section 2.2.1,
parallelization is but one performance optimization of many, and is furthermore
an optimization that applies most readily to CPU-based bottlenecks.

7 Either by masking interrupts or by being oblivious to them.

6.3. SYNCHRONIZATION GRANULARITY 115

These criteria will act together to enforce a maximum speedup. The first three criteria are
deeply interrelated, so the remainder of this section analyzes these interrelationships.®

Note that these criteria may also appear as part of the requirements specification.
For example, speedup may act as a relative desideratum (“the faster, the better”) or as
an absolute requirement of the workload (“the system must support at least 1,000,000
web hits per second”). Classic design pattern languages describe relative desiderata as
forces and absolute requirements as context.

An understanding of the relationships between these design criteria can be very
helpful when identifying appropriate design tradeoffs for a parallel program.

1. The less time a program spends in critical sections, the greater the potential
speedup. This is a consequence of Amdahl’s Law [Amd67] and of the fact that
only one CPU may execute within a given critical section at a given time.

More specifically, the fraction of time that the program spends in a given exclusive
critical section must be much less than the reciprocal of the number of CPUs for
the actual speedup to approach the number of CPUs. For example, a program
running on 10 CPUs must spend much less than one tenth of its time in the
most-restrictive critical section if it is to scale at all well.

2. Contention effects will consume the excess CPU and/or wallclock time should
the actual speedup be less than the number of available CPUs. The larger the
gap between the number of CPUs and the actual speedup, the less efficiently the
CPUs will be used. Similarly, the greater the desired efficiency, the smaller the
achievable speedup.

3. If the available synchronization primitives have high overhead compared to the
critical sections that they guard, the best way to improve speedup is to reduce
the number of times that the primitives are invoked (perhaps by batching critical
sections, using data ownership, using asymmetric primitives (see Section 9), or
by moving toward a more coarse-grained design such as code locking).

4. If the critical sections have high overhead compared to the primitives guarding
them, the best way to improve speedup is to increase parallelism by moving to
reader/writer locking, data locking, asymmetric, or data ownership.

5. If the critical sections have high overhead compared to the primitives guarding
them and the data structure being guarded is read much more often than modi-
fied, the best way to increase parallelism is to move to reader/writer locking or
asymmetric primitives.

6. Many changes that improve SMP performance, for example, reducing lock con-
tention, also improve real-time latencies [McKO05c].

Quick Quiz 6.13: Don’t all these problems with critical sections mean that we
should just always use non-blocking synchronization [Her90], which don’t have critical
sections? H

116 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

SPSTR
Sequential
| Program |
«
Partition Batch
S
= Code -

Locking |
-

Partition Batch
T
> Data —
| Locking |
.
Own Disown
T
= Data —

Ownership
-

Figure 6.10: Design Patterns and Lock Granularity

6.3 Synchronization Granularity

Figure 6.10 gives a pictorial view of different levels of synchronization granularity, each
of which is described in one of the following sections. These sections focus primarily
on locking, but similar granularity issues arise with all forms of synchronization.

6.3.1 Sequential Program

If the program runs fast enough on a single processor, and has no interactions with
other processes, threads, or interrupt handlers, you should remove the synchronization
primitives and spare yourself their overhead and complexity. Some years back, there
were those who would argue that Moore’s Law would eventually force all programs
into this category. However, as can be seen in Figure 6.11, the exponential increase in
single-threaded performance halted in about 2003. Therefore, increasing performance
will increasingly require parallelism.” The debate as to whether this new trend will
result in single chips with thousands of CPUs will not be settled soon, but given that
Paul is typing this sentence on a dual-core laptop, the age of SMP does seem to be upon
us. It is also important to note that Ethernet bandwidth is continuing to grow, as shown
in Figure 6.12. This growth will motivate multithreaded servers in order to handle the
communications load.

Please note that this does not mean that you should code each and every program in
a multi-threaded manner. Again, if a program runs quickly enough on a single processor,
spare yourself the overhead and complexity of SMP synchronization primitives. The
simplicity of the hash-table lookup code in Listing 6.4 underscores this point.'® A key
point is that speedups due to parallelism are normally limited to the number of CPUs.

8 A real-world parallel system will be subject to many additional design criteria, such as data-structure
layout, memory size, memory-hierarchy latencies, bandwidth limitations, and I/O issues.

9 This plot shows clock frequencies for newer CPUs theoretically capable of retiring one or more
instructions per clock, and MIPS for older CPUs requiring multiple clocks to execute even the simplest
instruction. The reason for taking this approach is that the newer CPUs’ ability to retire multiple instructions
per clock is typically limited by memory-system performance.

10 The examples in this section are taken from Hart et al. [HMBO6], adapted for clarity by gathering
related code from multiple files.

6.3. SYNCHRONIZATION GRANULARITY 117

10000 7T T T 1T T 1 3
U)
& L ‘*-
= 1000 | -
; = -
8 - .
(0] 100 — -3
> = .
3 -
S of t .
< i 4]
o i #+ +]
=) 1F + —
5 [+]
0.1 [T N NN (N N S
Y9} o Te} o Te] o Te] o Te) o
N~ [o0] [e0) (2] (o] o o — — Al
D » » » » o o o o o
-— ~— - ~— ~— (qV] A Al Al Al
Year

Figure 6.11: MIPS/Clock-Frequency Trend for Intel CPUs

1e+06 FT—T—T T T T T T T3
100000 [-
° F 7
(8] L p
S 10000 [—=
E i i
g 1000 a
K I]
o 100 ¢ =
2 X &Y]
g 10 E P _:
o L X X]
1 — >< -
[X]

0.1 I T N TR NN N N B
o n O N O L o nu o u o
N N 0O 0 OO OO © O ~ ~
o OO O O OO OO ©O O O O o
- - - - - N N N N N

Year

Figure 6.12: Ethernet Bandwidth vs. Intel x86 CPU Performance

118 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

In contrast, speedups due to sequential optimizations, for example, careful choice of
data structure, can be arbitrarily large.

