Is Parallel Programming Hard, And, If So,
What Can You Do About It?

Edited by:

Paul E. McKenney
Facebook
paulmck @kernel.org

February 26, 2021
Second Edition, Release Candidate 9


mailto:paulmck@kernel.org

Legal Statement

This work represents the views of the editor and the authors and does not necessarily
represent the view of their respective employers.

Trademarks:

* IBM, z Systems, and PowerPC are trademarks or registered trademarks of Inter-
national Business Machines Corporation in the United States, other countries, or
both.

* Linux is a registered trademark of Linus Torvalds.

* Intel, Itanium, Intel Core, and Intel Xeon are trademarks of Intel Corporation or
its subsidiaries in the United States, other countries, or both.

* Arm is aregistered trademark of Arm Limited (or its subsidiaries) in the US and/or
elsewhere.

e MIPS is a registered trademark of Wave, Inc. in the United States and other
countries.

* SPARC is a registered trademark of SPARC International, Inc. Products bearing
SPARC trademarks are based on an architecture developed by Sun Microsystems,
Inc.

* Other company, product, and service names may be trademarks or service marks
of such companies.

The non-source-code text and images in this document are provided under the terms
of the Creative Commons Attribution-Share Alike 3.0 United States license.! In brief,
you may use the contents of this document for any purpose, personal, commercial, or
otherwise, so long as attribution to the authors is maintained. Likewise, the document
may be modified, and derivative works and translations made available, so long as
such modifications and derivations are offered to the public on equal terms as the
non-source-code text and images in the original document.

Source code is covered by various versions of the GPL.? Some of this code is
GPLv2-only, as it derives from the Linux kernel, while other code is GPLv2-or-later. See
the comment headers of the individual source files within the CodeSamples directory in
the git archive? for the exact licenses. If you are unsure of the license for a given code
fragment, you should assume GPLv2-only.

Combined work © 2005-2021 by Paul E. McKenney. Each individual contribution
is copyright by its contributor at the time of contribution, as recorded in the git archive.

! http://creativecommons.org/licenses/by-sa/3.0/us/
2 http://www.gnu.org/licenses/gpl-2.0.html
3 git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git


http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.gnu.org/licenses/gpl-2.0.html
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

Contents

2

3

1 How To Use This Book 1
1.1 Roadmap . .. ... ... ... e 1
1.2 Quick Quizzes . . . . . . . . . ... 2
1.3 Alternativesto ThisBook . . . . . . ... ... ... .. ....... 2
1.4 Sample SourceCode . . . . . .. ... ... ... ... ... 4
1.5 Whose Book Is This? . . . . ... ... ... ... .......... 4
Introduction 7
2.1 Historic Parallel Programming Difficulties . . . . . . ... ... ... 7
2.2 Parallel Programming Goals . . . . . ... ... ... ........ 8

2.2.1 Performance . .......... .. ... ... ... ... 9
222 Productivity . . . . . ... 10
223 Generality . . . . . . ... 10
2.3 Alternatives to Parallel Programming . . . . . . ... ... ... ... 12
2.3.1 Multiple Instances of a Sequential Application . . ... ... 12
2.3.2 Use Existing Parallel Software . . . . . ... ... ...... 12
2.3.3 Performance Optimization . . . .. ... ... ... ..... 13
2.4 What Makes Parallel Programming Hard? . . . . . .. .. ... ... 13
2.4.1 Work Partitioning . . . . .. ... ... ... . 14
2.4.2 Parallel AccessControl . . . . ... ... ... ... ... 14
2.4.3 Resource Partitioning and Replication . . . . . .. . ... .. 15
2.4.4 Interacting With Hardware . . . . . . . ... ... ... ... 15
24.5 Composite Capabilities . . . . ... ... ... ... ..... 15
2.4.6  How Do Languages and Environments Assist With These Tasks? 16
25 Discussion. . . . ... 16
Hardware and its Habits 17
3.1 Overview . . . .. 17
3.1.1 PipelinedCPUs . . . . . ... ... ... ... ... 17
3.1.2 Memory References . . . ... ... ... ....... ... 19
3.1.3 Atomic Operations . . . . . .. ... ... .......... 19
3.14 Memory Barriers . . .. ... ... oL 20
315 CacheMisses . . . . ... ... ... 20
3.1.6 T/OOperations . . ... ... ... .. ..., 20
32 Overheads . . . . . . . .. . 21
3.2.1 Hardware System Architecture . . . . . . .. ... ... ... 21
322 Costsof Operations . . . . . . . .. ... ... 22
3.2.3 Hardware Optimizations . . . . . ... .. ... ... .... 24

iii



iv

3.3 Hardware Free Lunch? . . . . ... ... ... ... ... ......
3.3.1 3DlIntegration . . . ... .. ... ... ...
3.3.2 Novel Materials and Processes . . . . ... ... ... ....
3.3.3 Light,NotElectrons . .. ... ................
3.3.4 Special-Purpose Accelerators . . . . . ... ... ......
3.3.5 Existing Parallel Software . . ... ... ...........
3.4 Software Design Implications . . . . . . ... ... .. ........

Tools of the Trade

4.1 Scripting Languages . . . . . . ... ... .00

4.2 POSIX Multiprocessing . . . . . . . ... ..
4.2.1 POSIX Process Creation and Destruction . . ... ... ...
4.2.2 POSIX Thread Creation and Destruction . ... ... .. ..
423 POSIXLocking. .. ... ... ... ... ... ...
424 POSIX Reader-Writer Locking . . . . .. ... ... .....
4.2.5 Atomic Operations (GCC Classic) . . . . .. ... .. ....
42.6 Atomic Operations (C11) . . . . . . ... ... ... .....
427 Atomic Operations Modern GCC) . . . .. ... ... ...
4.2.8 Per-Thread Variables . . . .. .. ... ............

4.3 Alternatives to POSIX Operations . . . . . .. .. ... ... .. ..
4.3.1 Organization and Initialization . . . . . . .. ... .. ....
4.3.2 Thread Creation, Destruction, and Control . . . . . . . . . ..
433 Locking . . . .. ...
434 Accessing Shared Variables . . . . ... ... ... .....
43.5 Atomic Operations . . . . . . ... ... .. ... ......
43.6 Per-CPU Variables . . .. ... ................

Counting

5.1 Why Isn’t Concurrent Counting Trivial? . . . . ... ... ... ...

5.2 Statistical Counters . . . . . .. ... ... o
52.1 Design . . ...
5.2.2  Array-Based Implementation . . . . . .. ... ... .....
5.2.3 Per-Thread-Variable-Based Implementation . . . . . ... ..
5.2.4 Eventually Consistent Implementation . . . . . .. ... ...
525 Discussion . ... ... oo

5.3 Approximate Limit Counters . . . . . . ... .. ... ... .....
53.1 Design . . ...
5.3.2  Simple Limit Counter Implementation . . . . . . .. ... ..
5.3.3 Simple Limit Counter Discussion . . . . . ... ... ....
5.3.4 Approximate Limit Counter Implementation . . . . ... ..
5.3.5 Approximate Limit Counter Discussion . . . ... ... ...

54 ExactLimitCounters . . . . ... ... ... .. ... ........
5.4.1 Atomic Limit Counter Implementation . . .. ... ... ..
5.4.2 Atomic Limit Counter Discussion . . . . ... ... .....
5.4.3 Signal-Theft Limit Counter Design . . . . ... ... ....
5.4.4 Signal-Theft Limit Counter Implementation . . . . . . .. ..
5.4.5 Signal-Theft Limit Counter Discussion . . .. ... ... ..
5.4.6 Applying Exact Limit Counters . . . . ... ... ......

5.5 Parallel Counting Discussion . . . . . . ... ... ... .......

25
26
26
26
27
27
27

29
29
30
30
31
32
34
36
36
37
37
37
37
38
39
40
46
46
47

CONTENTS



CONTENTS

5.5.1 Parallel Counting Performance . . . . .. ... ... .....
5.5.2 Parallel Counting Specializations . . . . ... ... .. ...
5.5.3 Parallel Counting Lessons . . . . .. ... ..........

6 Partitioning and Synchronization Design

6.1 Partitioning Exercises . . . . . . . ... ... L.
6.1.1 Dining Philosophers Problem . . . . ... ... .. .....
6.1.2 Double-EndedQueue . . . . . .. ... ... .. .. .....
6.1.3  Partitioning Example Discussion . . . . . . .. ... ... ..
6.2 Design Criteria . . . . . . ... ...
6.3 Synchronization Granularity . . . ... ... ... ... .......
6.3.1 Sequential Program . . . . . .. ... ... ... ...,
6.32 CodeLocking . . . . . .. ... ... ... ... ...,
6.33 Datalocking . . ... ... ... .. ... .. ...
6.34 DataOwnership . .. ... ..... ... .........
6.3.5 Locking Granularity and Performance . . . . . ... ... ..
6.4 Parallel Fastpath . . . . . . ... ... ... oo
6.4.1 Reader/Writer Locking . . . . . .. ... ... ... .....
6.4.2 Hierarchical Locking . . . . . ... ... ... ... .....
6.4.3 Resource Allocator Caches . . . . . ... ... ... .....
6.5 Beyond Partitioning . . . . .. ... ... oo
6.5.1 Work-Queue Parallel Maze Solver . . . . .. ... ......
6.5.2 Alternative Parallel Maze Solver . . . . . . ... ... ....
6.5.3 Performance ComparisonI . . . . . . ... ... ... ....
6.5.4 Alternative Sequential Maze Solver . . . . .. .. ... ...
6.5.5 Performance ComparisonIl . . . .. ... ... .. .....
6.5.6  Future Directions and Conclusions . . . . . . ... ... ...
6.6 Partitioning, Parallelism, and Optimization. . . . . . . .. ... ...

Locking
7.1 Staying Alive . . . . ...
7.1.1 Deadlock . . ... ... ... .. ...
7.1.2 Livelock and Starvation . . . ... ... ...........
7.1.3 Unfairness . . .. .. ... ... ...
7.14 Inefficiency . . . .. . ... ...
7.2 TypesofLocks . .. ... ... ... .. ... .
7.2.1 Exclusive Locks . . ... ... ... ... . ... ...
7.2.2 Reader-Writer Locks . . . . .. ... ... ... ... ...,
7.2.3 Beyond Reader-Writer Locks . . . . . . ... ... ... ...
7.24 ScopedLocking . . ... ... ... ... .. ...
7.3 Locking Implementation Issues . . . . . .. ... ... ... .....
7.3.1 Sample Exclusive-Locking Implementation Based on Atomic
Exchange . . .. ... ... . .. ...
7.3.2  Other Exclusive-Locking Implementations . . . . . ... ..
7.4 Lock-Based Existence Guarantees . . . . . .. ... .........
7.5 Locking: Hero or Villain? . . . ... ... ... ... ... .....
7.5.1 Locking For Applications: Hero! . . . ... ... ... ...
7.5.2  Locking For Parallel Libraries: Just Another Tool . . . . . . .
7.5.3 Locking For Parallelizing Sequential Libraries: Villain!
7.6 Summary . ... e



vi

8 Data Ownership

10

8.1
8.2
8.3
8.4
8.5
8.6

Multiple Processes . . . . . . . . . ... e
Partial Data Ownership and pthreads . . . . . . . ... ... ... ..
Function Shipping . . . . . . . .. .. ... o
Designated Thread . . . . . .. ... ... ... ... .. ......
Privatization . . . . . . . . ... Lo
Other Uses of Data Ownership . . . . . .. ... ... .. ......

Deferred Processing

9.1
9.2
9.3
9.4
9.5

9.6

Running Example . . . . ... ... ... ... . ...
Reference Counting . . . . . . . .. . ... ... ... ...,
Hazard Pointers . . . . . . .. .. .. .. ... ... .. .......
Sequence Locks . . . . . . . ...
Read-Copy Update (RCU) . . . ... ... ... .. ... .....
9.5.1 IntroductiontoRCU . . ... ... ... ...........
9.52 RCUFundamentals . . . . .. .. ...............
9.5.3 RCU Linux-Kernel API . . . .. ... ... .........
954 RCUUsage . . ... ... ... ..
955 RCURelatedWork . . ... ... ... ............
9.5.6 RCUExercises . . .. .. ... ... ...,

9.6.1 Which to Choose? (Overview) . . . . ... ... ... ....
9.6.2 Which to Choose? (Details) . . ... .............
9.6.3  Which to Choose? (ProductionUse) . . . . ... ... ....

Data Structures

10.1
10.2

10.3

10.4

10.5
10.6

10.7

Motivating Application . . . . . . ... ...
Partitionable Data Structures . . . . . . ... ... ... .......
10.2.1 Hash-Table Design . . . ... ... ... ...........
10.2.2 Hash-Table Implementation . . ... ... ... .......
10.2.3 Hash-Table Performance . . . ... .. ... .........
Read-Mostly Data Structures . . . . . . . .. ... ... ... ... .
10.3.1 RCU-Protected Hash Table Implementation . . . . . . .. ..
10.3.2 RCU-Protected Hash Table Performance . . . . . . . . .. ..
10.3.3 RCU-Protected Hash Table Discussion . . . . ... ... ..
Non-Partitionable Data Structures . . . . .. ... ... .......
10.4.1 Resizable Hash Table Design . . . . . ... ... ... ....
10.4.2 Resizable Hash Table Implementation . . . . . . . ... ...
10.4.3 Resizable Hash Table Discussion . . . . ... ... ... ..
10.4.4 Other Resizable Hash Tables . . . . . . ... ... .. .. ..
Other Data Structures . . . . . . . . . . ... ... . . ... .....
Micro-Optimization . . . . . . . . . . .. ... ..
10.6.1 Specialization . . . . . . ... ... ... ...
10.6.2 BitsandBytes . . . ... ... .. ... ... ...
10.6.3 Hardware Considerations . . . . . ... .. ... .......
Summary . . . ... e

121
121
122
122
122
123
123

125
125
126
128
132
135
136
141
147
155
167
169
169
170
170
173
174

CONTENTS



CONTENTS

11 Validation

11.1

11.2
11.3
11.4
11.5

11.6

11.7

11.8

Introduction . . . . . . ... L
11.1.1 Where Do Bugs Come From? . . . ... ... ... .....
11.1.2 RequiredMindset . . . . . . ... ... ... .........

11.1.4 The Open Source Way . . . . ... .. ... ... ......
Tracing . . . . . . . o
ASSertions . . . ... e
Static Analysis . . . . . ...
CodeReview . . . . . ... . .. ...
11.5.1 Inspection . . . . . . . . . .. v vt
11.5.2 Walkthroughs . . . . . ... ... . ... .. .........
11.5.3 Self-Inspection . . . . ... ... ... ... .........
Probability and Heisenbugs . . . . . . . .. ... ... ... ... ..
11.6.1 Statistics for Discrete Testing . . . . . . . .. ... ... ...
11.6.2 Statistics Abuse for Discrete Testing . . . . . . .. ... ...
11.6.3 Statistics for Continuous Testing . . . . . . .. ... ... ..
11.6.4 Hunting Heisenbugs . . . . .. .. ... ... ... .....
Performance Estimation . . . . . . ... .. ... ... ... ...,
11.7.1 Benchmarking . . ... ... ... .. ... .........
11.7.2 Profiling . . ... ... .. . .. ...
11.7.3 Differential Profiling . . . . . ... ... ... ........
11.7.4 Microbenchmarking . . . . ... ... ... ... ......
11.7.5 Isolation . . . ... ... ... .. . .. ... ...
11.7.6 Detecting Interference . . . . . . . . ... ... . ... ...
Summary . ...

12 Formal Verification

12.1

12.2

12.3

12.4
12.5
12.6
12.7

State-Space Search . . . . . .. ... oL
12.1.1 Promelaand Spin . . . . . . .. ... ... ... ..
12.1.2 HowtoUsePromela . . ... ... ... ... ... ....
12.1.3 Promela Example: Locking . . . . ... ... ... .....
12.1.4 Promela Example: QRCU . . . . .. ... ... .. .....
12.1.5 Promela Parable: dynticks and Preemptible RCU . . . . . . .
12.1.6 Validating Preemptible RCU and dynticks . . . . .. ... ..
Special-Purpose State-Space Search . . . . . ... ... ... ....
12.2.1 AnatomyofalLitmusTest . .. ... ... ... .......
12.2.2 What Does This Litmus Test Mean? . . . . .. ... ... ..
12.2.3 Running a Litmus Test . . . . . . .. .. ... ... .....
12.2.4 PPCMEM Discussion . . . . . . .. .. ... ... .....
Axiomatic Approaches . . . . . . ... ... L L o
12.3.1 Axiomatic Approaches and Locking . . . . . ... ... ...
12.3.2 Axiomatic Approachesand RCU . . . . . ... ... .. ...
SAT Solvers . . . . . ... ..
Stateless Model Checkers . . . . . ... ... ..... ... . ...,
SUMmary . . . . ..o e e
Choosing a ValidationPlan . . . . . . ... ... ... ... .....

197
197
197
198
199
201
201
202
203
203
203
204
204
205
206
207
207
208
211
212
212
213
213
213
214
216

vii



viii

13 Putting It All Together
13.1 Counter Conundrums . . . . . . . . . . . . v v v i

13.1.1
13.1.2

Counting Updates . . . . . . . .. ... ... .. .......
Counting Lookups . . . . .. ... ... ... ... ..

13.2 Refurbish Reference Counting . . . . .. ... ... ... ......

13.2.1
13.2.2

Implementation of Reference-Counting Categories . . . . . .
Counter Optimizations . . . . . . ... ... ... ......

13.3 Hazard-Pointer Helpers . . . . . . .. ... ... ... ........

13.3.1

Scalable Reference Count . . . . . . ... ..........

13.4 Sequence-Locking Specials . . . . . . ... .. ... ... ......

13.4.1
13.4.2

Correlated Data Elements . . . . . ... ... ........
Upgrade to Writer . . . . . . .. ... ... ... ......

13.5 RCURescues . . . . . . . .o i ittt e e e e

13.5.1
13.5.2
13.5.3
13.54
13.5.5
13.5.6

RCU and Per-Thread-Variable-Based Statistical Counters . . .
RCU and Counters for Removable I/O Devices . . . ... ..
ArrayandLength . . . . . . ... .. oL
Correlated Fields . . . . . ... ... ... .. .. ......
Update-Friendly Traversal . . .. .. ... ... .......
Scalable Reference CountTwo . . . . . . ... ... ... ..

14 Advanced Synchronization
14.1 AvoidingLocks . . . . . . . . ... L
14.2 Non-Blocking Synchronization . . . . . . . ... ... ... ... ..

14.2.1
14.2.2
14.2.3

Simple NBS . . . ... ...
Applicability of NBS Benefits . . . . . ... ... ......
NBS Discussion . . . . . . ... ... o

14.3 Parallel Real-Time Computing . . . . . . . .. .. ... ... ....

14.3.1
14.3.2
14.3.3
143.4
14.3.5
14.3.6
14.3.7

What is Real-Time Computing? . . . .. ... ... .. ...
Who Needs Real-Time? . . . ... ..............
Who Needs Parallel Real-Time? . . . . .. ... .......
Implementing Parallel Real-Time Systems . . . . . . ... ..
Implementing Parallel Real-Time Operating Systems . . . . .
Implementing Parallel Real-Time Applications . . . ... ..

15 Advanced Synchronization: Memory Ordering
15.1 Ordering: Why and How? . . . ... ... ... ... ... .....

15.1.2
15.1.3

How to Force Ordering? . . . . . ... ... .. .......
BasicRulesof Thumb . . . ... ... ... . ........

152 Tricksand Traps . . . . . . . . . .. .

15.2.1
15.2.2
15.2.3
15.2.4
15.2.5
15.2.6
15.2.7

Variables With Multiple Values . . . . ... ... ......
Memory-Reference Reordering . . . . . ... ... ... ..
Address Dependencies . . . . . . ... ... ...
Data Dependencies . . . . . .. ... ... ... ...
Control Dependencies . . . . . . ... ... .........
Cache Coherence . . . . . ... ... ... ... .......
Multicopy Atomicity . . . . . ... ...

15.3 Compile-Time Consternation . . . . . . . . . ... .. ... .....

15.3.1

Memory-Reference Restrictions . . . . ... ... ... ...

259
259
259
259
260
261
264
264
264
264
264
265
266
266
267
268
269
269
269

271
271
271
272
274
276
276
276
280
281
282
282
292
295

CONTENTS



CONTENTS

15.3.2
15.3.3

Address- and Data-Dependency Difficulties . . . . . ... ..
Control-Dependency Calamities . . . . . ... ... .....

15.4 Higher-Level Primitives . . . . . . . . ... ... ... ... . ...

15.4.1
15.4.2

Memory Allocation . . . . . ... ... .. ... ... ... .
RCU . . .

15.5 Hardware Specifics . . . . . ... ... ... ... ... . ...

15.5.1
15.5.2
15.5.3
15.5.4
15.5.5
15.5.6
15.5.7
15.5.8
15.5.9

Alpha . . . . ...
Armv7-A/R . . ..
Armv8 . .

X80 . e

17 Conflicting Visions of the Future
17.1 The Future of CPU Technology Ain’t What it UsedtoBe . . . . . . .

17.2

17.3

17.4

17.5

17.1.1
17.1.2
17.1.3
17.1.4

Uniprocessor Uber Alles . . . . . ... ............
Multithreaded Mania . . . . . . . ... ... ... ... ...
Moreofthe Same . . . . . . .. ... ... ... ... ...
Crash Dummies Slamming into the Memory Wall . . . . . . .

Transactional Memory . . . . .. ... .. ... ... ........

17.2.1
17.2.2
17.2.3
17.2.4

Outside World . . . ... ... ... ... ... . ......
Process Modification . . . . . .. ... ... ... ......
Synchronization . . .. ... ... ... .. L.
Discussion . . .. ... ... ... ... .. .. ...

Hardware Transactional Memory . . . . . . . ... ... ... ....

17.3.1
17.3.2
17.3.3
17.3.4
17.3.5
17.3.6

17.4.1
17.4.2
17.4.3
17.4.4
17.4.5
17.4.6
17.4.7

HTM Benefits WRT to Locking . . . . ... .. ... ....
HTM Weaknesses WRT Locking . . . . ... ... .....
HTM Weaknesses WRT to Locking When Augmented . . . .

Potential Game Changers . . . . . . .. .. ... .......
Conclusions . . . . . . . ... .. L

Environment . . . . ... ... ... o
Overhead . . . . .. ... .. . ... ... . ... .
Locate Bugs . . . .. .. ... ... ... ...
Minimal Scaffolding . . ... ... .. ... .........
RelevantBugs . . . ... ... ... ... . ... ...
Formal Regression Scorecard . . . . . ... ... ......

Functional Programming for Parallelism . . . . . ... ... ... ..

319
321
324
324
324
330
333
334
335
336
336
337
338
339
339
340

341
341
341
342

ix



A Important Questions

A.1 What Does “After” Mean? . . .. ... ... ... ... .......
A.2 What is the Difference Between “Concurrent” and “Parallel”? . . . . .
A3 WhatTimelIsIt? . .. ... ... ... ... .. .. .........
A4 How Much Ordering? . . . . . . . . . ... .. ... .. ...
A.4.1 Where is the Defining Data? . . . . ... ... ... .....
A.4.2 Consistent Data Used Consistently? . . . . ... ... ....
A.4.3 Isthe Problem Partitionable? . . . . ... ... ........
A44 Noneofthe Above?. . . . .. .. ... ... ... ......

“Toy” RCU Implementations

B.1 Lock-BasedRCU . ... .. ... ... ... ... ... .......
B.2 Per-Thread Lock-Based RCU . . . . . ... .. ... ... ......
B.3 Simple Counter-Based RCU . . . .. ... ... . ... ......
B.4 Starvation-Free Counter-Based RCU . . . . . ... ... ... ....
B.5 Scalable Counter-BasedRCU . . . . . ... ... .. .........
B.6 Scalable Counter-Based RCU With Shared Grace Periods . . . . . . .
B.7 RCU Based on Free-Running Counter . . . . . . ... ... .....
B.8 Nestable RCU Based on Free-Running Counter . . . . . .. ... ..
B.9 RCU Based on Quiescent States . . . . . . ... ...........
B.10 Summary of Toy RCU Implementations . . . . . ... ... .....

Why Memory Barriers?
C.1 Cache Structure . . . . .. ... ... ...
C.2 Cache-Coherence Protocols . . . . ... .. ... ... .. ......
C2.1 MESIStates . . . ... ...
C.2.2 MESI Protocol Messages . . . . . . . .. ..o,
C.2.3 MESI State Diagram . . . . ... .. ... .. ........
C.2.4 MESIProtocol Example . . . .. ... ............
C.3 Stores Result in Unnecessary Stalls . . . . . ... ... ... .....
C3.1 StoreBuffers . ... ... ... ... ... .. ...
C3.2 Store Forwarding . . . ... ... ... ... ......
C.3.3 Store Buffers and Memory Barriers . . . ... ... .....
C.4 Store Sequences Result in Unnecessary Stalls . . . . ... ... ...
C4.1 InvalidateQueues. . . . . . . . .. . ... ... .. ....
C.4.2 Invalidate Queues and Invalidate Acknowledge . . . ... ..
C.4.3 Invalidate Queues and Memory Barriers . . . . . .. ... ..
C.5 Read and Write Memory Barriers . . . . ... ... ... ......
C.6 Example Memory-Barrier Sequences . . . . . .. ... ... .....
C.6.1 Ordering-Hostile Architecture . . . . . .. ... ... ....
C6.2 Examplel .. ... .. ... .. . ... ... ...
C.63 Example2 . ... ... .. ...
C64 Example3 . ... ... ... ... .
C.7 Are Memory Barriers Forever? . . . . . ... ... ... ... ...
C.8 Advice to Hardware Designers . . . . . .. ... ... ... .....

379
379
381
382
382
383
383
384
384

385
385
386
386
387
389
390
392
393
395
396

CONTENTS



CONTENTS

D Style Guide
D.1 Paul’sConventions . . . . . . ... ... .. ... ... .....
D2 NISTStyleGuide . . . . . . . ... ... ... . ...
D.2.1 UnitSymbol . ... ... ... ... ... ... ...
D.2.2 NIST Guide Yet ToBe Followed . . . . . ... ... .....
D3 EIgX Conventions . . . . . .. ... ... ... ... ...
D.3.1 Monospace Font . . . . ... ... ... .. ... ...
D.3.2 Cross-reference . . . . . .. .. ...
D.3.3 Non Breakable Spaces . . . . . .. ... ... ........
D.3.4 Hyphenationand Dashes . . . . . . ... ... ........
D.3.,5 Punctuation . . . ... ...
D.3.6 Floating Object Format . . . . . .. ... ... ........
D.3.7 Improvement Candidates . . . . . . ... ... ... .....

E Answers to Quick Quizzes
E.1 HowToUseThisBook . . . .. ... ... ... ..........
E.2 Introduction . . . . . . . ... . ...
E.3 HardwareanditsHabits. . . . .. .. ... ... ... ........
E4 ToolsoftheTrade . . . . . . . ... ... ... ... .. . ......
ES Counting . .. ... . . . . . e
E.6 Partitioning and Synchronization Design . . . . . . . ... ... ...
E.7 Locking . . . . .. . . .
E.8 DataOwnership . . . . . ... ... ... ... . ... ...
E.9 Deferred Processing . . . . . . ... ... L.
E.10 Data Structures . . . . . . . ... ...
E.11 Validation . . . . ... ... ... ... . ... ... ...
E.12 Formal Verification . . . . . .. ... ... ... ... ... ...
E.13 Putting It All Together . . . . . . . . ... ... ... ... .....
E.14 Advanced Synchronization . . . ... ... ... ... ... .....
E.15 Advanced Synchronization: Memory Ordering . . . . ... ... ..
E.16 Easeof Use . . . . .. ... ... ... ... . ..
E.17 Conflicting Visions of the Future . . . . . . . .. ... ... .....
E.18 Important Questions . . . . . . .. . .. ... L.
E.19 “Toy” RCU Implementations . . . . . . ... ... ... .......

Glossary
Bibliography

Credits
EIEX Advisor . . . . . . . e
Reviewers . . . . . . . . e
Machine Owners . . . . . . . ... L
Original Publications . . . . . . ... . ... ... ... ... ...
Figure Credits . . . . . . . . . . ...
Other Support . . . . . . . . . e e e e

415
415
416
416
417
417
417
421
422
422
423
423
424

429
429
430
433
437
443
456
460
467
468
481
485
492
498
500
502
512
512
517
518
523

527

533

Xi



Xii

CONTENTS



Chapter 1

How To Use This Book

The purpose of this book is to help you program shared-
memory parallel systems without risking your sanity.'
Nevertheless, you should think of the information in this
book as a foundation on which to build, rather than as
a completed cathedral. Your mission, if you choose to
accept, is to help make further progress in the exciting
field of parallel programming—progress that will in time
render this book obsolete.

Parallel programming in the 21% century is no longer
focused solely on science, research, and grand-challenge
projects. And this is all to the good, because it means
that parallel programming is becoming an engineering
discipline. Therefore, as befits an engineering discipline,
this book examines specific parallel-programming tasks
and describes how to approach them. In some surprisingly
common cases, these tasks can be automated.

This book is written in the hope that presenting the
engineering discipline underlying successful parallel-
programming projects will free a new generation of par-
allel hackers from the need to slowly and painstakingly
reinvent old wheels, enabling them to instead focus their
energy and creativity on new frontiers. However, what
you get from this book will be determined by what you
put into it. It is hoped that simply reading this book will
be helpful, and that working the Quick Quizzes will be
even more helpful. However, the best results come from
applying the techniques taught in this book to real-life
problems. As always, practice makes perfect.

But no matter how you approach it, we sincerely hope
that parallel programming brings you at least as much fun,
excitement, and challenge that it has brought to us!

1 Or, perhaps more accurately, without much greater risk to your
sanity than that incurred by non-parallel programming. Which, come to
think of it, might not be saying all that much.

If you would only recognize that life is hard, things
would be so much easier for you.

Louis D. Brandeis

1.1 Roadmap

Cat: Where are you going?

Alice: Which way should I go?

Cat: That depends on where you are going.
Alice: I don’t know.

Cat: Then it doesn’t matter which way you go.

Lewis Carroll, Alice in Wonderland

This book is a handbook of widely applicable and heav-
ily used design techniques, rather than a collection of
optimal algorithms with tiny areas of applicability. You
are currently reading Chapter 1, but you knew that al-
ready. Chapter 2 gives a high-level overview of parallel
programming.

Chapter 3 introduces shared-memory parallel hardware.
After all, it is difficult to write good parallel code un-
less you understand the underlying hardware. Because
hardware constantly evolves, this chapter will always be
out of date. We will nevertheless do our best to keep up.
Chapter 4 then provides a very brief overview of common
shared-memory parallel-programming primitives.

Chapter 5 takes an in-depth look at parallelizing one
of the simplest problems imaginable, namely counting.
Because almost everyone has an excellent grasp of count-
ing, this chapter is able to delve into many important
parallel-programming issues without the distractions of
more-typical computer-science problems. My impression
is that this chapter has seen the greatest use in parallel-
programming coursework.

Chapter 6 introduces a number of design-level methods
of addressing the issues identified in Chapter 5. It turns out
that it is important to address parallelism at the design level
when feasible: To paraphrase Dijkstra [Dij68], “retrofitted
parallelism considered grossly suboptimal” [McK12b].



The next three chapters examine three important ap-
proaches to synchronization. Chapter 7 covers locking,
which is still not only the workhorse of production-quality
parallel programming, but is also widely considered to
be parallel programming’s worst villain. Chapter 8 gives
a brief overview of data ownership, an often overlooked
but remarkably pervasive and powerful approach. Finally,
Chapter 9 introduces a number of deferred-processing
mechanisms, including reference counting, hazard point-
ers, sequence locking, and RCU.

Chapter 10 applies the lessons of previous chapters to
hash tables, which are heavily used due to their excel-
lent partitionability, which (usually) leads to excellent
performance and scalability.

As many have learned to their sorrow, parallel program-
ming without validation is a sure path to abject failure.
Chapter 11 covers various forms of testing. It is of course
impossible to test reliability into your program after the
fact, so Chapter 12 follows up with a brief overview of a
couple of practical approaches to formal verification.

Chapter 13 contains a series of moderate-sized parallel
programming problems. The difficulty of these problems
vary, but should be appropriate for someone who has
mastered the material in the previous chapters.

Chapter 14 looks at advanced synchronization meth-
ods, including non-blocking synchronization and parallel
real-time computing, while Chapter 15 covers the ad-
vanced topic of memory ordering. Chapter 16 follows
up with some ease-of-use advice. Finally, Chapter 17
looks at a few possible future directions, including shared-
memory parallel system design, software and hardware
transactional memory, and functional programming for
parallelism.

This chapter is followed by a number of appendices. The
most popular of these appears to be Appendix C, which
delves even further into memory ordering. Appendix E
contains the answers to the infamous Quick Quizzes,
which are discussed in the next section.

1.2 Quick Quizzes

Undertake something difficult, otherwise you will
never grow.

Abbreviated from Ronald E. Osburn

“Quick quizzes” appear throughout this book, and the
answers may be found in Appendix E starting on page 429.
Some of them are based on material in which that quick

CHAPTER 1. HOW TO USE THIS BOOK

quiz appears, but others require you to think beyond that
section, and, in some cases, beyond the realm of current
knowledge. As with most endeavors, what you get out of
this book is largely determined by what you are willing to
put into it. Therefore, readers who make a genuine effort
to solve a quiz before looking at the answer find their
effort repaid handsomely with increased understanding of
parallel programming.

Quick Quiz 1.1: Where are the answers to the Quick Quizzes
found? M

Quick Quiz 1.2: Some of the Quick Quiz questions seem to
be from the viewpoint of the reader rather than the author. Is
that really the intent? W

Quick Quiz 1.3: These Quick Quizzes are just not my cup
of tea. What can I do about it? W

In short, if you need a deep understanding of the ma-
terial, then you should invest some time into answering
the Quick Quizzes. Don’t get me wrong, passively read-
ing the material can be quite valuable, but gaining full
problem-solving capability really does require that you
practice solving problems.

I learned this the hard way during coursework for my
late-in-life Ph.D. I was studying a familiar topic, and
was surprised at how few of the chapter’s exercises I
could answer off the top of my head.? Forcing myself to
answer the questions greatly increased my retention of the
material. So with these Quick Quizzes I am not asking
you to do anything that I have not been doing myself.

Finally, the most common learning disability is thinking
that you already understand the material at hand. The
quick quizzes can be an extremely effective cure.

1.3 Alternatives to This Book

Between two evils I always pick the one I never tried
before.

Mae West

As Knuth learned the hard way, if you want your book
to be finite, it must be focused. This book focuses on
shared-memory parallel programming, with an emphasis
on software that lives near the bottom of the software

2 So I suppose that it was just as well that my professors refused to
let me waive that class!



1.3. ALTERNATIVES TO THIS BOOK

stack, such as operating-system kernels, parallel data-
management systems, low-level libraries, and the like.
The programming language used by this book is C.

If you are interested in other aspects of parallelism,
you might well be better served by some other book.
Fortunately, there are many alternatives available to you:

1. If you prefer a more academic and rigorous treatment
of parallel programming, you might like Herlihy’s
and Shavit’s textbook [HSO08]. This book starts
with an interesting combination of low-level primi-
tives at high levels of abstraction from the hardware,
and works its way through locking and simple data
structures including lists, queues, hash tables, and
counters, culminating with transactional memory.
Michael Scott’s textbook [Sco13] approaches similar
material with more of a software-engineering focus,
and, as far as I know, is the first formally published
academic textbook with section devoted to RCU.

2. If you would like an academic treatment of parallel
programming from a programming-language-prag-
matics viewpoint, you might be interested in the
concurrency chapter from Scott’s textbook [Sco06]
on programming-language pragmatics.

3. If you are interested in an object-oriented patternist
treatment of parallel programming focussing on C++,
you might try Volumes 2 and 4 of Schmidt’s POSA
series [SSRB00, BHSO7]. Volume 4 in particular
has some interesting chapters applying this work to a
warehouse application. The realism of this example
is attested to by the section entitled “Partitioning the
Big Ball of Mud”, in which the problems inherent
in parallelism often take a back seat to getting one’s
head around a real-world application.

4. If you want to work with Linux-kernel device driv-
ers, then Corbet’s, Rubini’s, and Kroah-Hartman’s
“Linux Device Drivers” [CRKHO5] is indispensable,
as is the Linux Weekly News web site (http:
//1lwn.net/). There is a large number of books
and resources on the more general topic of Linux
kernel internals.

5. If your primary focus is scientific and technical com-
puting, and you prefer a patternist approach, you
might try Mattson et al.’s textbook [MSMO5]. It
covers Java, C/C++, OpenMP, and MPIL. Its patterns
are admirably focused first on design, then on imple-
mentation.

10.

11.

12.

13.

. If your primary focus is scientific and technical com-

puting, and you are interested in GPUs, CUDA, and
MPI, you might check out Norm Matloff’s “Program-
ming on Parallel Machines” [Matl7]. Of course, the
GPU vendors have quite a bit of additional informa-
tion [AMD20, Zell1, NVil7a, NVil7b].

. If you are interested in POSIX Threads, you might

take a look at David R. Butenhof’s book [But97].
In addition, W. Richard Stevens’s book [Ste92] cov-
ers UNIX and POSIX, and Stewart Weiss’s lecture
notes [Weil3] provide an thorough and accessible
introduction with a good set of examples.

. If you are interested in C++11, you might like An-

thony Williams’s “C++ Concurrency in Action: Prac-
tical Multithreading” [Will2].

. If you are interested in C++, but in a Windows

environment, you might try Herb Sutter’s “Effective
Concurrency” series in Dr. Dobbs Journal [SutOS8].
This series does a reasonable job of presenting a
commonsense approach to parallelism.