Listing 6.4: Sequential-Program Hash Table Search

1 struct hash_table
2 {

long nbuckets;
struct node **buckets;

};

typedef struct node {
unsigned long key;
9 struct node *next;
10 } node_t;
11
12 int hash_search(struct hash_table *h, long key)
13 {
14 struct node *cur;
15
16 cur = h->bucketskey % h->nbuckets;
17 while (cur != NULL) {

3
4
5
6
4
8

18 if (cur->key >= key) {

19 return (cur->key == key);
20 }

21 cur = cur->next;

2» }

23 return 0;

2% }

On the other hand, if you are not in this happy situation, read on!

6.3.2 Code Locking

Code locking is quite simple due to the fact that is uses only global locks.'! It is
especially easy to retrofit an existing program to use code locking in order to run it on a
multiprocessor. If the program has only a single shared resource, code locking will even
give optimal performance. However, many of the larger and more complex programs
require much of the execution to occur in critical sections, which in turn causes code
locking to sharply limits their scalability.

Therefore, you should use code locking on programs that spend only a small fraction
of their execution time in critical sections or from which only modest scaling is required.
In these cases, code locking will provide a relatively simple program that is very similar
to its sequential counterpart, as can be seen in Listing 6.5. However, note that the
simple return of the comparison in hash_search() in Listing 6.4 has now become
three statements due to the need to release the lock before returning.

Unfortunately, code locking is particularly prone to “lock contention”, where mul-
tiple CPUs need to acquire the lock concurrently. SMP programmers who have taken
care of groups of small children (or groups of older people who are acting like children)
will immediately recognize the danger of having only one of something, as illustrated in
Figure 6.13.

One solution to this problem, named “data locking”, is described in the next section.

1 If your program instead has locks in data structures, or, in the case of Java, uses classes with synchronized
instances, you are instead using “data locking”, described in Section 6.3.3.

6.3. SYNCHRONIZATION GRANULARITY 119

Listing 6.5: Code-Locking Hash Table Search

1 spinlock_t hash_lock;

2

3 struct hash_table

4 {

5 long nbuckets;

6 struct node **buckets;
7 };

8

9 typedef struct node {

10 unsigned long key;

11 struct node *next;

12 } node_t;

13

14 int hash_search(struct hash_table *h, long key)
15 {

16 struct node *cur;

17 int retval;

18

19 spin_lock(&hash_lock);
20 cur = h->bucketskey % h->nbuckets;
21 while (cur '= NULL) {

2 if (cur->key >= key) {

23 retval = (cur->key == key);
24 spin_unlock(&hash_lock) ;

25 return retval;

26 }

27 cur = cur->next;

2%}

29 spin_unlock(&hash_lock) ;
30 return 0;

31}

6.3.3 Data Locking

Many data structures may be partitioned, with each partition of the data structure having
its own lock. Then the critical sections for each part of the data structure can execute
in parallel, although only one instance of the critical section for a given part could
be executing at a given time. You should use data locking when contention must be
reduced, and where synchronization overhead is not limiting speedups. Data locking
reduces contention by distributing the instances of the overly-large critical section across
multiple data structures, for example, maintaining per-hash-bucket critical sections in a
hash table, as shown in Listing 6.6. The increased scalability again results in a slight
increase in complexity in the form of an additional data structure, the struct bucket.

In contrast with the contentious situation shown in Figure 6.13, data locking helps
promote harmony, as illustrated by Figure 6.14—and in parallel programs, this almost
always translates into increased performance and scalability. For this reason, data
locking was heavily used by Sequent in both its DYNIX and DYNIX/ptx operating
systems [BK85, Inm85, Gar90, Dov90, MD92, MG92, MS93].

However, as those who have taken care of small children can again attest, even
providing enough to go around is no guarantee of tranquillity. The analogous situation
can arise in SMP programs. For example, the Linux kernel maintains a cache of files
and directories (called “dcache”). Each entry in this cache has its own lock, but the
entries corresponding to the root directory and its direct descendants are much more
likely to be traversed than are more obscure entries. This can result in many CPUs
contending for the locks of these popular entries, resulting in a situation not unlike that
shown in Figure 6.15.

In many cases, algorithms can be designed to reduce the instance of data skew, and
in some cases eliminate it entirely (as appears to be possible with the Linux kernel’s

120 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Figure 6.14: Data Locking

dcache [MSS04]). Data locking is often used for partitionable data structures such as
hash tables, as well as in situations where multiple entities are each represented by an
instance of a given data structure. The task list in version 2.6.17 of the Linux kernel is
an example of the latter, each task structure having its own proc_lock.

A key challenge with data locking on dynamically allocated structures is ensuring
that the structure remains in existence while the lock is being acquired. The code in
Listing 6.6 finesses this challenge by placing the locks in the statically allocated hash
buckets, which are never freed. However, this trick would not work if the hash table
were resizeable, so that the locks were now dynamically allocated. In this case, there
would need to be some means to prevent the hash bucket from being freed during the
time that its lock was being acquired.

Quick Quiz 6.14: What are some ways of preventing a structure from being freed

6.3. SYNCHRONIZATION GRANULARITY 121

Listing 6.6: Data-Locking Hash Table Search

1
2
3
4
5
6
7

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

struct hash_table
{
long nbuckets;
struct bucket **buckets;

};

struct bucket {
spinlock_t bucket_lock;
node_t *1list_head;

};

typedef struct node {
unsigned long key;
struct node *next;
} node_t;

int hash_search(struct hash_table *h, long key)
{

struct bucket *bp;

struct node *cur;

int retval;

bp = h->buckets[key % h->nbuckets];
spin_lock(&bp->bucket_lock) ;
cur = bp->list_head;
while (cur '= NULL) {
if (cur->key >= key) {
retval = (cur->key == key);
spin_unlock(&bp->bucket_lock) ;
return retval;
}
cur = cur->next;
¥
spin_unlock (&bp->bucket_lock) ;
return 0;

}

while its lock is being acquired? B

6.3.4 Data Ownership

Data ownership partitions a given data structure over the threads or CPUs, so that
each thread/CPU accesses its subset of the data structure without any synchronization
overhead whatsoever. However, if one thread wishes to access some other thread’s data,
the first thread is unable to do so directly. Instead, the first thread must communicate
with the second thread, so that the second thread performs the operation on behalf of
the first, or, alternatively, migrates the data to the first thread.