If you want to try out Intel Threading Building Blocks,
then perhaps James Reinders’s book [Rei07] is what
you are looking for.

Those interested in learning how various types of
multi-processor hardware cache organizations affect
the implementation of kernel internals should take
a look at Curt Schimmel’s classic treatment of this
subject [Sch94].

If you are looking for a hardware view, John
Hennessy’s and David Patterson’s classic text-
book [HP17, HP11] is well worth a read. If you
are looking for an academic textbook on memory or-
dering, that of Daniel Sorin et al. [SHW11] is highly
recommended.

Finally, those using Java might be well-served by
Doug Lea’s textbooks [Lea97, GPB*(07].

However, if you are interested in principles of parallel
design for low-level software, especially software written
in C, read on!


http://lwn.net/
http://lwn.net/

1.4 Sample Source Code

Use the source, Luke!

Unknown Star Wars fan

This book discusses its fair share of source code, and
in many cases this source code may be found in the
CodeSamples directory of this book’s git tree. For ex-
ample, on UNIX systems, you should be able to type the
following:

find CodeSamples -name rcu_rcpls.c -print

This command will locate the file rcu_rcpls. c, which
is called out in Appendix B. Other types of systems have
well-known ways of locating files by filename.

1.5 Whose Book Is This?

If you become a teacher, by your pupils you’ll be
taught.

Oscar Hammerstein 11

As the cover says, the editor is one Paul E. McKenney.
However, the editor does accept contributions via the
perfbook@vger.kernel.org email list. These contri-
butions can be in pretty much any form, with popular
approaches including text emails, patches against the
book’s IZTEX source, and even git pull requests. Use
whatever form works best for you.

To create patches or git pull requests, you will
need the IXTEX source to the book, which is at
git://git.kernel.org/pub/scm/linux/kernel/
git/paulmck/perfbook.git. You will of course also
need git and IXTEX, which are available as part of most
mainstream Linux distributions. Other packages may be
required, depending on the distribution you use. The
required list of packages for a few popular distributions is
listed in the file FAQ-BUILD. txt in the I&TEX source to
the book.

To create and display a current IZTEX source tree of this
book, use the list of Linux commands shown in Listing 1.1.
In some environments, the evince command that displays
perfbook.pdf may need to be replaced, for example,
with acroread. The git clone command need only be
used the first time you create a PDF, subsequently, you
can run the commands shown in Listing 1.2 to pull in any

CHAPTER 1. HOW TO USE THIS BOOK

Listing 1.1: Creating an Up-To-Date PDF

git clone git://git.kernel.org/pub/scm/linux/kernel/git/ |
< paulmck/perfbook.git

cd perfbook

# You may need to install a font. See item 1 in FAQ.txt.
make # -jN for parallel build

evince perfbook.pdf & # Two-column version

make perfbook-1c.pdf

evince perfbook-lc.pdf & # One-column version for e-readers
make help # Display other build options

Listing 1.2: Generating an Updated PDF

git remote update

git checkout origin/master

make # -jN for parallel build

evince perfbook.pdf & # Two-column version

make perfbook-1c.pdf

evince perfbook-ic.pdf & # One-column version for e-readers

updates and generate an updated PDF. The commands in
Listing 1.2 must be run within the perfbook directory
created by the commands shown in Listing 1.1.

PDFs of this book are sporadically posted at
http://kernel.org/pub/linux/kernel/people/
paulmck/perfbook/perfbook.html and at http:
//www.rdrop.com/users/paulmck/perfbook/.

The actual process of contributing patches and send-
ing git pull requests is similar to that of the Linux
kernel, which is documented in the Documentation/
SubmittingPatches file in the Linux source tree. One
important requirement is that each patch (or commit, in
the case of a git pull request) must contain a valid
Signed-off-by: line, which has the following format:

Signed-off-by: My Name <myname@example.org>

Please see http://lkml.org/lkml/2007/1/15/
219 for an example patch containing a Signed-off-by:
line.

It is important to note that the Signed-off-by: line
has a very specific meaning, namely that you are certifying
that:

(a) The contribution was created in whole or in part by
me and I have the right to submit it under the open
source license indicated in the file; or

(b) The contribution is based upon previous work that, to
the best of my knowledge, is covered under an appro-
priate open source License and I have the right under
that license to submit that work with modifications,
whether created in whole or in part by me, under the
same open source license (unless I am permitted to


mailto:perfbook@vger.kernel.org
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www.rdrop.com/users/paulmck/perfbook/
http://www.rdrop.com/users/paulmck/perfbook/
http://lkml.org/lkml/2007/1/15/219
http://lkml.org/lkml/2007/1/15/219

1.5. WHOSE BOOK IS THIS?

submit under a different license), as indicated in the
file; or

(c) The contribution was provided directly to me by
some other person who certified (a), (b) or (c) and I
have not modified it.

(d) Iunderstand and agree that this project and the contri-
bution are public and that a record of the contribution
(including all personal information I submit with it,
including my sign-off) is maintained indefinitely and
may be redistributed consistent with this project or
the open source license(s) involved.

This is quite similar to the Developer’s Certificate
of Origin (DCO) 1.1 used by the Linux kernel. You
must use your real name: I unfortunately cannot accept
pseudonymous or anonymous contributions.

The language of this book is American English, however,
the open-source nature of this book permits translations,
and I personally encourage them. The open-source li-
censes covering this book additionally allow you to sell
your translation, if you wish. I do request that you send
me a copy of the translation (hardcopy if available), but
this is a request made as a professional courtesy, and
is not in any way a prerequisite to the permission that
you already have under the Creative Commons and GPL
licenses. Please see the FAQ. txt file in the source tree
for a list of translations currently in progress. I consider
a translation effort to be “in progress” once at least one
chapter has been fully translated.

There are many styles under the “American English”
rubric. The style for this particular book is documented
in Appendix D.

As noted at the beginning of this section, I am this
book’s editor. However, if you choose to contribute, it will
be your book as well. In that spirit, I offer you Chapter 2,
our introduction.



CHAPTER 1. HOW TO USE THIS BOOK



Chapter 2

Introduction

Parallel programming has earned a reputation as one of
the most difficult areas a hacker can tackle. Papers and
textbooks warn of the perils of deadlock, livelock, race
conditions, non-determinism, Amdahl’s-Law limits to
scaling, and excessive realtime latencies. And these perils
are quite real; we authors have accumulated uncounted
years of experience along with the resulting emotional
scars, grey hairs, and hair loss.

However, new technologies that are difficult to use at
introduction invariably become easier over time. For
example, the once-rare ability to drive a car is now com-
monplace in many countries. This dramatic change came
about for two basic reasons: (1) cars became cheaper
and more readily available, so that more people had the
opportunity to learn to drive, and (2) cars became easier to
operate due to automatic transmissions, automatic chokes,
automatic starters, greatly improved reliability, and a host
of other technological improvements.

The same is true for many other technologies, includ-
ing computers. It is no longer necessary to operate a
keypunch in order to program. Spreadsheets allow most
non-programmers to get results from their computers that
would have required a team of specialists a few decades
ago. Perhaps the most compelling example is web-surfing
and content creation, which since the early 2000s has been
easily done by untrained, uneducated people using various
now-commonplace social-networking tools. As recently
as 1968, such content creation was a far-out research
project [Eng68], described at the time as “like a UFO
landing on the White House lawn”[Gri00].

Therefore, if you wish to argue that parallel program-
ming will remain as difficult as it is currently perceived
by many to be, it is you who bears the burden of proof,
keeping in mind the many centuries of counter-examples
in many fields of endeavor.

If parallel programming is so hard, why are there so
many parallel programs?

Unknown

2.1 Historic Parallel Programming

Difficulties

Not the power to remember, but its very opposite, the
power to forget, is a necessary condition for our
existence.

Sholem Asch

As indicated by its title, this book takes a different ap-
proach. Rather than complain about the difficulty of
parallel programming, it instead examines the reasons
why parallel programming is difficult, and then works to
help the reader to overcome these difficulties. As will be
seen, these difficulties have historically fallen into several
categories, including:

1. The historic high cost and relative rarity of parallel
systems.

2. The typical researcher’s and practitioner’s lack of
experience with parallel systems.

3. The paucity of publicly accessible parallel code.

4. The lack of a widely understood engineering disci-
pline of parallel programming.

5. The high overhead of communication relative to that
of processing, even in tightly coupled shared-memory
computers.

Many of these historic difficulties are well on the way
to being overcome. First, over the past few decades,
the cost of parallel systems has decreased from many
multiples of that of a house to that of a modest meal,
courtesy of Moore’s Law. Papers calling out the ad-
vantages of multicore CPUs were published as early as



1996 [ONH*96]. IBM introduced simultaneous multi-
threading into its high-end POWER family in 2000, and
multicore in 2001. Intel introduced hyperthreading into
its commodity Pentium line in November 2000, and both
AMD and Intel introduced dual-core CPUs in 2005. Sun
followed with the multicore/multi-threaded Niagara in
late 2005. In fact, by 2008, it was becoming difficult to
find a single-CPU desktop system, with single-core CPUs
being relegated to netbooks and embedded devices. By
2012, even smartphones were starting to sport multiple
CPUs. By 2020, safety-critical software standards started
addressing concurrency.

Second, the advent of low-cost and readily available
multicore systems means that the once-rare experience
of parallel programming is now available to almost all
researchers and practitioners. In fact, parallel systems
have long been within the budget of students and hobbyists.
We can therefore expect greatly increased levels of inven-
tion and innovation surrounding parallel systems, and that
increased familiarity will over time make the once pro-
hibitively expensive field of parallel programming much
more friendly and commonplace.

Third, in the 20" century, large systems of highly par-
allel software were almost always closely guarded propri-
etary secrets. In happy contrast, the 21% century has seen
numerous open-source (and thus publicly available) paral-
lel software projects, including the Linux kernel [Tor03],
database systems [Pos08, MS08], and message-passing
systems [The08, UniO8a]. This book will draw primarily
from the Linux kernel, but will provide much material
suitable for user-level applications.

Fourth, even though the large-scale parallel-program-
ming projects of the 1980s and 1990s were almost all
proprietary projects, these projects have seeded other
communities with cadres of developers who understand
the engineering discipline required to develop production-
quality parallel code. A major purpose of this book is to
present this engineering discipline.

Unfortunately, the fifth difficulty, the high cost of com-
munication relative to that of processing, remains largely
in force. This difficulty has been receiving increasing
attention during the new millennium. However, accord-
ing to Stephen Hawking, the finite speed of light and
the atomic nature of matter will limit progress in this
area [Gar(07, Moo03]. Fortunately, this difficulty has been
in force since the late 1980s, so that the aforementioned
engineering discipline has evolved practical and effective
strategies for handling it. In addition, hardware designers
are increasingly aware of these issues, so perhaps future

CHAPTER 2. INTRODUCTION

hardware will be more friendly to parallel software, as
discussed in Section 3.3.

Quick Quiz 2.1: Come on now!!! Parallel programming has
been known to be exceedingly hard for many decades. You
seem to be hinting that it is not so hard. What sort of game
are you playing? H

However, even though parallel programming might not
be as hard as is commonly advertised, it is often more
work than is sequential programming.

Quick Quiz 2.2: How could parallel programming ever be
as easy as sequential programming? H

It therefore makes sense to consider alternatives to
parallel programming. However, it is not possible to
reasonably consider parallel-programming alternatives
without understanding parallel-programming goals. This
topic is addressed in the next section.

2.2 Parallel Programming Goals

If you don’t know where you are going, you will end
up somewhere else.

Yogi Berra

The three major goals of parallel programming (over and
above those of sequential programming) are as follows:

1. Performance.
2. Productivity.

3. Generality.

Unfortunately, given the current state of the art, it is
possible to achieve at best two of these three goals for any
given parallel program. These three goals therefore form
the iron triangle of parallel programming, a triangle upon
which overly optimistic hopes all too often come to grief.!

Quick Quiz 2.3: Oh, really??? What about correctness,
maintainability, robustness, and so on? W

Quick Quiz 2.4: And if correctness, maintainability, and
robustness don’t make the list, why do productivity and gener-
ality? H

! Kudos to Michael Wong for naming the iron triangle.



2.2. PARALLEL PROGRAMMING GOALS

10000 11 T T T 1T 3

» i w:
o i ]
S 1000 | ®
z : :
§ 100 f E
o o -+ 3
o C ++ﬁ ]
~ 10 F ++ -
S E + E
o - #+ + ]
=) 15— + E
5 |- E

0.1 Lo

cg 82888 2Ly

— — — — — Al Al Al Al Al

Year

Figure 2.1: MIPS/Clock-Frequency Trend for Intel CPUs

Quick Quiz 2.5: Given that parallel programs are much
harder to prove correct than are sequential programs, again,
shouldn’t correctness really be on the list? W

[Quick Quiz 2.6: What about just having fun? Wl J

Each of these goals is elaborated upon in the following
sections.

2.2.1 Performance

Performance is the primary goal behind most parallel-
programming effort. After all, if performance is not a
concern, why not do yourself a favor: Just write sequential
code, and be happy? It will very likely be easier and you
will probably get done much more quickly.

Quick Quiz 2.7: Are there no cases where parallel program-
ming is about something other than performance? W

Note that “performance” is interpreted broadly here,
including for example scalability (performance per CPU)
and efficiency (performance per watt).

That said, the focus of performance has shifted from
hardware to parallel software. This change in focus is due
to the fact that, although Moore’s Law continues to deliver
increases in transistor density, it has ceased to provide the
traditional single-threaded performance increases. This
can be seen in Figure 2.1%2, which shows that writing
single-threaded code and simply waiting a year or two for

2 This plot shows clock frequencies for newer CPUs theoretically
capable of retiring one or more instructions per clock, and MIPS (millions

the CPUs to catch up may no longer be an option. Given
the recent trends on the part of all major manufacturers
towards multicore/multithreaded systems, parallelism is
the way to go for those wanting to avail themselves of the
full performance of their systems.

Quick Quiz 2.8: Why not instead rewrite programs from
inefficient scripting languages to C or C++? W

Even so, the first goal is performance rather than scal-
ability, especially given that the easiest way to attain
linear scalability is to reduce the performance of each
CPU [Tor01]. Given a four-CPU system, which would
you prefer? A program that provides 100 transactions per
second on a single CPU, but does not scale at all? Or
a program that provides 10 transactions per second on a
single CPU, but scales perfectly? The first program seems
like a better bet, though the answer might change if you
happened to have a 32-CPU system.

That said, just because you have multiple CPUs is
not necessarily in and of itself a reason to use them all,
especially given the recent decreases in price of multi-
CPU systems. The key point to understand is that parallel
programming is primarily a performance optimization,
and, as such, it is one potential optimization of many. If
your program is fast enough as currently written, there is no
reason to optimize, either by parallelizing it or by applying
any of a number of potential sequential optimizations.?
By the same token, if you are looking to apply parallelism
as an optimization to a sequential program, then you will
need to compare parallel algorithms to the best sequential
algorithms. This may require some care, as far too many
publications ignore the sequential case when analyzing
the performance of parallel algorithms.

of instructions per second, usually from the old Dhrystone benchmark)
for older CPUs requiring multiple clocks to execute even the simplest
instruction. The reason for shifting between these two measures is
that the newer CPUs’ ability to retire multiple instructions per clock
is typically limited by memory-system performance. Furthermore, the
benchmarks commonly used on the older CPUs are obsolete, and it is
difficult to run the newer benchmarks on systems containing the old
CPUs, in part because it is hard to find working instances of the old
CPUs.

3 Of course, if you are a hobbyist whose primary interest is writing
parallel software, that is more than enough reason to parallelize whatever
software you are interested in.



10

2.2.2 Productivity

Quick Quiz 2.9: Why all this prattling on about non-technical
issues??? And not just any non-technical issue, but productivity
of all things? Who cares? H

Productivity has been becoming increasingly important
in recent decades. To see this, consider that the price of
early computers was tens of millions of dollars at a time
when engineering salaries were but a few thousand dollars
a year. If dedicating a team of ten engineers to such a
machine would improve its performance, even by only
10 %, then their salaries would be repaid many times over.

One such machine was the CSIRAC, the oldest still-
intact stored-program computer, which was put into op-
eration in 1949 [Mus04, Dep06]. Because this machine
was built before the transistor era, it was constructed of
2,000 vacuum tubes, ran with a clock frequency of 1kHz,
consumed 30 kW of power, and weighed more than three
metric tons. Given that this machine had but 768 words
of RAM, it is safe to say that it did not suffer from the
productivity issues that often plague today’s large-scale
software projects.

Today, it would be quite difficult to purchase a machine
with so little computing power. Perhaps the closest equiv-
alents are 8-bit embedded microprocessors exemplified
by the venerable Z80 [WikO08], but even the old Z80 had
a CPU clock frequency more than 1,000 times faster than
the CSIRAC. The Z80 CPU had 8,500 transistors, and
could be purchased in 2008 for less than $2 US per unit
in 1,000-unit quantities. In stark contrast to the CSIRAC,
software-development costs are anything but insignificant
for the Z80.

The CSIRAC and the Z80 are two points in a long-
term trend, as can be seen in Figure 2.2. This figure
plots an approximation to computational power per die
over the past four decades, showing an impressive six-
order-of-magnitude increase over a period of forty years.
Note that the advent of multicore CPUs has permitted this
increase to continue apace despite the clock-frequency wall
encountered in 2003, albeit courtesy of dies supporting
more than 50 hardware threads each.

One of the inescapable consequences of the rapid de-
crease in the cost of hardware is that software productivity
becomes increasingly important. It is no longer sufficient
merely to make efficient use of the hardware: It is now
necessary to make extremely efficient use of software
developers as well. This has long been the case for se-
quential hardware, but parallel hardware has become a
low-cost commodity only recently. Therefore, only re-

CHAPTER 2. INTRODUCTION

1x10° T T T T T T 1
100000 " #*ﬂ:
10000
%) 1000 #-H*-
g #J
Q 100 Jﬂ#
= 10 ++$;
1 + Tt
+
01 [ N B T N R B
[Te] o [To) o Te) o To) o Te] o
N~ [e0] [e0) D (e2] o o — — Al
2222288888 8K
Year

Figure 2.2: MIPS per Die for Intel CPUs

cently has high productivity become critically important
when creating parallel software.

Quick Quiz 2.10: Given how cheap parallel systems have
become, how can anyone afford to pay people to program
them? M

Perhaps at one time, the sole purpose of parallel software
was performance. Now, however, productivity is gaining
the spotlight.

2.2.3 Generality

One way to justify the high cost of developing parallel
software is to strive for maximal generality. All else being
equal, the cost of a more-general software artifact can be
spread over more users than that of a less-general one. In
fact, this economic force explains much of the maniacal
focus on portability, which can be seen as an important
special case of generality.*

Unfortunately, generality often comes at the cost of per-
formance, productivity, or both. For example, portability
is often achieved via adaptation layers, which inevitably
exact a performance penalty. To see this more gener-
ally, consider the following popular parallel programming
environments:

C/C++ “Locking Plus Threads”: This category, which
includes POSIX Threads (pthreads) [Ope97], Win-
dows Threads, and numerous operating-system ker-
nel environments, offers excellent performance (at

4 Kudos to Michael Wong for pointing this out.



2.2. PARALLEL PROGRAMMING GOALS

least within the confines of a single SMP system) and
also offers good generality. Pity about the relatively
low productivity.

Java: This general purpose and inherently multithreaded
programming environment is widely believed to offer
much higher productivity than C or C++, courtesy
of the automatic garbage collector and the rich set
of class libraries. However, its performance, though
greatly improved in the early 2000s, lags that of C
and C++.

MPI: This Message Passing Interface [MPI08] powers
the largest scientific and technical computing clusters
in the world and offers unparalleled performance
and scalability. In theory, it is general purpose,
but it is mainly used for scientific and technical
computing. Its productivity is believed by many
to be even lower than that of C/C++ “locking plus
threads” environments.

OpenMP: This set of compiler directives can be used to
parallelize loops. It is thus quite specific to this task,
and this specificity often limits its performance. It
is, however, much easier to use than MPI or C/C++
“locking plus threads.”

SQL: Structured Query Language [Int92] is specific to
relational database queries. However, its perfor-
mance is quite good as measured by the Transaction
Processing Performance Council (TPC) benchmark
results [TraO1]. Productivity is excellent; in fact, this
parallel programming environment enables people to
make good use of a large parallel system despite hav-
ing little or no knowledge of parallel programming
concepts.

The nirvana of parallel programming environments,
one that offers world-class performance, productivity, and
generality, simply does not yet exist. Until such a nirvana
appears, it will be necessary to make engineering tradeoffs
among performance, productivity, and generality. One
such tradeoff is shown in Figure 2.3, which shows how
productivity becomes increasingly important at the upper
layers of the system stack, while performance and gener-
ality become increasingly important at the lower layers of
the system stack. The huge development costs incurred at
the lower layers must be spread over equally huge numbers
of users (hence the importance of generality), and per-
formance lost in lower layers cannot easily be recovered
further up the stack. In the upper layers of the stack, there

11

Productivity

Performance
Ajeiauan

Figure 2.3: Software Layers and Performance, Produc-
tivity, and Generality

Special-Purpose
Env Productive

for User 1
\ /

Special-Purpose
Environment
Productwe for User 2

User 3

General- Purpose User 4

Environment

Special-Purpose Environment

Productive for User 3 Special-Purpose

Environment
Productive for User 4

Figure 2.4: Tradeoff Between Productivity and Generality

might be very few users for a given specific application,
in which case productivity concerns are paramount. This
explains the tendency towards “bloatware” further up the
stack: Extra hardware is often cheaper than extra devel-
opers. This book is intended for developers working near
the bottom of the stack, where performance and generality
are of greatest concern.

It is important to note that a tradeoff between produc-
tivity and generality has existed for centuries in many
fields. For but one example, a nailgun is more productive
than a hammer for driving nails, but in contrast to the
nailgun, a hammer can be used for many things besides
driving nails. It should therefore be no surprise to see

Edition.2-rc9



12

similar tradeoffs appear in the field of parallel computing.
This tradeoff is shown schematically in Figure 2.4. Here,
users 1, 2, 3, and 4 have specific jobs that they need the
computer to help them with. The most productive possible
language or environment for a given user is one that simply
does that user’s job, without requiring any programming,
configuration, or other setup.

Quick Quiz 2.11: This is a ridiculously unachievable ideal!
Why not focus on something that is achievable in practice? W

Unfortunately, a system that does the job required by
user 1 is unlikely to do user 2’s job. In other words, the
most productive languages and environments are domain-
specific, and thus by definition lacking generality.

Another option is to tailor a given programming lan-
guage or environment to the hardware system (for example,
low-level languages such as assembly, C, C++, or Java)
or to some abstraction (for example, Haskell, Prolog, or
Snobol), as is shown by the circular region near the center
of Figure 2.4. These languages can be considered to be
general in the sense that they are equally ill-suited to the
jobs required by users 1, 2, 3, and 4. In other words,
their generality comes at the expense of decreased produc-
tivity when compared to domain-specific languages and
environments. Worse yet, a language that is tailored to a
given abstraction is likely to suffer from performance and
scalability problems unless and until it can be efficiently
mapped to real hardware.

Is there no escape from iron triangle’s three conflicting
goals of performance, productivity, and generality?

It turns out that there often is an escape, for example,
using the alternatives to parallel programming discussed
in the next section. After all, parallel programming can
be a great deal of fun, but it is not always the best tool for
the job.

2.3 Alternatives to Parallel Pro-
gramming

Experiment is folly when experience shows the way.

Roger M. Babson

In order to properly consider alternatives to parallel pro-
gramming, you must first decide on what exactly you
expect the parallelism to do for you. As seen in Sec-
tion 2.2, the primary goals of parallel programming are
performance, productivity, and generality. Because this

CHAPTER 2. INTRODUCTION

book is intended for developers working on performance-
critical code near the bottom of the software stack, the
remainder of this section focuses primarily on performance
improvement.

It is important to keep in mind that parallelism is but
one way to improve performance. Other well-known
approaches include the following, in roughly increasing
order of difficulty:

1. Run multiple instances of a sequential application.
2. Make the application use existing parallel software.

3. Optimize the serial application.

These approaches are covered in the following sections.

2.3.1 Multiple Instances of a Sequential
Application

Running multiple instances of a sequential application can
allow you to do parallel programming without actually
doing parallel programming. There are a large number of
ways to approach this, depending on the structure of the
application.

If your program is analyzing a large number of different
scenarios, or is analyzing a large number of independent
data sets, one easy and effective approach is to create a
single sequential program that carries out a single analysis,
then use any of a number of scripting environments (for
example the bash shell) to run a number of instances of
that sequential program in parallel. In some cases, this
approach can be easily extended to a cluster of machines.

This approach may seem like cheating, and in fact some
denigrate such programs as “embarrassingly parallel”.
And in fact, this approach does have some potential dis-
advantages, including increased memory consumption,
waste of CPU cycles recomputing common intermediate
results, and increased copying of data. However, it is of-
ten extremely productive, garnering extreme performance
gains with little or no added effort.

2.3.2 Use Existing Parallel Software

There is no longer any shortage of parallel software envi-
ronments that can present a single-threaded programming
environment, including relational databases [Dat82], web-
application servers, and map-reduce environments. For
example, a common design provides a separate process for
each user, each of which generates SQL from user queries.
This per-user SQL is run against a common relational



2.4. WHAT MAKES PARALLEL PROGRAMMING HARD? 13

database, which automatically runs the users’ queries
concurrently. The per-user programs are responsible only
for the user interface, with the relational database tak-
ing full responsibility for the difficult issues surrounding
parallelism and persistence.

In addition, there are a growing number of parallel
library functions, particularly for numeric computation.
Even better, some libraries take advantage of special-
purpose hardware such as vector units and general-purpose
graphical processing units (GPGPUs).

Taking this approach often sacrifices some performance,
at least when compared to carefully hand-coding a fully
parallel application. However, such sacrifice is often well
repaid by a huge reduction in development effort.

Quick Quiz 2.12: Wait a minute! Doesn’t this approach
simply shift the development effort from you to whoever wrote
the existing parallel software you are using? W

2.3.3 Performance Optimization

Up through the early 2000s, CPU clock frequencies dou-
bled every 18 months. It was therefore usually more
important to create new functionality than to do careful
performance optimization. Now that Moore’s Law is
“only” increasing transistor density instead of increasing
both transistor density and per-transistor performance, it
might be a good time to rethink the importance of perfor-
mance optimization. After all, new hardware generations
no longer bring significant single-threaded performance
improvements. Furthermore, many performance optimiza-
tions can also conserve energy.

From this viewpoint, parallel programming is but an-
other performance optimization, albeit one that is be-
coming much more attractive as parallel systems become
cheaper and more readily available. However, it is wise
to keep in mind that the speedup available from paral-
lelism is limited to roughly the number of CPUs (but
see Section 6.5 for an interesting exception). In contrast,
the speedup available from traditional single-threaded
software optimizations can be much larger. For example,
replacing a long linked list with a hash table or a search
tree can improve performance by many orders of mag-
nitude. This highly optimized single-threaded program
might run much faster than its unoptimized parallel coun-
terpart, making parallelization unnecessary. Of course, a
highly optimized parallel program would be even better,
aside from the added development effort required.

Furthermore, different programs might have different
performance bottlenecks. For example, if your program

spends most of its time waiting on data from your disk
drive, using multiple CPUs will probably just increase the
time wasted waiting for the disks. In fact, if the program
was reading from a single large file laid out sequentially
on a rotating disk, parallelizing your program might well
make it a lot slower due to the added seek overhead. You
should instead optimize the data layout so that the file can
be smaller (thus faster to read), split the file into chunks
which can be accessed in parallel from different drives,
cache frequently accessed data in main memory, or, if
possible, reduce the amount of data that must be read.

Quick Quiz 2.13: What other bottlenecks might prevent
additional CPUs from providing additional performance? W

Parallelism can be a powerful optimization technique,
but it is not the only such technique, nor is it appropriate
for all situations. Of course, the easier it is to parallelize
your program, the more attractive parallelization becomes
as an optimization. Parallelization has a reputation of
being quite difficult, which leads to the question “exactly
what makes parallel programming so difficult?”

2.4 What Makes Parallel Program-
ming Hard?

Real difficulties can be overcome; it is only the
imaginary ones that are unconquerable.

Theodore N. Vail

It is important to note that the difficulty of parallel pro-
gramming is as much a human-factors issue as it is a set of
technical properties of the parallel programming problem.
We do need human beings to be able to tell parallel sys-
tems what to do, otherwise known as programming. But
parallel programming involves two-way communication,
with a program’s performance and scalability being the
communication from the machine to the human. In short,
the human writes a program telling the computer what
to do, and the computer critiques this program via the
resulting performance and scalability. Therefore, appeals
to abstractions or to mathematical analyses will often be
of severely limited utility.

In the Industrial Revolution, the interface between hu-
man and machine was evaluated by human-factor studies,
then called time-and-motion studies. Although there have
been a few human-factor studies examining parallel pro-
gramming [ENSO05, ES05, HCS*05, SS94], these studies
have been extremely narrowly focused, and hence unable



14

P D
Performance Productivity
Work
Partitioning
Y I Y

Resource
Parallel Partitioning and
Access Control Y Replication
A : A
Interacting

With Hardware

Generality

AN J

Figure 2.5: Categories of Tasks Required of Parallel
Programmers

to demonstrate any general results. Furthermore, given
that the normal range of programmer productivity spans
more than an order of magnitude, it is unrealistic to expect
an affordable study to be capable of detecting (say) a 10 %
difference in productivity. Although the multiple-order-of-
magnitude differences that such studies can reliably detect
are extremely valuable, the most impressive improvements
tend to be based on a long series of 10 % improvements.

We must therefore take a different approach.

One such approach is to carefully consider the tasks that
parallel programmers must undertake that are not required
of sequential programmers. We can then evaluate how
well a given programming language or environment assists
the developer with these tasks. These tasks fall into the
four categories shown in Figure 2.5, each of which is
covered in the following sections.

2.4.1 Work Partitioning

Work partitioning is absolutely required for parallel ex-
ecution: if there is but one “glob” of work, then it can
be executed by at most one CPU at a time, which is by
definition sequential execution. However, partitioning the
code requires great care. For example, uneven partitioning
can result in sequential execution once the small partitions
have completed [Amd67]. In less extreme cases, load
balancing can be used to fully utilize available hardware
and restore performance and scalabilty.

Although partitioning can greatly improve performance
and scalability, it can also increase complexity. For
example, partitioning can complicate handling of global
errors and events: A parallel program may need to carry
out non-trivial synchronization in order to safely process
such global events. More generally, each partition requires

CHAPTER 2. INTRODUCTION

some sort of communication: After all, if a given thread
did not communicate at all, it would have no effect and
would thus not need to be executed. However, because
communication incurs overhead, careless partitioning
choices can result in severe performance degradation.
Furthermore, the number of concurrent threads must
often be controlled, as each such thread occupies common
resources, for example, space in CPU caches. If too
many threads are permitted to execute concurrently, the
CPU caches will overflow, resulting in high cache miss
rate, which in turn degrades performance. Conversely,
large numbers of threads are often required to overlap
computation and I/O so as to fully utilize I/O devices.

Quick Quiz 2.14: Other than CPU cache capacity, what
might require limiting the number of concurrent threads? W

Finally, permitting threads to execute concurrently
greatly increases the program’s state space, which can
make the program difficult to understand and debug, de-
grading productivity. All else being equal, smaller state
spaces having more regular structure are more easily un-
derstood, but this is a human-factors statement as much as
it is a technical or mathematical statement. Good parallel
designs might have extremely large state spaces, but never-
theless be easy to understand due to their regular structure,
while poor designs can be impenetrable despite having a
comparatively small state space. The best designs exploit
embarrassing parallelism, or transform the problem to
one having an embarrassingly parallel solution. In either
case, “embarrassingly parallel” is in fact an embarrass-
ment of riches. The current state of the art enumerates
good designs; more work is required to make more general
judgments on state-space size and structure.

2.4.2 Parallel Access Control

Given a single-threaded sequential program, that single
thread has full access to all of the program’s resources.
These resources are most often in-memory data structures,
but can be CPUs, memory (including caches), I/O devices,
computational accelerators, files, and much else besides.

The first parallel-access-control issue is whether the
form of access to a given resource depends on that re-
source’s location. For example, in many message-passing
environments, local-variable access is via expressions
and assignments, while remote-variable access uses an
entirely different syntax, usually involving messaging.
The POSIX Threads environment [Ope97], Structured
Query Language (SQL) [Int92], and partitioned global
address-space (PGAS) environments such as Universal



2.4. WHAT MAKES PARALLEL PROGRAMMING HARD? 15

Parallel C (UPC) [EGCDO03] offer implicit access, while
Message Passing Interface (MPI) [MPIOS8] offers explicit
access because access to remote data requires explicit
messaging.

The other parallel-access-control issue is how threads
coordinate access to the resources. This coordination is
carried out by the very large number of synchronization
mechanisms provided by various parallel languages and
environments, including message passing, locking, trans-
actions, reference counting, explicit timing, shared atomic
variables, and data ownership. Many traditional parallel-
programming concerns such as deadlock, livelock, and
transaction rollback stem from this coordination. This
framework can be elaborated to include comparisons of
these synchronization mechanisms, for example locking
vs. transactional memory [MMWO07], but such elabora-
tion is beyond the scope of this section. (See Sections 17.2
and 17.3 for more information on transactional memory.)

[Quick Quiz 2.15: Just what is “explicit timing”??? W J

2.4.3 Resource Partitioning and Replica-
tion

The most effective parallel algorithms and systems exploit
resource parallelism, so much so that it is usually wise to
begin parallelization by partitioning your write-intensive
resources and replicating frequently accessed read-mostly
resources. The resource in question is most frequently
data, which might be partitioned over computer systems,
mass-storage devices, NUMA nodes, CPU cores (or dies
or hardware threads), pages, cache lines, instances of
synchronization primitives, or critical sections of code.
For example, partitioning over locking primitives is termed
“data locking” [BKS85].

Resource partitioning is frequently application depen-
dent. For example, numerical applications frequently par-
tition matrices by row, column, or sub-matrix, while com-
mercial applications frequently partition write-intensive
data structures and replicate read-mostly data structures.
Thus, a commercial application might assign the data for
a given customer to a given few computers out of a large
cluster. An application might statically partition data, or
dynamically change the partitioning over time.

Resource partitioning is extremely effective, but it

can be quite challenging for complex multilinked data
structures.

P ™
Performance N Productivity
Work
Partitioning

Y \
Resource
Parallel F Partitioning and
Access Control j Replication

~ Y
Interacting
With Hardware

A A

Generality

AN J

Figure 2.6: Ordering of Parallel-Programming Tasks

2.4.4 Interacting With Hardware

Hardware interaction is normally the domain of the op-
erating system, the compiler, libraries, or other software-
environment infrastructure. However, developers working
with novel hardware features and components will often
need to work directly with such hardware. In addition,
direct access to the hardware can be required when squeez-
ing the last drop of performance out of a given system. In
this case, the developer may need to tailor or configure
the application to the cache geometry, system topology,
or interconnect protocol of the target hardware.

In some cases, hardware may be considered to be a
resource which is subject to partitioning or access control,
as described in the previous sections.

2.4.5 Composite Capabilities

Although these four capabilities are fundamental, good
engineering practice uses composites of these capabilities.
For example, the data-parallel approach first partitions
the data so as to minimize the need for inter-partition
communication, partitions the code accordingly, and fi-
nally maps data partitions and threads so as to maximize
throughput while minimizing inter-thread communication,
as shown in Figure 2.6. The developer can then con-
sider each partition separately, greatly reducing the size
of the relevant state space, in turn increasing productiv-
ity. Even though some problems are non-partitionable,
clever transformations into forms permitting partitioning
can sometimes greatly enhance both performance and
scalability [Met99].



16

24.6 How Do Languages and Environ-
ments Assist With These Tasks?

Although many environments require the developer to
deal manually with these tasks, there are long-standing
environments that bring significant automation to bear.
The poster child for these environments is SQL, many
implementations of which automatically parallelize single
large queries and also automate concurrent execution of
independent queries and updates.

These four categories of tasks must be carried out in all
parallel programs, but that of course does not necessarily
mean that the developer must manually carry out these
tasks. We can expect to see ever-increasing automation of
these four tasks as parallel systems continue to become
cheaper and more readily available.

Quick Quiz 2.16: Are there any other obstacles to parallel
programming? W

2.5 Discussion

Until you try, you don’t know what you can’t do.

Henry James

This section has given an overview of the difficulties
with, goals of, and alternatives to parallel program-
ming. This overview was followed by a discussion
of what can make parallel programming hard, along
with a high-level approach for dealing with parallel
programming’s difficulties. Those who still insist that
parallel programming is impossibly difficult should re-
view some of the older guides to parallel programm-
ming [Seq88, Dig89, BK85, Inm85]. The following quote
from Andrew Birrell’s monograph [Dig89] is especially
telling:

Writing concurrent programs has a reputation
for being exotic and difficult. I believe it is
neither. You need a system that provides you
with good primitives and suitable libraries, you
need a basic caution and carefulness, you need
an armory of useful techniques, and you need
to know of the common pitfalls. I hope that
this paper has helped you towards sharing my
belief.

The authors of these older guides were well up to the
parallel programming challenge back in the 1980s. As

CHAPTER 2. INTRODUCTION

such, there are simply no excuses for refusing to step up
to the parallel-programming challenge here in the 21%
century!

We are now ready to proceed to the next chapter, which
dives into the relevant properties of the parallel hardware
underlying our parallel software.



Chapter 3

Premature abstraction is the root of all evil.