Data ownership might seem arcane, but it is used very frequently:

1. Any variables accessible by only one CPU or thread (such as auto variables in C
and C++) are owned by that CPU or process.

2. An instance of a user interface owns the corresponding user’s context. It is
very common for applications interacting with parallel database engines to be
written as if they were entirely sequential programs. Such applications own the
user interface and his current action. Explicit parallelism is thus confined to the
database engine itself.

3. Parametric simulations are often trivially parallelized by granting each thread
ownership of a particular region of the parameter space. There are also computing
frameworks designed for this type of problem [UniO8a].

122 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Figure 6.15: Data Locking and Skew

If there is significant sharing, communication between the threads or CPUs can
result in significant complexity and overhead. Furthermore, if the most-heavily used data
happens to be that owned by a single CPU, that CPU will be a “hot spot”, sometimes
with results resembling that shown in Figure 6.15. However, in situations where no
sharing is required, data ownership achieves ideal performance, and with code that
can be as simple as the sequential-program case shown in Listing 6.4. Such situations
are often referred to as “embarrassingly parallel”, and, in the best case, resemble the
situation previously shown in Figure 6.14.

Another important instance of data ownership occurs when the data is read-only, in
which case, all threads can “own” it via replication.

Data ownership will be presented in more detail in Chapter 8.

6.3.5 Locking Granularity and Performance

This section looks at locking granularity and performance from a mathematical syn-
chronization-efficiency viewpoint. Readers who are uninspired by mathematics might
choose to skip this section.

The approach is to use a crude queueing model for the efficiency of synchronization
mechanism that operate on a single shared global variable, based on an M/M/1 queue.
M/M/1 queuing models are based on an exponentially distributed “inter-arrival rate”
A and an exponentially distributed “service rate” u. The inter-arrival rate A can be
thought of as the average number of synchronization operations per second that the
system would process if the synchronization were free, in other words, A is an inverse
measure of the overhead of each non-synchronization unit of work. For example, if each
unit of work was a transaction, and if each transaction took one millisecond to process,
excluding synchronization overhead, then A4 would be 1,000 transactions per second.

The service rate u is defined similarly, but for the average number of synchronization
operations per second that the system would process if the overhead of each transac-
tion was zero, and ignoring the fact that CPUs must wait on each other to complete
their synchronization operations, in other words, y can be roughly thought of as the
synchronization overhead in absence of contention. For example, suppose that each
synchronization operation involves an atomic increment instruction, and that a computer

6.3. SYNCHRONIZATION GRANULARITY 123

system is able to do an atomic increment every 25 nanoseconds on each CPU to a private
variable.'? The value of u is therefore about 40,000,000 atomic increments per second.

Of course, the value of A increases with increasing numbers of CPUs, as each CPU
is capable of processing transactions independently (again, ignoring synchronization):

A =nly 6.1)

where 7 is the number of CPUs and Ay is the transaction-processing capability of a
single CPU. Note that the expected time for a single CPU to execute a single transaction
is 1/ 2.

Because the CPUs have to “wait in line” behind each other to get their chance to
increment the single shared variable, we can use the M/M/1 queueing-model expression
for the expected total waiting time:

1
T=—— (6.2)
u—Aa1
Substituting the above value of A:
1
Tr=— (6.3)
H—ndoy

Now, the efficiency is just the ratio of the time required to process a transaction
in absence of synchronization (1/4) to the time required including synchronization
(T +1/20):

1/40
= 6.4
‘T (©4)
Substituting the above value for 7 and simplifying:
u

/1_0 —-n

e=—— (6.5)
L—(n-1)

But the value of /Ay is just the ratio of the time required to process the transaction
(absent synchronization overhead) to that of the synchronization overhead itself (absent
contention). If we call this ratio f, we have:

f—n
e -1 (6.6)

Figure 6.16 plots the synchronization efficiency e as a function of the number of
CPUgs/threads n for a few values of the overhead ratio f. For example, again using the
25-nanosecond atomic increment, the f = 10 line corresponds to each CPU attempting
an atomic increment every 250 nanoseconds, and the f = 100 line corresponds to each
CPU attempting an atomic increment every 2.5 microseconds, which in turn corresponds
to several thousand instructions. Given that each trace drops off sharply with increasing
numbers of CPUs or threads, we can conclude that synchronization mechanisms based
on atomic manipulation of a single global shared variable will not scale well if used

12 of course, if there are 8§ CPUs all incrementing the same shared variable, then each CPU must wait
at least 175 nanoseconds for each of the other CPUs to do its increment before consuming an additional 25
nanoseconds doing its own increment. In actual fact, the wait will be longer due to the need to move the
variable from one CPU to another.

124 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

0
|

>

8 1 f’iiF"’»’Tl'?ffj*I'»T.:t_jﬂ'~VL,\|> [

2 09 N N
O \ \
= 0.8 \ ly
L 7 | H
= \ 100
2 x !
ﬁ ! ' 75
'c ‘. 150 7
o 1 25 . _
~ I

[$] ' -
c |

>

n

11 Il 111 1
cCoooooo00O
—TNOIDOOR DO

100

Number of CPUs (Threads)

Figure 6.16: Synchronization Efficiency

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0 Ll L
1 10 100

Number of CPUs (Threads)
Figure 6.17: Matrix Multiply Efficiency

Matrix Multiply Efficiency

heavily on current commodity hardware. This is a mathematical depiction of the forces
leading to the parallel counting algorithms that were discussed in Chapter 5.