A cast of thousands

Hardware and its Habits

Most people intuitively understand that passing messages
between systems is more expensive than performing simple
calculations within the confines of a single system. But it
is also the case that communicating among threads within
the confines of a single shared-memory system can also be
quite expensive. This chapter therefore looks at the cost
of synchronization and communication within a shared-
memory system. These few pages can do no more than
scratch the surface of shared-memory parallel hardware
design; readers desiring more detail would do well to start
with a recent edition of Hennessy and Patterson’s classic
text [HP17, HP95].

Quick Quiz 3.1: Why should parallel programmers bother
learning low-level properties of the hardware? Wouldn’t it be
easier, better, and more elegant to remain at a higher level of
abstraction? W

3.1 Overview

Mechanical Sympathy: Hardware and software
working together in harmony.

Martin Thompson

Careless reading of computer-system specification sheets
might lead one to believe that CPU performance is a
footrace on a clear track, as illustrated in Figure 3.1,
where the race always goes to the swiftest.

Although there are a few CPU-bound benchmarks that
approach the ideal case shown in Figure 3.1, the typical
program more closely resembles an obstacle course than
arace track. This is because the internal architecture of
CPUs has changed dramatically over the past few decades,
courtesy of Moore’s Law. These changes are described in
the following sections.

17

Figure 3.1: CPU Performance at its Best

3.1.1 Pipelined CPUs

In the 1980s, the typical microprocessor fetched an in-
struction, decoded it, and executed it, typically taking
at least three clock cycles to complete one instruction
before even starting the next. In contrast, the CPU of the
late 1990s and of the 2000s execute many instructions
simultaneously, using pipelines; superscalar techniques;
out-of-order instruction and data handling; speculative
execution, and more [HP17, HP11] in order to optimize
the flow of instructions and data through the CPU. Some
cores have more than one hardware thread, which is
variously called simultaneous multithreading (SMT) or
hyperthreading (HT) [Fen73], each of which appears as
an independent CPU to software, at least from a functional
viewpoint. These modern hardware features can greatly
improve performance, as illustrated by Figure 3.2.
Achieving full performance with a CPU having a long
pipeline requires highly predictable control flow through



18

4,0 GHz clock, 20 M L?
cache, 20 stage pipeline...

The only pipeline | need
is to cool of f that hot-
headed brat.

Figure 3.3: CPU Meets a Pipeline Flush

the program. Suitable control flow can be provided by a
program that executes primarily in tight loops, for example,
arithmetic on large matrices or vectors. The CPU can then
correctly predict that the branch at the end of the loop will
be taken in almost all cases, allowing the pipeline to be
kept full and the CPU to execute at full speed.

However, branch prediction is not always so easy. For
example, consider a program with many loops, each of
which iterates a small but random number of times. For
another example, consider an old-school object-oriented
program with many virtual objects that can reference many
different real objects, all with different implementations
for frequently invoked member functions, resulting in
many calls through pointers. In these cases, it is difficult
or even impossible for the CPU to predict where the next
branch might lead. Then either the CPU must stall waiting

CHAPTER 3. HARDWARE AND ITS HABITS

Thread 0
Instructions

Thread 1
Instructions

Decode and
Translate

Micro-Op
Scheduler

Registers
(100s!)

Execution
Units

Figure 3.4: Rough View of Modern Micro-Architecture

for execution to proceed far enough to be certain where that
branch leads, or it must guess and then proceed using spec-
ulative execution. Although guessing works extremely
well for programs with predictable control flow, for un-
predictable branches (such as those in binary search) the
guesses will frequently be wrong. A wrong guess can be
expensive because the CPU must discard any speculatively
executed instructions following the corresponding branch,
resulting in a pipeline flush. If pipeline flushes appear too
frequently, they drastically reduce overall performance, as
fancifully depicted in Figure 3.3.

This gets even worse in the increasingly common case
of hyperthreading (or SMT, if you prefer), especially on
pipelined superscalar out-of-order CPU featuring specu-
lative execution. In this increasingly common case, all
the hardware threads sharing a core also share that core’s
resources, including registers, cache, execution units, and
so on. The instructions are often decoded into micro-
operations, and use of the shared execution units and the
hundreds of hardware registers is often coordinated by a
micro-operation scheduler. A rough diagram of such a
two-threaded core is shown in Figure 3.4, and more accu-
rate (and thus more complex) diagrams are available in
textbooks and scholarly papers.! Therefore, the execution
of one hardware thread can and often is perturbed by the
actions of other hardware threads sharing that core.

Even if only one hardware thread is active (for example,
in old-school CPU designs where there is only one thread),
counterintuitive results are quite common. Execution
units often have overlapping capabilities, so that a CPU’s

! Here is one example for a late-2010s Intel core: https:
//en.wikichip.org/wiki/intel/microarchitectures/
skylake_(server).


https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)

3.1. OVERVIEW

choice of execution unit can result in pipeline stalls due to
contention for that execution unit from later instructions.
In theory, this contention is avoidable, but in practice
CPUs must choose very quickly and without the benefit of
clairvoyance. In particular, adding an instruction to a tight
loop can sometimes actually cause execution to speed up.

Unfortunately, pipeline flushes and shared-resource
contention are not the only hazards in the obstacle course
that modern CPUs must run. The next section covers the
hazards of referencing memory.

3.1.2 Memory References

In the 1980s, it often took less time for a microprocessor
to load a value from memory than it did to execute an
instruction. More recently, microprocessors might execute
hundreds or even thousands of instructions in the time
required to access memory. This disparity is due to the
fact that Moore’s Law has increased CPU performance at
a much greater rate than it has decreased memory latency,
in part due to the rate at which memory sizes have grown.
For example, a typical 1970s minicomputer might have
4 KB (yes, kilobytes, not megabytes, let alone gigabytes
or terabytes) of main memory, with single-cycle access.”
Present-day CPU designers still can construct a 4 KB
memory with single-cycle access, even on systems with
multi-GHz clock frequencies. And in fact they frequently
do construct such memories, but they now call them
“level-0 caches”, plus they can be quite a bit bigger than
4KB.

Although the large caches found on modern micro-
processors can do quite a bit to help combat memory-
access latencies, these caches require highly predictable
data-access patterns to successfully hide those latencies.
Unfortunately, common operations such as traversing a
linked list have extremely unpredictable memory-access
patterns—after all, if the pattern was predictable, us soft-
ware types would not bother with the pointers, right?
Therefore, as shown in Figure 3.5, memory references
often pose severe obstacles to modern CPUs.

Thus far, we have only been considering obstacles
that can arise during a given CPU’s execution of single-
threaded code. Multi-threading presents additional obsta-
cles to the CPU, as described in the following sections.

2 Tt is only fair to add that each of these single cycles lasted no less
than 1.6 microseconds.

19

Figure 3.5: CPU Meets a Memory Reference

3.1.3 Atomic Operations

One such obstacle is atomic operations. The problem here
is that the whole idea of an atomic operation conflicts
with the piece-at-a-time assembly-line operation of a
CPU pipeline. To hardware designers’ credit, modern
CPUs use a number of extremely clever tricks to make
such operations look atomic even though they are in fact
being executed piece-at-a-time, with one common trick
being to identify all the cachelines containing the data to
be atomically operated on, ensure that these cachelines
are owned by the CPU executing the atomic operation,
and only then proceed with the atomic operation while
ensuring that these cachelines remained owned by this
CPU. Because all the data is private to this CPU, other
CPUs are unable to interfere with the atomic operation
despite the piece-at-a-time nature of the CPU’s pipeline.
Needless to say, this sort of trick can require that the
pipeline must be delayed or even flushed in order to
perform the setup operations that permit a given atomic
operation to complete correctly.

In contrast, when executing a non-atomic operation,
the CPU can load values from cachelines as they appear
and place the results in the store buffer, without the need
to wait for cacheline ownership. Although there are a
number of hardware optimizations that can sometimes
hide cache latencies, the resulting effect on performance
is all too often as depicted in Figure 3.6.



20

Figure 3.6: CPU Meets an Atomic Operation

Unfortunately, atomic operations usually apply only to
single elements of data. Because many parallel algorithms
require that ordering constraints be maintained between
updates of multiple data elements, most CPUs provide
memory barriers. These memory barriers also serve as
performance-sapping obstacles, as described in the next
section.

Quick Quiz 3.2: What types of machines would allow atomic
operations on multiple data elements? W

3.1.4 Memory Barriers

Memory barriers will be considered in more detail in
Chapter 15 and Appendix C. In the meantime, consider
the following simple lock-based critical section:

spin_lock(&mylock) ;
a=a+1;
spin_unlock(&mylock) ;

W

If the CPU were not constrained to execute these state-
ments in the order shown, the effect would be that the
variable “a” would be incremented without the protection
of “mylock”, which would certainly defeat the purpose of
acquiring it. To prevent such destructive reordering, lock-
ing primitives contain either explicit or implicit memory
barriers. Because the whole purpose of these memory
barriers is to prevent reorderings that the CPU would
otherwise undertake in order to increase performance,
memory barriers almost always reduce performance, as
depicted in Figure 3.7.

As with atomic operations, CPU designers have been
working hard to reduce memory-barrier overhead, and
have made substantial progress.

CHAPTER 3. HARDWARE AND ITS HABITS

Figure 3.7: CPU Meets a Memory Barrier

3.1.5 Cache Misses

An additional multi-threading obstacle to CPU perfor-
mance is the “cache miss”. As noted earlier, modern
CPUs sport large caches in order to reduce the perfor-
mance penalty that would otherwise be incurred due to
high memory latencies. However, these caches are actu-
ally counter-productive for variables that are frequently
shared among CPUs. This is because when a given CPU
wishes to modify the variable, it is most likely the case
that some other CPU has modified it recently. In this case,
the variable will be in that other CPU’s cache, but not in
this CPU’s cache, which will therefore incur an expensive
cache miss (see Section C.1 for more detail). Such cache
misses form a major obstacle to CPU performance, as
shown in Figure 3.8.

Quick Quiz 3.3: So have CPU designers also greatly reduced
the overhead of cache misses? M

3.1.6 1/O Operations

A cache miss can be thought of as a CPU-to-CPU I/O
operation, and as such is one of the cheapest I/O operations
available. 1/O operations involving networking, mass
storage, or (worse yet) human beings pose much greater
obstacles than the internal obstacles called out in the prior
sections, as illustrated by Figure 3.9.



3.2. OVERHEADS

CACHE-
MISS

TOLL
BOOTH

Please stay on the
line. Your call is very
important to us...

Figure 3.9: CPU Waits for I/O Completion

This is one of the differences between shared-memory
and distributed-system parallelism: shared-memory par-
allel programs must normally deal with no obstacle worse
than a cache miss, while a distributed parallel program
will typically incur the larger network communication
latencies. In both cases, the relevant latencies can be
thought of as a cost of communication—a cost that would
be absent in a sequential program. Therefore, the ratio
between the overhead of the communication to that of the
actual work being performed is a key design parameter.
A major goal of parallel hardware design is to reduce this
ratio as needed to achieve the relevant performance and
scalability goals. In turn, as will be seen in Chapter 6,
a major goal of parallel software design is to reduce the

21

CPUO CPU 1 CPU 2 CPU3
Cache Cache Cache Cache
Interconnect Interconnect
~ =
Memory <—>| System Interconnect |<—> Memory
Z= X
Interconnect Interconnect
Cache Cache Cache Cache
CPU 4 CPU5 CPUG6 CPU7

Speed-of-Light Round-Trip Distance in Vacuum
for 1.8 GHz Clock Period (8 cm)

Figure 3.10: System Hardware Architecture

frequency of expensive operations like communications
cache misses.

Of course, it is one thing to say that a given operation is
an obstacle, and quite another to show that the operation
is a significant obstacle. This distinction is discussed in
the following sections.

3.2 Overheads

Don’t design bridges in ignorance of materials, and
don’t design low-level software in ignorance of the
underlying hardware.

Unknown

This section presents actual overheads of the obstacles to
performance listed out in the previous section. However,
it is first necessary to get a rough view of hardware system
architecture, which is the subject of the next section.

3.2.1 Hardware System Architecture

Figure 3.10 shows a rough schematic of an eight-core
computer system. Each die has a pair of CPU cores, each
with its cache, as well as an interconnect allowing the pair
of CPUs to communicate with each other. The system
interconnect allows the four dies to communicate with
each other and with main memory.

Data moves through this system in units of “cache
lines”, which are power-of-two fixed-size aligned blocks



22

of memory, usually ranging from 32 to 256 bytes in size.
When a CPU loads a variable from memory to one of its
registers, it must first load the cacheline containing that
variable into its cache. Similarly, when a CPU stores a
value from one of its registers into memory, it must also
load the cacheline containing that variable into its cache,
but must also ensure that no other CPU has a copy of that
cacheline.

For example, if CPU 0 were to write to a variable
whose cacheline resided in CPU 7’s cache, the following
over-simplified sequence of events might ensue:

1. CPU O checks its local cache, and does not find the
cacheline. It therefore records the write in its store
buffer.

2. A request for this cacheline is forwarded to CPU 0’s
and 1’s interconnect, which checks CPU 1’s local
cache, and does not find the cacheline.

3. This request is forwarded to the system interconnect,
which checks with the other three dies, learning that
the cacheline is held by the die containing CPU 6
and 7.

4. This request is forwarded to CPU 6’s and 7’s inter-
connect, which checks both CPUs’ caches, finding
the value in CPU 7’s cache.

5. CPU 7 forwards the cacheline to its interconnect, and
also flushes the cacheline from its cache.

6. CPU 6’s and 7’s interconnect forwards the cacheline
to the system interconnect.

7. The system interconnect forwards the cacheline to
CPU 0’s and 1’s interconnect.

8. CPU 0’s and 1’s interconnect forwards the cacheline
to CPU 0’s cache.

9. CPU 0 can now complete the write, updating the
relevant portions of the newly arrived cacheline from
the value previously recorded in the store buffer.

Quick Quiz 3.4: This is a simplified sequence of events?
How could it possibly be any more complex? H

Quick Quiz 3.5: Why is it necessary to flush the cacheline
from CPU 7’s cache? W

This simplified sequence is just the beginning of a dis-
cipline called cache-coherency protocols [HP95, CSG99,

CHAPTER 3. HARDWARE AND ITS HABITS

MHS12, SHW11], which is discussed in more detail in
Appendix C. As can be seen in the sequence of events
triggered by a CAS operation, a single instruction can
cause considerable protocol traffic, which can significantly
degrade your parallel program’s performance.

Fortunately, if a given variable is being frequently read
during a time interval during which it is never updated,
that variable can be replicated across all CPUs’ caches.
This replication permits all CPUs to enjoy extremely fast
access to this read-mostly variable. Chapter 9 presents
synchronization mechanisms that take full advantage of
this important hardware read-mostly optimization.

3.2.2 Costs of Operations

The overheads of some common operations important to
parallel programs are displayed in Table 3.1. This system’s
clock period rounds to 0.5 ns. Although it is not unusual
for modern microprocessors to be able to retire multiple
instructions per clock period, the operations’ costs are
nevertheless normalized to a clock period in the third
column, labeled “Ratio”. The first thing to note about this
table is the large values of many of the ratios.

The same-CPU compare-and-swap (CAS) operation
consumes about seven nanoseconds, a duration more than
ten times that of the clock period. CAS is an atomic
operation in which the hardware compares the contents
of the specified memory location to a specified “old”
value, and if they compare equal, stores a specified “new”
value, in which case the CAS operation succeeds. If
they compare unequal, the memory location keeps its
(unexpected) value, and the CAS operation fails. The
operation is atomic in that the hardware guarantees that
the memory location will not be changed between the
compare and the store. CAS functionality is provided by
the lock; cmpxchg instruction on x86.

The “same-CPU” prefix means that the CPU now per-
forming the CAS operation on a given variable was also
the last CPU to access this variable, so that the corre-
sponding cacheline is already held in that CPU’s cache.
Similarly, the same-CPU lock operation (a “round trip”
pair consisting of a lock acquisition and release) consumes
more than fifteen nanoseconds, or more than thirty clock
cycles. The lock operation is more expensive than CAS
because it requires two atomic operations on the lock data
structure, one for acquisition and the other for release.

In-core operations involving interactions between the
hardware threads sharing a single core are about the same
cost as same-CPU operations. This should not be too



3.2. OVERHEADS

23

Table 3.1: CPU 0 View of Synchronization Mechanisms on 8-Socket System With Intel Xeon Platinum 8176 CPUs @

2.10 GHz

Ratio
Operation Cost (ns) (cost/clock) CPUs
Clock period 0.5 1.0
Same-CPU CAS 7.0 14.6 0
Same-CPU lock 15.4 32.3 0
In-core blind CAS 7.2 15.2 224
In-core CAS 18.0 37.7 224
Oft-core blind CAS 47.5 99.8 1-27,225-251
Off-core CAS 101.9 214.0 1-27,225-251
Oft-socket blind CAS 148.8 312.5 28-111,252-335
Oft-socket CAS 4429 930.1 28-111,252-335
Cross-interconnect blind CAS 336.6 706.8  112-223,336-447
Cross-interconnect CAS 944.8 1,984.2  112-223,336-447
Off-System
Comms Fabric 5,000 10,500
Global Comms 195,000,000 409,500,000

surprising, given that these two hardware threads also
share the full cache hierarchy.

In the case of the blind CAS, the software specifies the
old value without looking at the memory location. This
approach is appropriate when attempting to acquire a lock.
If the unlocked state is represented by zero and the locked
state is represented by the value one, then a CAS operation
on the lock that specifies zero for the old value and one
for the new value will acquire the lock if it is not already
held. The key point is that there is only one access to the
memory location, namely the CAS operation itself.

In contrast, a normal CAS operation’s old value is de-
rived from some earlier load. For example, to implement
an atomic increment, the current value of that location
is loaded and that value is incremented to produce the
new value. Then in the CAS operation, the value actu-
ally loaded would be specified as the old value and the
incremented value as the new value. If the value had
not been changed between the load and the CAS, this
would increment the memory location. However, if the
value had in fact changed, then the old value would not
match, causing a miscompare that would result in the CAS
operation failing. The key point is that there are now two
accesses to the memory location, the load and the CAS.

Thus, it is not surprising that in-core blind CAS con-
sumes only about seven nanoseconds, while in-core CAS
consumes about 18 nanoseconds. The non-blind case’s
extra load does not come for free. That said, the overhead

of these operations are similar to single-CPU CAS and
lock, respectively.

Quick Quiz 3.6: Table 3.1 shows CPU 0 sharing a core with
CPU 224. Shouldn’t that instead be CPU 17?7 M

An blind CAS involving CPUs in different cores but
on the same socket consumes almost fifty nanoseconds,
or almost one hundred clock cycles. The code used for
this cache-miss measurement passes the cache line back
and forth between a pair of CPUs, so this cache miss
is satisfied not from memory, but rather from the other
CPU’s cache. A non-blind CAS operation, which as
noted earlier must look at the old value of the variable
as well as store a new value, consumes over one hundred
nanoseconds, or more than two hundred clock cycles.
Think about this a bit. In the time required to do one CAS
operation, the CPU could have executed more than two
hundred normal instructions. This should demonstrate
the limitations not only of fine-grained locking, but of any
other synchronization mechanism relying on fine-grained
global agreement.

If the pair of CPUs are on different sockets, the oper-
ations are considerably more expensive. A blind CAS
operation consumes almost 150 nanoseconds, or more
than three hundred clock cycles. A normal CAS operation
consumes more than 400 nanoseconds, or almost one
thousand clock cycles.



24

Table 3.2: Cache Geometry for 8-Socket System With
Intel Xeon Platinum 8176 CPUs @ 2.10 GHz

Level Scope Line Size Sets  Ways Size
LO Core 64 64 8 32K
L1 Core 64 64 8 32K
L2 Core 64 1024 16 1024K
L3 Socket 64 57,344 11 39,424K

Worse yet, not all pairs of sockets are created equal.
This particular system appears to be constructed as a
pair of four-socket components, with additional latency
penalties when the CPUs reside in different components.
In this case, a blind CAS operation consumes more than
three hundred nanoseconds, or more than seven hundred
clock cycles. A CAS operation consumes almost a full
microsecond, or almost two thousand clock cycles.

Quick Quiz 3.7: Surely the hardware designers could be per-
suaded to improve this situation! Why have they been content
with such abysmal performance for these single-instruction
operations? Wl

Unfortunately, the high speed of within-core and within-
socket communication does not come for free. First, there
are only two CPUs within a given core and only 56 within a
given socket, compared to 448 across the system. Second,
as shown in Table 3.2, the in-core caches are quite small
compared to the in-socket caches, which are in turn quite
small compared to the 1.4 TB of memory configured on
this system. Third, again referring to the figure, the caches
are organized as a hardware hash table with a limited
number of items per bucket. For example, the raw size of
the L3 cache (“Size”) is almost 40 MB, but each bucket
(“Line”) can only hold 11 blocks of memory (“Ways”),
each of which can be at most 64 bytes (“Line Size”).
This means that only 12 bytes of memory (admittedly at
carefully chosen addresses) are required to overflow this
40 MB cache. On the other hand, equally careful choice
of addresses might make good use of the entire 40 MB.

Spatial locality of reference is clearly extremely impor-
tant, as is spreading the data across memory.

I/O operations are even more expensive. As shown
in the “Comms Fabric” row, high performance (and ex-
pensive!) communications fabric, such as InfiniBand
or any number of proprietary interconnects, has a la-
tency of roughly five microseconds for an end-to-end
round trip, during which time more than ften thousand
instructions might have been executed. Standards-based
communications networks often require some sort of pro-

CHAPTER 3. HARDWARE AND ITS HABITS

tocol processing, which further increases the latency. Of
course, geographic distance also increases latency, with
the speed-of-light through optical fiber latency around the
world coming to roughly 195 milliseconds, or more than
400 million clock cycles, as shown in the “Global Comms’
row.

bl

Quick Quiz 3.8: These numbers are insanely large! How
can I possibly get my head around them? W

3.2.3 Hardware Optimizations

It is only natural to ask how the hardware is helping, and
the answer is “Quite a bit!”

One hardware optimization is large cachelines. This
can provide a big performance boost, especially when
software is accessing memory sequentially. For example,
given a 64-byte cacheline and software accessing 64-
bit variables, the first access will still be slow due to
speed-of-light delays (if nothing else), but the remaining
seven can be quite fast. However, this optimization has
a dark side, namely false sharing, which happens when
different variables in the same cacheline are being updated
by different CPUs, resulting in a high cache-miss rate.
Software can use the alignment directives available in
many compilers to avoid false sharing, and adding such
directives is a common step in tuning parallel software.

A second related hardware optimization is cache
prefetching, in which the hardware reacts to consecutive
accesses by prefetching subsequent cachelines, thereby
evading speed-of-light delays for these subsequent cache-
lines. Of course, the hardware must use simple heuristics
to determine when to prefetch, and these heuristics can be
fooled by the complex data-access patterns in many appli-
cations. Fortunately, some CPU families allow for this by
providing special prefetch instructions. Unfortunately, the
effectiveness of these instructions in the general case is
subject to some dispute.

A third hardware optimization is the store buffer, which
allows a string of store instructions to execute quickly
even when the stores are to non-consecutive addresses
and when none of the needed cachelines are present in
the CPU’s cache. The dark side of this optimization is
memory misordering, for which see Chapter 15.

A fourth hardware optimization is speculative execution,
which can allow the hardware to make good use of the store
buffers without resulting in memory misordering. The
dark side of this optimization can be energy inefficiency
and lowered performance if the speculative execution goes
awry and must be rolled back and retried. Worse yet, the



3.3. HARDWARE FREE LUNCH?

Figure 3.11: Hardware and Software: On Same Side

advent of Spectre and Meltdown [Hor18] made it apparent
that hardware speculation can also enable side-channel
attacks that defeat memory-protection hardware so as to
allow unprivileged processes to read memory that they
should not have access to. It is clear that the combination
of speculative execution and cloud computing needs more
than a bit of rework!

A fifth hardware optimization is large caches, allowing
individual CPUs to operate on larger datasets without
incurring expensive cache misses. Although large caches
can degrade energy efficiency and cache-miss latency, the
ever-growing cache sizes on production microprocessors
attests to the power of this optimization.

A final hardware optimization is read-mostly replication,
in which data that is frequently read but rarely updated is
present in all CPUs’ caches. This optimization allows the
read-mostly data to be accessed exceedingly efficiently,
and is the subject of Chapter 9.

In short, hardware and software engineers are really
on the same side, with both trying to make computers
go fast despite the best efforts of the laws of physics, as
fancifully depicted in Figure 3.11 where our data stream
is trying its best to exceed the speed of light. The next
section discusses some additional things that the hardware
engineers might (or might not) be able to do, depending on
how well recent research translates to practice. Software’s
contribution to this noble goal is outlined in the remaining
chapters of this book.

25

3.3 Hardware Free Lunch?

The great trouble today is that there are too many
people looking for someone else to do something for
them. The solution to most of our troubles is to be
found in everyone doing something for themselves.

Henry Ford, updated

The major reason that concurrency has been receiving so
much focus over the past few years is the end of Moore’s-
Law induced single-threaded performance increases (or
“free lunch” [Sut08]), as shown in Figure 2.1 on page 9.
This section briefly surveys a few ways that hardware
designers might bring back the “free lunch”.

However, the preceding section presented some substan-
tial hardware obstacles to exploiting concurrency. One
severe physical limitation that hardware designers face
is the finite speed of light. As noted in Figure 3.10 on
page 21, light can manage only about an 8-centimeters
round trip in a vacuum during the duration of a 1.8 GHz
clock period. This distance drops to about 3 centimeters
for a 5 GHz clock. Both of these distances are relatively
small compared to the size of a modern computer system.

To make matters even worse, electric waves in silicon
move from three to thirty times more slowly than does light
in a vacuum, and common clocked logic constructs run
still more slowly, for example, a memory reference may
need to wait for a local cache lookup to complete before
the request may be passed on to the rest of the system.
Furthermore, relatively low speed and high power drivers
are required to move electrical signals from one silicon
die to another, for example, to communicate between a
CPU and main memory.

Quick Quiz 3.9: But individual electrons don’t move any-
where near that fast, even in conductors!!! The electron drift
velocity in a conductor under semiconductor voltage levels is
on the order of only one millimeter per second. What gives???

There are nevertheless some technologies (both hard-
ware and software) that might help improve matters:

1. 3D integration,

2. Novel materials and processes,

3. Substituting light for electricity,
4. Special-purpose accelerators, and
5

. Existing parallel software.



26

70 UTZ

I

3cm 1.5¢cm

Figure 3.12: Latency Benefit of 3D Integration

Each of these is described in one of the following
sections.

3.3.1 3D Integration

3-dimensional integration (3DI) is the practice of bonding
very thin silicon dies to each other in a vertical stack.
This practice provides potential benefits, but also poses
significant fabrication challenges [KniO8].

Perhaps the most important benefit of 3DI is decreased
path length through the system, as shown in Figure 3.12.
A 3-centimeter silicon die is replaced with a stack of four
1.5-centimeter dies, in theory decreasing the maximum
path through the system by a factor of two, keeping in
mind that each layer is quite thin. In addition, given proper
attention to design and placement, long horizontal electri-
cal connections (which are both slow and power hungry)
can be replaced by short vertical electrical connections,
which are both faster and more power efficient.

However, delays due to levels of clocked logic will not be
decreased by 3D integration, and significant manufactur-
ing, testing, power-supply, and heat-dissipation problems
must be solved for 3D integration to reach production
while still delivering on its promise. The heat-dissipation
problems might be solved using semiconductors based
on diamond, which is a good conductor for heat, but an
electrical insulator. That said, it remains difficult to grow
large single diamond crystals, to say nothing of slicing
them into wafers. In addition, it seems unlikely that any of
these technologies will be able to deliver the exponential
increases to which some people have become accustomed.
That said, they may be necessary steps on the path to the

5. 66

late Jim Gray’s “smoking hairy golf balls” [Gra02].

3.3.2 Novel Materials and Processes

Stephen Hawking is said to have claimed that semicon-
ductor manufacturers have but two fundamental problems:

CHAPTER 3. HARDWARE AND ITS HABITS

(1) the finite speed of light and (2) the atomic nature of
matter [Gar(Q7]. It is possible that semiconductor man-
ufacturers are approaching these limits, but there are
nevertheless a few avenues of research and development
focused on working around these fundamental limits.

One workaround for the atomic nature of matter are
so-called “high-K dielectric”” materials, which allow larger
devices to mimic the electrical properties of infeasibly
small devices. These materials pose some severe fab-
rication challenges, but nevertheless may help push the
frontiers out a bit farther. Another more-exotic work-
around stores multiple bits in a single electron, relying
on the fact that a given electron can exist at a number
of energy levels. It remains to be seen if this particular
approach can be made to work reliably in production
semiconductor devices.

Another proposed workaround is the “quantum dot”
approach that allows much smaller device sizes, but which
is still in the research stage.

One challenge is that many recent hardware-device-
level breakthroughs require very tight control of which
atoms are placed where [Kell7]. It therefore seems likely
that whoever finds a good way to hand-place atoms on
each of the billions of devices on a chip will have most
excellent bragging rights, if nothing else!

3.3.3 Light, Not Electrons

Although the speed of light would be a hard limit, the fact
is that semiconductor devices are limited by the speed of
electricity rather than that of light, given that electric waves
in semiconductor materials move at between 3 % and 30 %
of the speed of light in a vacuum. The use of copper
connections on silicon devices is one way to increase the
speed of electricity, and it is quite possible that additional
advances will push closer still to the actual speed of
light. In addition, there have been some experiments with
tiny optical fibers as interconnects within and between
chips, based on the fact that the speed of light in glass is
more than 60 % of the speed of light in a vacuum. One
obstacle to such optical fibers is the inefficiency conversion
between electricity and light and vice versa, resulting in
both power-consumption and heat-dissipation problems.

That said, absent some fundamental advances in the
field of physics, any exponential increases in the speed of
data flow will be sharply limited by the actual speed of
light in a vacuum.



3.4. SOFTWARE DESIGN IMPLICATIONS

3.3.4 Special-Purpose Accelerators

A general-purpose CPU working on a specialized problem
is often spending significant time and energy doing work
that is only tangentially related to the problem at hand.
For example, when taking the dot product of a pair of
vectors, a general-purpose CPU will normally use a loop
(possibly unrolled) with a loop counter. Decoding the
instructions, incrementing the loop counter, testing this
counter, and branching back to the top of the loop are in
some sense wasted effort: the real goal is instead to multi-
ply corresponding elements of the two vectors. Therefore,
a specialized piece of hardware designed specifically to
multiply vectors could get the job done more quickly and
with less energy consumed.

This is in fact the motivation for the vector instructions
present in many commodity microprocessors. Because
these instructions operate on multiple data items simulta-
neously, they would permit a dot product to be computed
with less instruction-decode and loop overhead.

Similarly, specialized hardware can more efficiently
encrypt and decrypt, compress and decompress, encode
and decode, and many other tasks besides. Unfortunately,
this efficiency does not come for free. A computer system
incorporating this specialized hardware will contain more
transistors, which will consume some power even when
notin use. Software must be modified to take advantage of
this specialized hardware, and this specialized hardware
must be sufficiently generally useful that the high up-front
hardware-design costs can be spread over enough users to
make the specialized hardware affordable. In part due to
these sorts of economic considerations, specialized hard-
ware has thus far appeared only for a few application areas,
including graphics processing (GPUs), vector processors
(MMX, SSE, and VMX instructions), and, to a lesser ex-
tent, encryption. And even in these areas, it is not always
easy to realize the expected performance gains, for exam-
ple, due to thermal throttling [Kral7, Lem18, Dow20].

Unlike the server and PC arena, smartphones have long
used a wide variety of hardware accelerators. These hard-
ware accelerators are often used for media decoding, so
much so that a high-end MP3 player might be able to play
audio for several minutes—with its CPU fully powered
off the entire time. The purpose of these accelerators
is to improve energy efficiency and thus extend battery
life: special purpose hardware can often compute more
efficiently than can a general-purpose CPU. This is an-
other example of the principle called out in Section 2.2.3:
Generality is almost never free.

27

Nevertheless, given the end of Moore’s-Law-induced
single-threaded performance increases, it seems safe to as-
sume that increasing varieties of special-purpose hardware
will appear.

3.3.5 Ecxisting Parallel Software

Although multicore CPUs seem to have taken the com-
puting industry by surprise, the fact remains that shared-
memory parallel computer systems have been commer-
cially available for more than a quarter century. This is
more than enough time for significant parallel software to
make its appearance, and it indeed has. Parallel operating
systems are quite commonplace, as are parallel threading
libraries, parallel relational database management sys-
tems, and parallel numerical software. Use of existing
parallel software can go a long ways towards solving any
parallel-software crisis we might encounter.

Perhaps the most common example is the parallel re-
lational database management system. It is not unusual
for single-threaded programs, often written in high-level
scripting languages, to access a central relational database
concurrently. In the resulting highly parallel system, only
the database need actually deal directly with parallelism.
A very nice trick when it works!

3.4 Software Design Implications

One ship drives east and another west
While the self-same breezes blow;
*Tis the set of the sail and not the gail
That bids them where to go.

Ella Wheeler Wilcox

The values of the ratios in Table 3.1 are critically important,
as they limit the efficiency of a given parallel application.
To see this, suppose that the parallel application uses CAS
operations to communicate among threads. These CAS
operations will typically involve a cache miss, that is,
assuming that the threads are communicating primarily
with each other rather than with themselves. Suppose
further that the unit of work corresponding to each CAS
communication operation takes 300 ns, which is sufficient
time to compute several floating-point transcendental
functions. Then about half of the execution time will be
consumed by the CAS communication operations! This
in turn means that a two-CPU system running such a



28

parallel program would run no faster than a sequential
implementation running on a single CPU.

The situation is even worse in the distributed-system
case, where the latency of a single communications oper-
ation might take as long as thousands or even millions of
floating-point operations. This illustrates how important
it is for communications operations to be extremely infre-
quent and to enable very large quantities of processing.

Quick Quiz 3.10: Given that distributed-systems communi-
cation is so horribly expensive, why does anyone bother with
such systems? H

The lesson should be quite clear: parallel algorithms
must be explicitly designed with these hardware properties
firmly in mind. One approach is to run nearly independent
threads. The less frequently the threads communicate,
whether by atomic operations, locks, or explicit messages,
the better the application’s performance and scalability
will be. This approach will be touched on in Chapter 5,
explored in Chapter 6, and taken to its logical extreme in
Chapter 8.

Another approach is to make sure that any sharing be
read-mostly, which allows the CPUs’ caches to replicate
the read-mostly data, in turn allowing all CPUs fast access.
This approach is touched on in Section 5.2.4, and explored
more deeply in Chapter 9.

In short, achieving excellent parallel performance and
scalability means striving for embarrassingly parallel al-
gorithms and implementations, whether by careful choice
of data structures and algorithms, use of existing paral-
lel applications and environments, or transforming the
problem into an embarrassingly parallel form.

Quick Quiz 3.11: OK, if we are going to have to apply
distributed-programming techniques to shared-memory par-
allel programs, why not just always use these distributed
techniques and dispense with shared memory? W

So, to sum up:

1. The good news is that multicore systems are inexpen-
sive and readily available.

2. More good news: The overhead of many synchro-
nization operations is much lower than it was on
parallel systems from the early 2000s.

3. The bad news is that the overhead of cache misses is
still high, especially on large systems.

The remainder of this book describes ways of handling
this bad news.

CHAPTER 3. HARDWARE AND ITS HABITS

In particular, Chapter 4 will cover some of the low-
level tools used for parallel programming, Chapter 5 will
investigate problems and solutions to parallel counting,
and Chapter 6 will discuss design disciplines that promote
performance and scalability.



Chapter 4

Tools of the Trade

This chapter provides a brief introduction to some basic
tools of the parallel-programming trade, focusing mainly
on those available to user applications running on op-
erating systems similar to Linux. Section 4.1 begins
with scripting languages, Section 4.2 describes the multi-
process parallelism supported by the POSIX API and
touches on POSIX threads, Section 4.3 presents analogous
operations in other environments, and finally, Section 4.4
helps to choose the tool that will get the job done.

Quick Quiz 4.1: You call these tools??? They look more
like low-level synchronization primitives to me! W

Please note that this chapter provides but a brief intro-
duction. More detail is available from the references (and
from the Internet), and more information will be provided
in later chapters.

4.1 Scripting Languages

The supreme excellence is simplicity.

Henry Wadsworth Longfellow, abbreviated

The Linux shell scripting languages provide simple but
effective ways of managing parallelism. For example,
suppose that you had a program compute_it that you
needed to run twice with two different sets of arguments.
This can be accomplished using UNIX shell scripting as
follows:

compute_it 1 > compute_it.l.out &
compute_it 2 > compute_it.2.out &
wait

cat compute_it.1.out

cat compute_it.2.out

[ N

Lines 1 and 2 launch two instances of this program,
redirecting their output to two separate files, with the &

29

You are only as good as your tools, and your tools are
only as good as you are.

Unknown

compute_it 1 >
compute_it.l.out &

compute_it 2 >
compute_it.2.out &

’cat compute_it.1l.out ‘

’cat compute_it.2.out ‘

Figure 4.1: Execution Diagram for Parallel Shell Execu-
tion

character directing the shell to run the two instances of
the program in the background. Line 3 waits for both
instances to complete, and lines 4 and 5 display their
output. The resulting execution is as shown in Figure 4.1:
the two instances of compute_it execute in parallel,
wait completes after both of them do, and then the two
instances of cat execute sequentially.

Quick Quiz 4.2: But this silly shell script isn’t a real parallel
program! Why bother with such trivia??? H

Quick Quiz 4.3: s there a simpler way to create a parallel
shell script? If so, how? If not, why not? H

For another example, the make software-build scripting
language provides a - j option that specifies how much par-
allelism should be introduced into the build process. Thus,
typing make -j4 when building a Linux kernel specifies
that up to four build steps be executed concurrently.