The concept of efficiency is useful even in cases having little or no formal synchro-
nization. Consider for example a matrix multiply, in which the columns of one matrix
are multiplied (via “dot product”) by the rows of another, resulting in an entry in a
third matrix. Because none of these operations conflict, it is possible to partition the
columns of the first matrix among a group of threads, with each thread computing the
corresponding columns of the result matrix. The threads can therefore operate entirely
independently, with no synchronization overhead whatsoever, as is done in matmul. c.
One might therefore expect a parallel matrix multiply to have a perfect efficiency of 1.0.

However, Figure 6.17 tells a different story, especially for a 64-by-64 matrix multiply,
which never gets above an efficiency of about 0.7, even when running single-threaded.
The 512-by-512 matrix multiply’s efficiency is measurably less than 1.0 on as few as 10
threads, and even the 1024-by-1024 matrix multiply deviates noticeably from perfection
at a few tens of threads. Nevertheless, this figure clearly demonstrates the performance
and scalability benefits of batching: If you must incur synchronization overhead, you

6.4. PARALLEL FASTPATH 125

STV
Reader/Writer

Locking
N

Y
RCU

Parallel —
Fastpath
T
Hierarchical

Locking
-

Y

Allocator

Caches
e

Figure 6.18: Parallel-Fastpath Design Patterns

may as well get your money’s worth.

Quick Quiz 6.15: How can a single-threaded 64-by-64 matrix multiple possibly
have an efficiency of less than 1.0? Shouldn’t all of the traces in Figure 6.17 have
efficiency of exactly 1.0 when running on only one thread? Bl

Given these inefficiencies, it is worthwhile to look into more-scalable approaches
such as the data locking described in Section 6.3.3 or the parallel-fastpath approach
discussed in the next section.

Quick Quiz 6.16: How are data-parallel techniques going to help with matrix
multiply? It is already data parallel!!! H

6.4 Parallel Fastpath

Fine-grained (and therefore usually higher-performance) designs are typically more
complex than are coarser-grained designs. In many cases, most of the overhead is
incurred by a small fraction of the code [Knu73]. So why not focus effort on that small
fraction?

This is the idea behind the parallel-fastpath design pattern, to aggressively parallelize
the common-case code path without incurring the complexity that would be required to
aggressively parallelize the entire algorithm. You must understand not only the specific
algorithm you wish to parallelize, but also the workload that the algorithm will be
subjected to. Great creativity and design effort is often required to construct a parallel
fastpath.

Parallel fastpath combines different patterns (one for the fastpath, one elsewhere)
and is therefore a template pattern. The following instances of parallel fastpath occur
often enough to warrant their own patterns, as depicted in Figure 6.18:

1. Reader/Writer Locking (described below in Section 6.4.1).

2. Read-copy update (RCU), which may be used as a high-performance replacement
for reader/writer locking, is introduced in Section 9.5, and will not be discussed
further in this chapter.

3. Hierarchical Locking ([McK96a]), which is touched upon in Section 6.4.2.

126 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Listing 6.7: Reader-Writer-Locking Hash Table Search
rwlock_t hash_lock;

1

2

3 struct hash_table

4 {

5 long nbuckets;

6 struct node **buckets;

7}

9 typedef struct node {

10 unsigned long key;

11 struct node *next;

12 } node_t;

13

14 int hash_search(struct hash_table *h, long key)
15 {

16 struct node *cur;

17 int retval;

18

19 read_lock(&hash_lock);

20 cur = h->bucketskey % h->nbuckets;
21 while (cur !'= NULL) {

2 if (cur->key >= key) {

23 retval = (cur->key == key);
24 read_unlock(&hash_lock);

25 return retval;

26 }

27 cur = cur->next;

%}

29 read_unlock(&hash_lock);
30 return 0;

31}

4. Resource Allocator Caches ([McK96a, MS93]). See Section 6.4.3 for more detail.

6.4.1 Reader/Writer Locking

If synchronization overhead is negligible (for example, if the program uses coarse-
grained parallelism with large critical sections), and if only a small fraction of the
critical sections modify data, then allowing multiple readers to proceed in parallel can
greatly increase scalability. Writers exclude both readers and each other. There are
many implementations of reader-writer locking, including the POSIX implementation
described in Section 4.2.4. Listing 6.7 shows how the hash search might be implemented
using reader-writer locking.

Reader/writer locking is a simple instance of asymmetric locking. Snaman [ST87]
describes a more ornate six-mode asymmetric locking design used in several clus-
tered systems. Locking in general and reader-writer locking in particular is described
extensively in Chapter 7.

6.4.2 Hierarchical Locking

The idea behind hierarchical locking is to have a coarse-grained lock that is held only
long enough to work out which fine-grained lock to acquire. Listing 6.8 shows how our
hash-table search might be adapted to do hierarchical locking, but also shows the great
weakness of this approach: we have paid the overhead of acquiring a second lock, but
we only hold it for a short time. In this case, the simpler data-locking approach would
be simpler and likely perform better.

Quick Quiz 6.17: In what situation would hierarchical locking work well? Bl

6.4. PARALLEL FASTPATH 127

Listing 6.8: Hierarchical-Locking Hash Table Search

1 struct hash_table

2 {

3 long nbuckets;

4 struct bucket **buckets;

5 };

6

7 struct bucket {

8 spinlock_t bucket_lock;

9 node_t *1list_head;

10 };

11

12 typedef struct node {

13 spinlock_t node_lock;

14 unsigned long key;

15 struct node *next;

16 } node_t;

17

18 int hash_search(struct hash_table *h, long key)
19 {

20 struct bucket *bp;

21 struct node *cur;

22 int retval;

23

24 bp = h->bucketskey % h->nbuckets;
25 spin_lock (&bp->bucket_lock) ;
26 cur = bp->list_head;

27 while (cur != NULL) {

28 if (cur->key >= key) {

29 spin_lock(&cur->node_lock);

30 spin_unlock(&bp->bucket_lock) ;
31 retval = (cur->key == key);

32 spin_unlock(&cur->node_lock) ;
33 return retval;

34 }

35 cur = cur->next;

36}

37 spin_unlock (&bp->bucket_lock) ;
38 return O;

39 }

6.4.3 Resource Allocator Caches

This section presents a simplified schematic of a parallel fixed-block-size memory
allocator. More detailed descriptions may be found in the literature [MG92, MS93,
BAO1, MSKO1] or in the Linux kernel [Tor03].

6.4.3.1 Parallel Resource Allocation Problem

The basic problem facing a parallel memory allocator is the tension between the need to
provide extremely fast memory allocation and freeing in the common case and the need
to efficiently distribute memory in face of unfavorable allocation and freeing patterns.

To see this tension, consider a straightforward application of data ownership to this
problem—simply carve up memory so that each CPU owns its share. For example,
suppose that a system with two CPUs has two gigabytes of memory (such as the one that
I am typing on right now). We could simply assign each CPU one gigabyte of memory,
and allow each CPU to allocate from its own gigabyte, without the need for locking
and its complexities and overheads. Unfortunately, this scheme fails when CPU 0 only
allocates memory and CPU 1 only frees it, as happens in simple producer-consumer
workloads.

The other extreme, code locking, suffers from excessive lock contention and over-
head [MS93].

128 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Global Pool

S

(Code Locked)

Overflow
k.
Overflow

Empty
Empty !

T
i

i

i

T

i

i

i

<

e

\

i

R A
i

B

i

i

i

i

|
}
CPU 1 Pool :
|
|
|

i1

Allocate/Free

Figure 6.19: Allocator Cache Schematic

6.4.3.2 Parallel Fastpath for Resource Allocation

The commonly used solution uses parallel fastpath with each CPU owning a modest
cache of blocks, and with a large code-locked shared pool for additional blocks. To
prevent any given CPU from monopolizing the memory blocks, we place a limit on the
number of blocks that can be in each CPU’s cache. In a two-CPU system, the flow of
memory blocks will be as shown in Figure 6.19: when a given CPU is trying to free a
block when its pool is full, it sends blocks to the global pool, and, similarly, when that
CPU is trying to allocate a block when its pool is empty, it retrieves blocks from the
global pool.

6.4.3.3 Data Structures

The actual data structures for a “toy” implementation of allocator caches are shown
in Listing 6.9. The “Global Pool” of Figure 6.19 is implemented by globalmem of
type struct globalmempool, and the two CPU pools by the per-thread variable
perthreadmen of type struct perthreadmempool. Both of these data structures
have arrays of pointers to blocks in their pool fields, which are filled from index zero
upwards. Thus, if globalmem.pool[3] is NULL, then the remainder of the array from
index 4 up must also be NULL. The cur fields contain the index of the highest-numbered
full element of the pool array, or —1 if all elements are empty. All elements from
globalmem.pool [0] through globalmem.pool [globalmem. cur] must be full, and
all the rest must be empty.'?

The operation of the pool data structures is illustrated by Figure 6.20, with the six
boxes representing the array of pointers making up the pool field, and the number
preceding them representing the cur field. The shaded boxes represent non-NULL point-
ers, while the empty boxes represent NULL pointers. An important, though potentially

13 Both pool sizes (TARGET_POOL_SIZE and GLOBAL_POOL_SIZE) are unrealistically small, but this
small size makes it easier to single-step the program in order to get a feel for its operation.

6.4. PARALLEL FASTPATH 129

Listing 6.9: Allocator-Cache Data Structures

| #define TARGET_POOL_SIZE 3

2 #define GLOBAL_POOL_SIZE 40

3

4 struct globalmempool {

5 spinlock_t mutex;

6 int cur;

7 struct memblock *pool[GLOBAL_POOL_SIZE];

8 } globalmem;

9

10 struct perthreadmempool {

11 int cur;

12 struct memblock *pool[2 * TARGET_POOL_SIZE];
13 };

14

15 DEFINE_PER_THREAD(struct perthreadmempool, perthreadmem);

w2 [T

[|

o I I

Figure 6.20: Allocator Pool Schematic

confusing, invariant of this data structure is that the cur field is always one smaller than
the number of non-NULL pointers.

6.4.3.4 Allocation Function

The allocation function memblock_alloc() may be seen in Listing 6.10. Line 7 picks
up the current thread’s per-thread pool, and line 8 checks to see if it is empty.

If so, lines 9-16 attempt to refill it from the global pool under the spinlock acquired
on line 9 and released on line 16. Lines 10-14 move blocks from the global to the
per-thread pool until either the local pool reaches its target size (half full) or the global
pool is exhausted, and line 15 sets the per-thread pool’s count to the proper value.

In either case, line 18 checks for the per-thread pool still being empty, and if not,
lines 19-21 remove a block and return it. Otherwise, line 23 tells the sad tale of memory
exhaustion.

6.4.3.5 Free Function

Listing 6.11 shows the memory-block free function. Line 6 gets a pointer to this thread’s
pool, and line 7 checks to see if this per-thread pool is full.