30

It is hoped that these simple examples convince you
that parallel programming need not always be complex or
difficult.

Quick Quiz 4.4: But if script-based parallel programming is
so easy, why bother with anything else? H

4.2 POSIX Multiprocessing

A camel is a horse designed by committee.

Unknown

This section scratches the surface of the POSIX environ-
ment, including pthreads [Ope97], as this environment is
readily available and widely implemented. Section 4.2.1
provides a glimpse of the POSIX fork() and related
primitives, Section 4.2.2 touches on thread creation and
destruction, Section 4.2.3 gives a brief overview of POSIX
locking, and, finally, Section 4.2.4 describes a specific
lock which can be used for data that is read by many
threads and only occasionally updated.

4.2.1 POSIX Process
struction

Creation and De-

Processes are created using the fork() primitive, they
may be destroyed using the ki11 () primitive, they may
destroy themselves using the exit () primitive. A process
executing a fork () primitive is said to be the “parent”
of the newly created process. A parent may wait on its
children using the wait () primitive.

Please note that the examples in this section are quite
simple. Real-world applications using these primitives
might need to manipulate signals, file descriptors, shared
memory segments, and any number of other resources. In
addition, some applications need to take specific actions
if a given child terminates, and might also need to be
concerned with the reason that the child terminated. These
issues can of course add substantial complexity to the code.
For more information, see any of a number of textbooks
on the subject [Ste92, Weil3].

If fork() succeeds, it returns twice, once for the
parent and again for the child. The value returned from
fork() allows the caller to tell the difference, as shown in
Listing 4.1 (forkjoin.c). Line 1 executes the fork ()
primitive, and saves its return value in local variable pid.
Line 2 checks to see if pid is zero, in which case, this
is the child, which continues on to execute line 3. As

CHAPTER 4. TOOLS OF THE TRADE

Listing 4.1: Using the fork () Primitive

1 pid = fork();

2 if (pid == 0) {

3 /* child */

4 } else if (pid < 0) {

5 /* parent, upon error */
6 perror("fork");

7 exit (EXIT_FAILURE);
8
9
10

} else {
/* parent, pid == child ID */
}

Listing 4.2: Using the wait () Primitive

| static __inline__ void waitall(void)
2 {

3 int pid;

4 int status;

5
6
,
8

for (5;) {

pid = wait(&status);

if (pid == -1) {
9 if (errno == ECHILD)
10 break;
11 perror("wait");
12 exit (EXIT_FAILURE);
13 }
4}

15 }

noted earlier, the child may terminate via the exit ()
primitive. Otherwise, this is the parent, which checks for
an error return from the fork () primitive on line 4, and
prints an error and exits on lines 5-7 if so. Otherwise,
the fork() has executed successfully, and the parent
therefore executes line 9 with the variable pid containing
the process ID of the child.

The parent process may use the wait () primitive to
wait for its children to complete. However, use of this
primitive is a bit more complicated than its shell-script
counterpart, as each invocation of wait () waits for but one
child process. It is therefore customary to wrap wait ()
into a function similar to the waitall () function shown
in Listing 4.2 (api-pthreads.h), with this waitall()
function having semantics similar to the shell-script wait
command. Each pass through the loop spanning lines 6—14
waits on one child process. Line 7 invokes the wait ()
primitive, which blocks until a child process exits, and
returns that child’s process ID. If the process ID is instead
—1, this indicates that the wait () primitive was unable to
wait on a child. If so, line 9 checks for the ECHILD errno,
which indicates that there are no more child processes, so
that line 10 exits the loop. Otherwise, lines 11 and 12
print an error and exit.

Quick Quiz 4.5: Why does this wait () primitive need to be
so complicated? Why not just make it work like the shell-script
wait does? M




4.2. POSIX MULTIPROCESSING

31

Listing 4.3: Processes Created Via fork() Do Not Share

Listing 4.4: Threads Created Via pthread_create() Share

Memory Memory
1 int x = 0; 1 int x = 03
2 2
3 int main(int argc, char *argv[]) 3 void *mythread(void *arg)
4 1 4 {
5 int pid; 5 x =1;
6 6  printf("Child process set x=1\n");
7 pid = fork(); 7 return NULL;
8 if (pid == 0) { /* child */ 8 ¥
9 x =1; 9
10 printf("Child process set x=1\n"); 10 int main(int argc, char *argv[])
1 exit (EXIT_SUCCESS) ; n {
12 ¥ 12 int en;
13 if (pid < 0) { /* parent, upon error */ 13 pthread_t tid;
14 perror("fork"); 14 void *vp;
15 exit (EXIT_FAILURE); 15
16 } 16 if ((en = pthread_create(&tid, NULL,

17

18 /% parent */

19

20 waitall();

21 printf ("Parent process sees x=%d\n", x);
2

23 return EXIT_SUCCESS;

24}

It is critically important to note that the parent and child
do not share memory. This is illustrated by the program
shown in Listing 4.3 (forkjoinvar.c), in which the
child sets a global variable x to 1 on line 9, prints a
message on line 10, and exits on line 11. The parent
continues at line 20, where it waits on the child, and on
line 21 finds that its copy of the variable x is still zero.
The output is thus as follows:

17 mythread, NULL)) != 0) {

18 fprintf (stderr, "pthread_create: %s\n", strerror(en));
19 exit (EXIT_FAILURE);

20 )

2 /* parent */

24 if ((en = pthread_join(tid, &vp)) != 0) {

25 fprintf (stderr, "pthread_join: %s\n", strerror(en));
26 exit (EXIT_FAILURE);
27}

28 printf ("Parent process sees x=/d\n", x);

30 return EXIT_SUCCESS;
31}

that is to be invoked by the new thread, and the last NULL
argument is the argument that will be passed tomythread.

In this example, mythread () simply returns, but it
could instead call pthread_exit ().

Child process set x=1
Parent process sees x=0

Quick Quiz 4.6: Isn’t there alot more to fork () and wait ()
than discussed here? W

The finest-grained parallelism requires shared memory,
and this is covered in Section 4.2.2. That said, shared-
memory parallelism can be significantly more complex
than fork-join parallelism.

4.2.2 POSIX Thread Creation and De-
struction

To create a thread within an existing process, invoke the
pthread_create() primitive, for example, as shown
on lines 16 and 17 of Listing 4.4 (pcreate.c). The
first argument is a pointer to a pthread_t in which to
store the ID of the thread to be created, the second NULL
argument is a pointer to an optional pthread_attr_t, the
third argument is the function (in this case, mythread())

Quick Quiz 4.7: If the mythread () function in Listing 4.4
can simply return, why bother with pthread_exit()? H

The pthread_join() primitive, shown on line 24, is
analogous to the fork-join wait () primitive. It blocks
until the thread specified by the tid variable completes
execution, either by invoking pthread_exit () or by re-
turning from the thread’s top-level function. The thread’s
exit value will be stored through the pointer passed as
the second argument to pthread_join(). The thread’s
exit value is either the value passed to pthread_exit ()
or the value returned by the thread’s top-level function,
depending on how the thread in question exits.

The program shown in Listing 4.4 produces output
as follows, demonstrating that memory is in fact shared
between the two threads:

Child process set x=1
Parent process sees x=1

Note that this program carefully makes sure that only
one of the threads stores a value to variable x at a time.



32

Any situation in which one thread might be storing a value
to a given variable while some other thread either loads
from or stores to that same variable is termed a “data
race”. Because the C language makes no guarantee that
the results of a data race will be in any way reasonable,
we need some way of safely accessing and modifying data
concurrently, such as the locking primitives discussed in
the following section.

Quick Quiz 4.8: If the C language makes no guarantees in
presence of a data race, then why does the Linux kernel have
so many data races? Are you trying to tell me that the Linux
kernel is completely broken??? H

4.2.3 POSIX Locking

The POSIX standard allows the programmer to avoid
data races via “POSIX locking”. POSIX locking fea-
tures a number of primitives, the most fundamental
of which are pthread_mutex_lock() and pthread_
mutex_unlock(). These primitives operate on locks,
which are of type pthread_mutex_t. These locks may be
declared statically and initialized with PTHREAD _MUTEX _
INITIALIZER, or they may be allocated dynamically and
initialized using the pthread_mutex_init () primitive.
The demonstration code in this section will take the former
course.

The pthread_mutex_lock() primitive “acquires” the
specified lock, and the pthread_mutex_unlock() “re-
leases” the specified lock. Because these are “exclusive”
locking primitives, only one thread at a time may “hold”
a given lock at a given time. For example, if a pair of
threads attempt to acquire the same lock concurrently,
one of the pair will be “granted” the lock first, and the
other will wait until the first thread releases the lock. A
simple and reasonably useful programming model permits
a given data item to be accessed only while holding the
corresponding lock [Hoa74].

Quick Quiz 4.9: What if [ want several threads to hold the
same lock at the same time? W

This exclusive-locking property is demonstrated using
the code shown in Listing 4.5 (Lock.c). Line 1 defines
and initializes a POSIX lock named 1ock_a, while line 2
similarly defines and initializes a lock named lock_b.
Line 4 defines and initializes a shared variable x.

Lines 6-33 define a function lock_reader () which
repeatedly reads the shared variable x while holding the
lock specified by arg. Line 12 casts arg to a pointer to a

CHAPTER 4. TOOLS OF THE TRADE

Listing 4.5: Demonstration of Exclusive Locks

| pthread_mutex_t lock_a

PTHREAD_MUTEX_INITIALIZER;

2 pthread_mutex_t lock_b = PTHREAD_MUTEX_INITIALIZER;

3

4 int x = 0;

5

6 void *lock_reader(void *arg)

5
8
9

10

1

12

13

14

15

16

17

18

19

20

21

2

23

2%

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

2

43

44

45

46

47

48

49

50

51

52

53

54

55

56

{

}

int en;
int i;
int newx = -1;
int oldx = -1;

pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;

if ((en = pthread_mutex_lock(pmlp)) != 0) {
fprintf(stderr, "lock_reader:pthread_mutex_lock: %s\n",
strerror(en));
exit (EXIT_FAILURE);
¥
for (i = 0; i < 100; i++) {
newx = READ_ONCE(x);
if (newx != oldx) {
printf("lock_reader(): x = %d\n", newx);

0ldx = newx;
poll(NULL, 0, 1);
}
if ((en = pthread_mutex_unlock(pmlp)) != 0) {
fprintf(stderr, "lock_reader:pthread_mutex_unlock: %s\n",
strerror(en));
exit (EXIT_FAILURE);
}
return NULL;

void *lock_writer(void *arg)

{

}

int en;
int i;
pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;

if ((en = pthread_mutex_lock(pmlp)) !'= 0) {
fprintf (stderr, "lock_writer:pthread_mutex_lock: %s\n",
strerror(en));
exit (EXIT_FAILURE);
}
for (i = 0; i < 3; i++) {
WRITE_ONCE(x, READ_ONCE(x) + 1);
poll(NULL, 0, 5);
¥
if ((en = pthread_mutex_unlock(pmlp)) != 0) {
fprintf (stderr, "lock_writer:pthread_mutex_unlock: %s\n",
strerror(en));
exit (EXIT_FAILURE);
¥
return NULL;




4.2. POSIX MULTIPROCESSING

33

Listing 4.6: Demonstration of Same Exclusive Lock

Listing 4.7: Demonstration of Different Exclusive Locks

printf ("Creating two threads using same lock:\n");

1

2 en = pthread_create(&tidl, NULL, lock_reader, &lock_a);
3 if (en '= 0) {

4 fprintf (stderr, "pthread_create: %s\n", strerror(en));
5 exit (EXIT_FAILURE);

6 1}

7 en = pthread_create(&tid2, NULL, lock_writer, &lock_a);
8 if (en !'=0) {

9 fprintf (stderr, "pthread_create: %s\n", strerror(en));
10 exit (EXIT_FAILURE);

1 }

12 if ((en = pthread_join(tidl, &vp)) != 0) {

13 fprintf (stderr, "pthread_join: %s\n", strerror(en));
14 exit (EXIT_FAILURE);

15}

16 if ((en = pthread_join(tid2, &vp)) '= 0) {

17 fprintf (stderr, "pthread_join: %s\n", strerror(en));
18 exit (EXIT_FAILURE);

19}

pthread_mutex_t, as required by the pthread_mutex_
lock() and pthread_mutex_unlock() primitives.

Quick Quiz 4.10: Why not simply make the argument to
lock_reader() on line 6 of Listing 4.5 be a pointer to a
pthread_mutex_t? M

Quick Quiz 4.11: What is the READ_ONCE() on lines 20
and 47 and the WRITE_ONCE() on line 47 of Listing 4.5? W

Lines 14-18 acquire the specified pthread_mutex_t,
checking for errors and exiting the program if any occur.
Lines 19-26 repeatedly check the value of x, printing
the new value each time that it changes. Line 25 sleeps
for one millisecond, which allows this demonstration
to run nicely on a uniprocessor machine. Lines 27-31
release the pthread_mutex_t, again checking for errors
and exiting the program if any occur. Finally, line 32
returns NULL, again to match the function type required
by pthread_create().

Quick Quiz 4.12:  Writing four lines of code for each
acquisition and release of a pthread_mutex_t sure seems
painful! Isn’t there a better way? W

Lines 35-56 of Listing 4.5 show lock_writer(),
which periodically updates the shared variable x while
holding the specified pthread_mutex_t. As with lock_
reader (), line 39 casts arg to a pointer to pthread_
mutex_t, lines 41-45 acquire the specified lock, and
lines 50-54 release it. While holding the lock, lines 4649
increment the shared variable x, sleeping for five millisec-
onds between each increment. Finally, lines 50-54 release
the lock.

Listing 4.6 shows a code fragment that runs lock_
reader () and lock_writer () asthreads using the same

printf("Creating two threads w/different locks:\n");

1

2 x = 0;

3 en = pthread_create(&tidl, NULL, lock_reader, &lock_a);
4 if (en !=0) {

5 fprintf (stderr, "pthread_create: %s\n", strerror(en));
6 exit (EXIT_FAILURE);

7}

8 en = pthread_create(&tid2, NULL, lock_writer, &lock_b);
9 if (en !=0) {

10 fprintf (stderr, "pthread_create: %s\n", strerror(en));
11 exit (EXIT_FAILURE);

2}

13 if ((en = pthread_join(tidl, &vp)) != 0) {

14 fprintf (stderr, "pthread_join: %s\n", strerror(en));
15 exit (EXIT_FAILURE);

16 X

17 if ((en = pthread_join(tid2, &vp)) != 0) {

18 fprintf (stderr, "pthread_join: %s\n", strerror(en));
19 exit (EXIT_FAILURE);

20 )

lock, namely, lock_a. Lines 2—6 create a thread running
lock_reader(), and then lines 7-11 create a thread
running lock_writer(). Lines 12-19 wait for both
threads to complete. The output of this code fragment is
as follows:

Creating two threads using same lock:
lock_reader(): x = 0

Because both threads are using the same lock, the lock_
reader () thread cannot see any of the intermediate values
of x produced by lock_writer () while holding the lock.

Quick Quiz 4.13: Is “x = 0” the only possible output from
the code fragment shown in Listing 4.6? If so, why? If not,
what other output could appear, and why? W

Listing 4.7 shows a similar code fragment, but this time
using different locks: lock_a for lock_reader () and
lock_b for lock_writer(). The output of this code
fragment is as follows:

Creating two threads w/different locks:
lock_reader(): x = 0
lock_reader(): x = 1
lock_reader(): x = 2
lock_reader(): x = 3

Because the two threads are using different locks, they
do not exclude each other, and can run concurrently. The
lock_reader () function can therefore see the interme-
diate values of x stored by lock_writer ().

Quick Quiz 4.14: Using different locks could cause quite
a bit of confusion, what with threads seeing each others’
intermediate states. So should well-written parallel programs



34

restrict themselves to using a single lock in order to avoid this
kind of confusion? W

Quick Quiz 4.15: In the code shown in Listing 4.7, is
lock_reader () guaranteed to see all the values produced by
lock_writer ()? Why or why not? H

Quick Quiz 4.16: Wait a minute here!!! Listing 4.6 didn’t
initialize shared variable x, so why does it need to be initialized
in Listing 4.7? W

Although there is quite a bit more to POSIX exclusive
locking, these primitives provide a good start and are in
fact sufficient in a great many situations. The next section
takes a brief look at POSIX reader-writer locking.

4.2.4 POSIX Reader-Writer Locking

The POSIX API provides a reader-writer lock, which
is represented by a pthread_rwlock_t. As with
pthread_mutex_t, pthread_rwlock_t may be stat-
ically initialized via PTHREAD_RWLOCK_INITIALIZER
or dynamically initialized via the pthread_rwlock_
init() primitive. The pthread_rwlock_rdlock()
primitive read-acquires the specified pthread_rwlock_
t, the pthread_rwlock_wrlock() primitive write-
acquires it, and the pthread_rwlock_unlock() prim-
itive releases it. Only a single thread may write-hold a
given pthread_rwlock_t atany given time, but multiple
threads may read-hold a given pthread_rwlock_t, at
least while there is no thread currently write-holding it.

As you might expect, reader-writer locks are designed
for read-mostly situations. In these situations, a reader-
writer lock can provide greater scalability than can an
exclusive lock because the exclusive lock is by definition
limited to a single thread holding the lock at any given time,
while the reader-writer lock permits an arbitrarily large
number of readers to concurrently hold the lock. How-
ever, in practice, we need to know how much additional
scalability is provided by reader-writer locks.

Listing 4.8 (rwlockscale.c) shows one way of mea-
suring reader-writer lock scalability. Line 1 shows the
definition and initialization of the reader-writer lock, line 2
shows the holdtime argument controlling the time each
thread holds the reader-writer lock, line 3 shows the
thinktime argument controlling the time between the
release of the reader-writer lock and the next acquisition,
line 4 defines the readcounts array into which each
reader thread places the number of times it acquired the
lock, and line 5 defines the nreadersrunning variable,

CHAPTER 4. TOOLS OF THE TRADE

Listing 4.8: Measuring Reader-Writer Lock Scalability

I pthread_rwlock_t rwl = PTHREAD_RWLOCK_INITIALIZER;
2 unsigned long holdtime = O;

3 unsigned long thinktime = 0;

4 long long *readcounts;

5 int nreadersrunning = O;
6
7
8
9

#define GOFLAG_INIT O
#define GOFLAG_RUN 1
#define GOFLAG_STOP 2

10 char goflag = GOFLAG_INIT;

1

12 void *reader(void *arg)

13 {
14 int en;
15 int i;

16 long long loopcnt = 0;

17 long me = (long)arg;

18

19 __sync_fetch_and_add(&nreadersrunning, 1);
20 while (READ_ONCE(goflag) == GOFLAG_INIT) {
21 continue;

2}

23 while (READ_ONCE(goflag) == GOFLAG_RUN) {

24 if ((en = pthread_rwlock_rdlock(&rwl)) != 0) {

25 fprintf (stderr,

26 "pthread_rwlock_rdlock: %s\n", strerror(en));
27 exit (EXIT_FAILURE);

28 ¥

29 for (i = 1; i < holdtime; i++) {

30 wait_microseconds(1);

31 }

32 if ((en = pthread_rwlock_unlock(&rwl)) !'= 0) {

33 fprintf (stderr,

34 "pthread_rwlock_unlock: %s\n", strerror(en));
35 exit (EXIT_FAILURE);

36 }

37 for (i = 1; i < thinktime; i++) {

38 wait_microseconds(1);

39 }

40 loopcnt++;

41 ¥

42  readcounts[me] = loopcnt;
43 return NULL;
4 ¥




4.2. POSIX MULTIPROCESSING

which determines when all reader threads have started
running.