If so, lines 8-15 empty half of the per-thread pool into the global pool, with lines 8
and 14 acquiring and releasing the spinlock. Lines 9-12 implement the loop moving

130 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Listing 6.10: Allocator-Cache Allocator Function

| struct memblock *memblock_alloc(void)
2 {

3 int i;

4 struct memblock *p;

5 struct perthreadmempool *pcpp;

6

-

pepp = &__get_thread_var(perthreadmem) ;
8 if (pcpp->cur < 0) {

9 spin_lock(&globalmem.mutex) ;

10 for (i = 0; i < TARGET_POOL_SIZE &&

11 globalmem.cur >= 0; i++) {

12 pcpp—>pool[i] = globalmem.pool[globalmem.cur];
13 globalmem.pool[globalmem.cur--] = NULL;
14 }

15 pcpp—>cur = i - 1;

16 spin_unlock(&globalmem.mutex) ;

17 }

18 if (pcpp->cur >= 0) {

19 p = pcpp->pool [pcpp—>cur];

20 pcpp->pool [pcpp->cur--] = NULL;

21 return p;

22 X

23 return NULL;

24 }

Listing 6.11: Allocator-Cache Free Function

void memblock_free(struct memblock *p)
{

int i;

struct perthreadmempool *pcpp;

pepp = &__get_thread_var (perthreadmem) ;
if (pcpp->cur >= 2 * TARGET_POOL_SIZE - 1) {
spin_lock(&globalmem.mutex) ;
for (i = pcpp->cur; i >= TARGET_POOL_SIZE; i--) {
10 globalmem.pool [++globalmem.cur] = pcpp->pooll[il;
11 pcpp->pool[i] = NULL;
}

1
2
3
4
5
6
7
8
9

13 pcpp->cur = i;

14 spin_unlock(&globalmem.mutex) ;
15}

16 pcpp->pool [++pcpp->cur] = p;

17 }

blocks from the local to the global pool, and line 13 sets the per-thread pool’s count to
the proper value.
In either case, line 16 then places the newly freed block into the per-thread pool.
Quick Quiz 6.18: Doesn’t this resource-allocator design resemble that of the ap-
proximate limit counters covered in Section 5.3? l

6.4.3.6 Performance

Rough performance results'# are shown in Figure 6.21, running on a dual-core Intel
x86 running at 1 GHz (4300 bogomips per CPU) with at most six blocks allowed in
each CPU’s cache. In this micro-benchmark, each thread repeatedly allocates a group
of blocks and then frees all the blocks in that group, with the number of blocks in the
group being the “allocation run length” displayed on the x-axis. The y-axis shows the
number of successful allocation/free pairs per microsecond—tfailed allocations are not

14 This data was not collected in a statistically meaningful way, and therefore should be viewed with great
skepticism and suspicion. Good data-collection and -reduction practice is discussed in Chapter 11. That said,
repeated runs gave similar results, and these results match more careful evaluations of similar algorithms.

6.4. PARALLEL FASTPATH 131

30 T T T T
SO ¢
25

20 - -

15 [

10 I~ ++ﬁ< + -
+

P

5+ XX

Allocations/Frees Per Microsecond

XK s KRXKK

0 1 1 1 1
0 5 10 15 20 25

Allocation Run Length

Figure 6.21: Allocator Cache Performance

counted. The “X”’s are from a two-thread run, while the “+”’s are from a single-threaded
run.

Note that run lengths up to six scale linearly and give excellent performance, while
run lengths greater than six show poor performance and almost always also show
negative scaling. It is therefore quite important to size TARGET_POOL_SIZE sufficiently
large, which fortunately is usually quite easy to do in actual practice [MSKO1], especially
given today’s large memories. For example, in most systems, it is quite reasonable to
set TARGET_POOL_SIZE to 100, in which case allocations and frees are guaranteed to
be confined to per-thread pools at least 99 % of the time.

As can be seen from the figure, the situations where the common-case data-ownership
applies (run lengths up to six) provide greatly improved performance compared to the
cases where locks must be acquired. Avoiding synchronization in the common case will
be a recurring theme through this book.

Quick Quiz 6.19: In Figure 6.21, there is a pattern of performance rising with
increasing run length in groups of three samples, for example, for run lengths 10, 11,
and 12. Why? li

Quick Quiz 6.20: Allocation failures were observed in the two-thread tests at run
lengths of 19 and greater. Given the global-pool size of 40 and the per-thread target
pool size s of three, number of threads n equal to two, and assuming that the per-thread
pools are initially empty with none of the memory in use, what is the smallest allocation
run length m at which failures can occur? (Recall that each thread repeatedly allocates
m block of memory, and then frees the m blocks of memory.) Alternatively, given n
threads each with pool size s, and where each thread repeatedly first allocates m blocks
of memory and then frees those m blocks, how large must the global pool size be? Note:
Obtaining the correct answer will require you to examine the smpalloc. c source code,
and very likely single-step it as well. You have been warned! ll

6.4.3.7 Real-World Design

The toy parallel resource allocator was quite simple, but real-world designs expand on
this approach in a number of ways.
First, real-world allocators are required to handle a wide range of allocation sizes,

132 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Table 6.1: Schematic of Real-World Parallel Allocator

Level Locking Purpose

Per-thread pool Data ownership High-speed
allocation

Global block pool Data locking Distributing blocks
among threads

Coalescing Data locking Combining blocks
into pages

System memory Code locking Memory from/to
system

as opposed to the single size shown in this toy example. One popular way to do this is
to offer a fixed set of sizes, spaced so as to balance external and internal fragmentation,
such as in the late-1980s BSD memory allocator [MK88]. Doing this would mean that
the “globalmem” variable would need to be replicated on a per-size basis, and that the
associated lock would similarly be replicated, resulting in data locking rather than the
toy program’s code locking.

Second, production-quality systems must be able to repurpose memory, meaning
that they must be able to coalesce blocks into larger structures, such as pages [MS93].
This coalescing will also need to be protected by a lock, which again could be replicated
on a per-size basis.

Third, coalesced memory must be returned to the underlying memory system, and
pages of memory must also be allocated from the underlying memory system. The
locking required at this level will depend on that of the underlying memory system, but
could well be code locking. Code locking can often be tolerated at this level, because
this level is so infrequently reached in well-designed systems [MSKO1].

Despite this real-world design’s greater complexity, the underlying idea is the same—
repeated application of parallel fastpath, as shown in Table 6.1.

6.5 Beyond Partitioning

This chapter has discussed how data partitioning can be used to design simple linearly
scalable parallel programs. Section 6.3.4 hinted at the possibilities of data replication,
which will be used to great effect in Section 9.5.

The main goal of applying partitioning and replication is to achieve linear speedups,
in other words, to ensure that the total amount of work required does not increase
significantly as the number of CPUs or threads increases. A problem that can be
solved via partitioning and/or replication, resulting in linear speedups, is embarrassingly
parallel. But can we do better?

To answer this question, let us examine the solution of labyrinths and mazes. Of
course, labyrinths and mazes have been objects of fascination for millennia [Wik12],
so it should come as no surprise that they are generated and solved using computers,
including biological computers [Adall], GPGPUs [Eri0O8], and even discrete hard-
ware [KFC11]. Parallel solution of mazes is sometimes used as a class project in
universities [ETH11, Unil0] and as a vehicle to demonstrate the benefits of parallel-
programming frameworks [Fos10].

6.5. BEYOND PARTITIONING 133

Listing 6.12: SEQ Pseudocode

1 int maze_solve(maze *mp, cell sc, cell ec)
2 {

3 cell ¢ = sc;

4 cell n;

5 int vi = 0;

6

7 maze_try_visit_cell(mp, ¢, ¢, &n, 1);

8 for (5;) {

9 while ('maze_find_any_next_cell(mp, c, &n)) {
10 if (++vi >= mp->vi)

11 return 0;

12 ¢ = mp->visited[vi].c;

13 }

14 do {

15 if (n == ec) {

16 return 1;

17 ¥

18 c =n;

19 } while (maze_find_any_next_cell(mp, c, &n));
20 ¢ = mp->visited[vi].c;

21 }

2 }

Common advice is to use a parallel work-queue algorithm (PWQ) [ETH11, Fos10].
This section evaluates this advice by comparing PWQ against a sequential algorithm
(SEQ) and also against an alternative parallel algorithm, in all cases solving randomly
generated square mazes. Section 6.5.1 discusses PWQ, Section 6.5.2 discusses an
alternative parallel algorithm, Section 6.5.3 analyzes its anomalous performance, Sec-
tion 6.5.4 derives an improved sequential algorithm from the alternative parallel algo-
rithm, Section 6.5.5 makes further performance comparisons, and finally Section 6.5.6
presents future directions and concluding remarks.

6.5.1 Work-Queue Parallel Maze Solver

PWQ is based on SEQ, which is shown in Listing 6.12 (pseudocode for maze_seq.
c). The maze is represented by a 2D array of cells and a linear-array-based work queue
named ->visited.

Line 7 visits the initial cell, and each iteration of the loop spanning lines 8-21
traverses passages headed by one cell. The loop spanning lines 9-13 scans the ->
visited[] array for a visited cell with an unvisited neighbor, and the loop spanning
lines 14-19 traverses one fork of the submaze headed by that neighbor. Line 20 initializes
for the next pass through the outer loop.

The pseudocode for maze_try_visit_cell() is shown on lines 1-12 of List-
ing 6.13 (maze.c). Line 4 checks to see if cells ¢ and t are adjacent and connected,
while line 5 checks to see if cell t has not yet been visited. The celladdr () function
returns the address of the specified cell. If either check fails, line 6 returns failure. Line 7
indicates the next cell, line 8 records this cell in the next slot of the ->visited[] array,
line 9 indicates that this slot is now full, and line 10 marks this cell as visited and also
records the distance from the maze start. Line 11 then returns success.

The pseudocode for maze_find_any_next_cell() is shown on lines 14-28 of
Listing 6.13 (maze. c). Line 17 picks up the current cell’s distance plus 1, while lines 19,
21, 23, and 25 check the cell in each direction, and lines 20, 22, 24, and 26 return
true if the corresponding cell is a candidate next cell. The prevcol(), nextcol(),
prevrow(), and nextrow() each do the specified array-index-conversion operation. If
none of the cells is a candidate, line 27 returns false.

134 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Listing 6.13: SEQ Helper Pseudocode

1 int maze_try_visit_cell(struct maze *mp, cell c, cell t,
cell *n, int d)

{
if (!maze_cells_connected(mp, c, t) ||
(*celladdr(mp, t) & VISITED))
return O;
*n = t;
mp->visited[mp->vi] = t;
9 mp->vit++;
10 *celladdr(mp, t) |= VISITED | d;

R T I N)

11 return 1;

12}

13

14 int maze_find_any_next_cell(struct maze *mp, cell c,
15 cell *n)

16 {

17 int d = (*celladdr(mp, c) & DISTANCE) + 1;
18
19 if (maze_try_visit_cell(mp, c

prevcol(c), n, d))

20 return 1;

21 if (maze_try_visit_cell(mp, c, nextcol(c), n, d))

2 return 1;

23 if (maze_try_visit_cell(mp, c, prevrow(c), n, d))

24 return 1;

25 if (maze_try_visit_cell(mp, c, nextrow(c), n, d))

26 return 1;

27 return 0;

28 }
1 2 3
2 3 4
3 4 5

Figure 6.22: Cell-Number Solution Tracking

The path is recorded in the maze by counting the number of cells from the starting
point, as shown in Figure 6.22, where the starting cell is in the upper left and the
ending cell is in the lower right. Starting at the ending cell and following consecutively
decreasing cell numbers traverses the solution.

The parallel work-queue solver is a straightforward parallelization of the algorithm
shown in Listings 6.12 and 6.13. Line 10 of Listing 6.12 must use fetch-and-add, and
the local variable vi must be shared among the various threads. Lines 5 and 10 of
Listing 6.13 must be combined into a CAS loop, with CAS failure indicating a loop
in the maze. Lines 8-9 of this listing must use fetch-and-add to arbitrate concurrent
attempts to record cells in the ->visited[] array.

This approach does provide significant speedups on a dual-CPU Lenovo W500
running at 2.53 GHz, as shown in Figure 6.23, which shows the cumulative distribution
functions (CDFs) for the solution times of the two algorithms, based on the solution of
500 different square 500-by-500 randomly generated mazes. The substantial overlap of
the projection of the CDFs onto the x-axis will be addressed in Section 6.5.3.

Interestingly enough, the sequential solution-path tracking works unchanged for
the parallel algorithm. However, this uncovers a significant weakness in the parallel
algorithm: At most one thread may be making progress along the solution path at any

6.5. BEYOND PARTITIONING 135

Probability

0 20 40 60 80 100 120 140
CDF of Solution Time (ms)

Figure 6.23: CDF of Solution Times For SEQ and PWQ

Listing 6.14: Partitioned Parallel Solver Pseudocode

I int maze_solve_child(maze *mp, cell *visited, cell sc)
2 {

3 cell c;

4 cell n;

5 int vi = 0;

6
7 myvisited = visited; myvi = &vi;
8 c = visited[vil;

9 do {

10 while (!maze_find_any_next_cell(mp, c, &n)) {
1 if (visited[++vi].row < 0)

12 return O;

13 if (READ_ONCE (mp->done))

14 return 1;

15 c = visited[vil;

16 }

17 do {

18 if (READ_ONCE (mp->done))

19 return 1;

20 c =n;

21 } while (maze_find_any_next_cell(mp, c, &n));
2 c = visited[vil;

23 } while (!READ_ONCE (mp->done));
24 return 1;

25 }

given time. This weakness is addressed in the next section.

6.5.2 Alternative Parallel Maze Solver

Youthful maze solvers are often urged to start at both ends, and this advice has been
repeated more recently in the context of automated maze solving [Unil0]. This advice
amounts to partitioning, which has been a powerful parallelization strategy in the
context of parallel programming for both operating-system kernels [BK85, Inm85] and
applications [Pat10]. This section applies this strategy, using two child threads that start
at opposite ends of the solution path, and takes a brief look at the performance and
scalability consequences.

The partitioned parallel algorithm (PART), shown in Listing 6.14 (maze_part.c),
is similar to SEQ, but has a few important differences. First, each child thread has
its own visited array, passed in by the parent as shown on line 1, which must be
initialized to all [-1, —1]. Line 7 stores a pointer to this array into the per-thread variable

136 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Listing 6.15: Partitioned Parallel Helper Pseudocode

| int maze_try_visit_cell(struct maze *mp, int c, int t,
int *n, int d)

{
cell_t t;
cell_t *tp;
int vi;

R T I N)

if (!maze_cells_connected(mp, c, t))

9 return 0;

10 tp = celladdr(mp, t);

1 do {

12 t = READ_ONCE (*tp) ;

13 if (t & VISITED) {

14 if ((t & TID) != mytid)
15 mp->done = 1;

16 return O;

17 ¥

18 } while (!CAS(tp, t, t | VISITED | myid | d));
19 *n = t;
20 vi o= (xmyvi)++;

21 myvisited[vi] = t;
22 return 1;
23}

myvisited to allow access by helper functions, and similarly stores a pointer to the
local visit index. Second, the parent visits the first cell on each child’s behalf, which the
child retrieves on line 8. Third, the maze is solved as soon as one child locates a cell that
has been visited by the other child. When maze_try_visit_cell() detects this, it
sets a —>done field in the maze structure. Fourth, each child must therefore periodically
check the —->done field, as shown on lines 13, 18, and 23. The READ_ONCE() primitive
must disable any compiler optimizations that might combine consecutive loads or that
might reload the value. A C++1x volatile relaxed load suffices [Bec11]. Finally, the
maze_find_any_next_cell() function must use compare-and-swap to mark a cell
as visited, however no constraints on ordering are required beyond those provided by
thread creation and join.

The pseudocode for maze_find_any_next_cell() is identical to that shown in
Listing 6.13, but the pseudocode for maze_try_visit_cell() differs, and is shown
in Listing 6.15. Lines 8-9 check to see if the cells are connected, returning failure if not.
The loop spanning lines 11-18 attempts to mark the new cell visited. Line 13 checks
to see if it has already been visited, in which case line 16 returns failure, but only after
line 14 checks to see if we have encountered the other thread, in which case line 15
indicates that the solution has been located. Line 19 updates to the new cell, lines 20
and 21 update this thread’s visited array, and line 22 returns success.

Performance testing revealed a surprising anomaly, shown in Figure 6.24. The
median solution time for PART (17 milliseconds) is more than four times faster than
that of SEQ (79 milliseconds), despite running on only two threads. The next section
analyzes this anomaly.

6.5.3 Performance Comparison I

The first reaction to a performance anomaly is to check for bugs. Although the algorithms
were in fact finding valid solutions, the plot of CDFs in Figure 6.24 assumes independent
data points. This is not the case: The performance tests randomly generate a maze, and
then run all solvers on that maze. It therefore makes sense to plot the CDF of the ratios
of solution times for each generated maze, as shown in Figure 6.25, greatly reducing

6.5. BEYOND PARTITIONING 137

Probability

© © © o o o

S v ow R oo
1 T T T 1

: 1 1
0 20 40 60 80 100 120 140
CDF of Solution Time (ms)

Figure 6.24: CDF of Solution Times For SEQ, PWQ, and PART

0.9 / _
4

0.8 ' .

0.7 j _
,

0.6 / .
!

05 SEQPWQ| /SEQ/PART o

0.4

03 | / .

02 | / .

01 F / .

.)

J
]

Probability

0.1 1 10 100
CDF of Speedup Relative to SEQ

Figure 6.25: CDF of SEQ/PWQ and SEQ/PART Solution-Time Ratios

the CDFs’ overlap. This plot reveals that for some mazes, PART is more than forty
times faster than SEQ. In contrast, PWQ is never more than about two times faster than
SEQ. A forty-times speedup on two threads demands explanation. After all, this is
not merely embarrassingly parallel, where partitionability means that adding threads
does not increase the overall computational cost. It is instead humiliatingly parallel:
Adding threads significantly reduces the overall computational cost, resulting in large
algorithmic superlinear speedups.

Further investigation showed that PART sometimes visited fewer than 2 % of the
maze’s cells, while SEQ and PWQ never visited fewer than about 9 %. The reason for
this difference is shown by Figure 6.26. If the thread traversing the solution from