Lines 7-10 define goflag, which synchronizes the
start and the end of the test. This variable is initially set to
GOFLAG_INIT, then set to GOFLAG_RUN after all the reader
threads have started, and finally set to GOFLAG_STOP to
terminate the test run.

Lines 12-44 define reader(), which is the
reader thread. Line 19 atomically increments the
nreadersrunning variable to indicate that this thread
is now running, and lines 20-22 wait for the test to start.
The READ_ONCE () primitive forces the compiler to fetch
goflag on each pass through the loop—the compiler
would otherwise be within its rights to assume that the
value of goflag would never change.

Quick Quiz 4.17: Instead of using READ_ONCE() every-
where, why not just declare goflag as volatile on line 10
of Listing 4.8? W

Quick Quiz 4.18: READ_ONCE() only affects the compiler,
not the CPU. Don’t we also need memory barriers to make
sure that the change in goflag’s value propagates to the CPU
in a timely fashion in Listing 4.8? H

Quick Quiz 4.19: Would it ever be necessary to use READ_
ONCE () when accessing a per-thread variable, for example, a
variable declared using GCC’s __thread storage class? W

The loop spanning lines 23—41 carries out the perfor-
mance test. Lines 24-28 acquire the lock, lines 29-31
hold the lock for the specified number of microseconds,
lines 32-36 release the lock, and lines 37-39 wait for the
specified number of microseconds before re-acquiring the
lock. Line 40 counts this lock acquisition.

Line 42 moves the lock-acquisition count to this thread’s
element of the readcounts[] array, and line 43 returns,
terminating this thread.

Figure 4.2 shows the results of running this test on a
224-core Xeon system with two hardware threads per core
for a total of 448 software-visible CPUs. The thinktime
parameter was zero for all these tests, and the holdtime
parameter set to values ranging from one microsecond
(“lus” on the graph) to 10,000 microseconds (*10000us”
on the graph). The actual value plotted is:

Ly

NI A.1)

where N is the number of threads, Ly is the number of
lock acquisitions by N threads, and L; is the number of

35

ideal 10000us |

Critical Section Performance

0.0001 | | | | | | | |
0 50 100 150 200 250 300 350 400 450

Number of CPUs (Threads)

Figure 4.2: Reader-Writer Lock Scalability vs. Microsec-
onds in Critical Section on 8-Socket System With
Intel Xeon Platinum 8176 CPUs @ 2.10GHz

lock acquisitions by a single thread. Given ideal hardware
and software scalability, this value will always be 1.0.

As can be seen in the figure, reader-writer locking
scalability is decidedly non-ideal, especially for smaller
sizes of critical sections. To see why read-acquisition can
be so slow, consider that all the acquiring threads must
update the pthread_rwlock_t data structure. Therefore,
if all 448 executing threads attempt to read-acquire the
reader-writer lock concurrently, they must update this
underlying pthread_rwlock_t one at a time. One lucky
thread might do so almost immediately, but the least-lucky
thread must wait for all the other 447 threads to do their
updates. This situation will only get worse as you add
CPUs. Note also the logscale y-axis. Even though the
10,000 microsecond trace appears quite ideal, it has in fact
degraded by about 10 % from ideal.

Quick Quiz 4.20: Isn’t comparing against single-CPU
throughput a bit harsh? Wl

Quick Quiz 4.21: But one microsecond is not a particularly
small size for a critical section. What do I do if I need a much
smaller critical section, for example, one containing only a few
instructions? W

Quick Quiz 4.22: The system used is a few years old, and
new hardware should be faster. So why should anyone worry
about reader-writer locks being slow? H




36

Despite these limitations, reader-writer locking is quite
useful in many cases, for example when the readers must
do high-latency file or network I/O. There are alternatives,
some of which will be presented in Chapters 5 and 9.

4.2.5 Atomic Operations (GCC Classic)

Figure 4.2 shows that the overhead of reader-writer locking
is most severe for the smallest critical sections, so it would
be nice to have some other way of protecting tiny critical
sections. One such way uses atomic operations. We have
seen an atomic operation already, namely the __sync_
fetch_and_add() primitive on line 19 of Listing 4.8.
This primitive atomically adds the value of its second
argument to the value referenced by its first argument,
returning the old value (which was ignored in this case).
If a pair of threads concurrently execute __sync_fetch_
and_add () on the same variable, the resulting value of
the variable will include the result of both additions.

The GNU C compiler offers a number of addi-
tional atomic operations, including __sync_fetch_and_
sub(), __sync_fetch_and_or(), sync_fetch_
and_and (), __sync_fetch_and_xor(), and __sync_
fetch_and_nand(), all of which return the old value.
If you instead need the new value, you can instead
use the __sync_add_and_fetch(), __sync_sub_
and_fetch(), __sync_or_and_fetch(), __sync_
and_and_fetch(), __sync_xor_and_fetch(), and
_sync_nand_and_fetch() primitives.

Quick Quiz 4.23: s it really necessary to have both sets of
primitives? W

The classic compare-and-swap operation is provided
by a pair of primitives, __sync_bool_compare_and_
swap () and __sync_val_compare_and_swap (). Both
of these primitive atomically update a location to a new
value, but only if its prior value was equal to the specified
old value. The first variant returns 1 if the operation
succeeded and 0 if it failed, for example, if the prior value
was not equal to the specified old value. The second
variant returns the prior value of the location, which, if
equal to the specified old value, indicates that the operation
succeeded. FEither of the compare-and-swap operation
is “universal” in the sense that any atomic operation
on a single location can be implemented in terms of
compare-and-swap, though the earlier operations are often
more efficient where they apply. The compare-and-swap
operation is also capable of serving as the basis for a
wider set of atomic operations, though the more elaborate

CHAPTER 4. TOOLS OF THE TRADE

Listing 4.9: Compiler Barrier Primitive (for GCC)

#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
#define READ_ONCE(x) \
({ typeof (x)
#define WRITE_ONCE(x, val) \
do { ACCESS_ONCE(x) = (val); } while (0)
#define barrier() __asm volatile__("": : :"memory")

x = ACCESS_ONCE(x) x; B

of these often suffer from complexity, scalability, and
performance problems [Her90].

Quick Quiz 4.24: Given that these atomic operations will
often be able to generate single atomic instructions that are
directly supported by the underlying instruction set, shouldn’t
they be the fastest possible way to get things done? W

The __sync_synchronize() primitive issues a
“memory barrier”, which constrains both the compiler’s
and the CPU’s ability to reorder operations, as discussed in
Chapter 15. In some cases, it is sufficient to constrain the
compiler’s ability to reorder operations, while allowing the
CPU free rein, in which case the barrier () primitive may
be used. In some cases, it is only necessary to ensure that
the compiler avoids optimizing away a given memory read,
in which case the READ_ONCE() primitive may be used,
as it was on line 20 of Listing 4.5. Similarly, the WRITE_
ONCE() primitive may be used to prevent the compiler
from optimizing away a given memory write. These last
three primitives are not provided directly by GCC, but may
be implemented straightforwardly as shown in Listing 4.9,
and all three are discussed at length in Section 4.3.4. Al-
ternatively, READ_ONCE(x) has much in common with
the GCC intrinsic __atomic_load_n(&x, __ATOMIC_
RELAXED) and WRITE_ONCE() has much in common
with the GCC intrinsic __atomic_store_n(&x, v,
__ATOMIC_RELAXED).

[Quick Quiz 4.25: What happened to ACCESS_ONCE() ? .]

4.2.6 Atomic Operations (C11)

The CI11 standard added atomic operations, in-
cluding loads (atomic_load()), stores (atomic_
store()), memory barriers (atomic_thread_fence()
and atomic_signal_fence()), and read-modify-
write atomics. The read-modify-write atom-
ics include atomic_fetch_add(), atomic_fetch_
sub(), atomic_fetch_and(), atomic_fetch_xor(),
atomic_exchange(), atomic_compare_exchange_
strong(), and atomic_compare_exchange_weak().
These operate in a manner similar to those described



4.3. ALTERNATIVES TO POSIX OPERATIONS

in Section 4.2.5, but with the addition of memory-order
arguments to _explicit variants of all of the opera-
tions. Without memory-order arguments, all the atomic
operations are fully ordered, and the arguments per-
mit weaker orderings. For example, “atomic_load_
explicit(&a, memory_order_relaxed)” is vaguely
similar to the Linux kernel’s “READ_ONCE()”".!

4.2.7 Atomic Operations (Modern GCC)

One restriction of the C11 atomics is that they apply
only to special atomic types, which can be problematic.
The GNU C compiler therefore provides atomic intrin-
sics, including __atomic_load(), __atomic_load_
n(), __atomic_store(), __atomic_store_n(), _
atomic_thread_fence(), etc. These intrinsics offer
the same semantics as their C11 counterparts, but may
be used on plain non-atomic objects. Some of these in-
trinsics may be passed a memory-order argument from
this list: __ATOMIC_RELAXED, __ATOMIC_CONSUME,
__ATOMIC_ACQUIRE, _ATOMIC_RELEASE, _ATOMIC_
ACQ_REL, and __ATOMIC_SEQ_CST.

4.2.8 Per-Thread Variables

Per-thread variables, also called thread-specific data,
thread-local storage, and other less-polite names, are used
extremely heavily in concurrent code, as will be explored
in Chapters 5 and 8. POSIX supplies the pthread_key_
create () function to create a per-thread variable (and
return the corresponding key), pthread_key_delete ()
to delete the per-thread variable corresponding to key,
pthread_setspecific() to set the value of the current
thread’s variable corresponding to the specified key, and
pthread_getspecific() to return that value.

A number of compilers (including GCC) provide a __
thread specifier that may be used in a variable definition
to designate that variable as being per-thread. The name of
the variable may then be used normally to access the value
of the current thread’s instance of that variable. Of course,
__thread is much easier to use than the POSIX thead-
specific data, and so __thread is usually preferred for
code that is to be built only with GCC or other compilers
supporting __thread.

Fortunately, the C11 standard introduced a _Thread_
local keyword that can be used in place of __thread. In
the fullness of time, this new keyword should combine the

I Memory ordering is described in more detail in Chapter 15 and
Appendix C.

37

ease of use of __thread with the portability of POSIX
thread-specific data.

4.3 Alternatives to POSIX Opera-
tions

The strategic marketing paradigm of Open Source is
a massively parallel drunkard’s walk filtered by a
Darwinistic process.

Bruce Perens

Unfortunately, threading operations, locking primitives,
and atomic operations were in reasonably wide use long
before the various standards committees got around to
them. As a result, there is considerable variation in how
these operations are supported. It is still quite common to
find these operations implemented in assembly language,
either for historical reasons or to obtain better perfor-
mance in specialized circumstances. For example, GCC’s
__sync_ family of primitives all provide full memory-
ordering semantics, which in the past motivated many
developers to create their own implementations for situa-
tions where the full memory ordering semantics are not
required. The following sections show some alternatives
from the Linux kernel and some historical primitives used
by this book’s sample code.

4.3.1 Organization and Initialization

Although many environments do not require any special
initialization code, the code samples in this book start
with a call to smp_init (), which initializes a mapping
from pthread_t to consecutive integers. The userspace
RCU library? similarly requires a call to rcu_init ().
Although these calls can be hidden in environments (such
as that of GCC) that support constructors, most of the
RCU flavors supported by the userspace RCU library also
require each thread invoke rcu_register_thread()
upon thread creation and rcu_unregister_thread()
before thread exit.

In the case of the Linux kernel, it is a philosophical
question as to whether the kernel does not require calls
to special initialization code or whether the kernel’s boot-
time code is in fact the required initialization code.

2 See Section 9.5 for more information on RCU.



38

Listing 4.10: Thread API

int smp_thread_id(void)

thread_id_t create_thread(void *(*func) (void *), void *arg)
for_each_thread(t)

for_each_running_thread(t)

void *wait_thread(thread_id_t tid)

void wait_all_threads(void)

4.3.2 Thread Creation, Destruction, and
Control

The Linux kernel uses struct task_struct pointers
to track kthreads, kthread_create() to create them,
kthread_should_stop () to externally suggest that they
stop (which has no POSIX equivalent),> kthread_
stop() to wait for them to stop, and schedule_
timeout_interruptible() for a timed wait. There
are quite a few additional kthread-management APIs, but
this provides a good start, as well as good search terms.

The CodeSamples API focuses on “threads”, which are a
locus of control.* Each such thread has an identifier of type
thread_id_t, and no two threads running at a given time
will have the same identifier. Threads share everything
except for per-thread local state,> which includes program
counter and stack.

The thread API is shown in Listing 4.10, and members
are described in the following sections.

4.3.2.1

create_thread ()

The create_thread() primitive creates a new thread,
starting the new thread’s execution at the function func
specified by create_thread()’s first argument, and
passing it the argument specified by create_thread()’s
second argument. This newly created thread will termi-
nate when it returns from the starting function specified
by func. The create_thread() primitive returns the
thread_id_t corresponding to the newly created child
thread.

This primitive will abort the program if more than
NR_THREADS threads are created, counting the one im-
plicitly created by running the program. NR_THREADS is
a compile-time constant that may be modified, though
some systems may have an upper bound for the allowable
number of threads.

3 POSIX environments can work around the lack of kthread_
should_stop() by using a properly synchronized boolean flag in
conjunction with pthread_join().

4 There are many other names for similar software constructs,
including “process”, “task”, “fiber”, “event”, “execution agent”, and so
on. Similar design principles apply to all of them.

5 How is that for a circular definition?

CHAPTER 4. TOOLS OF THE TRADE

4.3.2.2 smp_thread_id()

Because the thread_id_t returned from create_
thread () is system-dependent, the smp_thread_id ()
primitive returns a thread index corresponding to the
thread making the request. This index is guaranteed to be
less than the maximum number of threads that have been
in existence since the program started, and is therefore
useful for bitmasks, array indices, and the like.

4.3.2.3 for_each_thread()

The for_each_thread() macro loops through all
threads that exist, including all threads that would ex-
ist if created. This macro is useful for handling per-thread
variables as will be seen in Section 4.2.8.

4.3.2.4 for_each_running_thread()

The for_each_running thread() macro loops
through only those threads that currently exist. It is the
caller’s responsibility to synchronize with thread creation
and deletion if required.

4.3.2.5 wait_thread()

The wait_thread () primitive waits for completion of the
thread specified by the thread_id_t passed to it. This in
no way interferes with the execution of the specified thread;
instead, it merely waits for it. Note that wait_thread ()
returns the value that was returned by the corresponding
thread.

4.3.2.6 wait_all_threads()

The wait_all_threads () primitive waits for comple-
tion of all currently running threads. It is the caller’s
responsibility to synchronize with thread creation and
deletion if required. However, this primitive is normally
used to clean up at the end of a run, so such synchronization
is normally not needed.

4.3.2.7 Example Usage

Listing 4.11 (threadcreate. c) shows an example hello-
world-like child thread. As noted earlier, each thread
is allocated its own stack, so each thread has its own
private arg argument and myarg variable. Each child
simply prints its argument and its smp_thread_id ()
before exiting. Note that the return statement on line 7
terminates the thread, returning a NULL to whoever invokes
wait_thread() on this thread.



4.3. ALTERNATIVES TO POSIX OPERATIONS

39

Listing 4.11: Example Child Thread

Listing 4.13: Locking API

I void *thread_test(void *arg)
2 {
3 int myarg = (intptr_t)arg;
4
5

printf("child thread %d: smp_thread_id() = %d\n",

6 myarg, smp_thread_id());
7 return NULL;
8 }

Listing 4.12: Example Parent Thread

1 int main(int argc, char *argv[])

2 {

3 int i;

4 int nkids = 1;

5

6 smp_init();

7

s if (argec > 1) {

9 nkids = strtoul(argv[1], NULL, 0);
10 if (nkids > NR_THREADS) {

11 fprintf (stderr, "nkids = %d too large, max = %d\n",
12 nkids, NR_THREADS);

13 usage (argv[0]);

14 }

15}

16 printf("Parent thread spawning %d threads.\n", nkids);
:; for (i = 0; i < nkids; i++)

19 create_thread(thread_test, (void *) (intptr_t)i);

21 wait_all_threads();

23 printf("All spawned threads completed.\n");

25 exit(0);

The parent program is shown in Listing 4.12. It invokes
smp_init () to initialize the threading system on line 6,
parses arguments on lines 8—15, and announces its pres-
ence on line 16. It creates the specified number of child
threads on lines 18-19, and waits for them to complete
on line 21. Note that wait_all_threads() discards the
threads return values, as in this case they are all NULL,
which is not very interesting.

Quick Quiz 4.26: What happened to the Linux-kernel
equivalents to fork() and wait(O? H

4.3.3 Locking

A good starting subset of the Linux kernel’s locking APl is
shown in Listing 4.13, each API element being described
in the following sections. This book’s CodeSamples
locking API closely follows that of the Linux kernel.

void spin_lock_init(spinlock_t *sp);
void spin_lock(spinlock_t *sp);

int spin_trylock(spinlock_t *sp);
void spin_unlock(spinlock_t *sp);

4.3.3.1 spin_lock_init()

The spin_lock_init () primitive initializes the speci-
fied spinlock_t variable, and must be invoked before
this variable is passed to any other spinlock primitive.

4.3.3.2 spin_lock()

The spin_lock() primitive acquires the specified spin-
lock, if necessary, waiting until the spinlock becomes
available. In some environments, such as pthreads, this
waiting will involve blocking, while in others, such as the
Linux kernel, it might involve a CPU-bound spin loop.

The key point is that only one thread may hold a spinlock
at any given time.

4.3.3.3 spin_trylock()

The spin_trylock() primitive acquires the specified
spinlock, but only if it is immediately available. It returns
true if it was able to acquire the spinlock and false
otherwise.

4.3.34

spin_unlock()

The spin_unlock () primitive releases the specified spin-
lock, allowing other threads to acquire it.

4.3.3.5 Example Usage

A spinlock named mutex may be used to protect a variable
counter as follows:

spin_lock (&mutex) ;
counter++;
spin_unlock(&mutex) ;

Quick Quiz 4.27: What problems could occur if the variable
counter were incremented without the protection of mutex?

However, the spin_lock() and spin_unlock()
primitives do have performance consequences, as will
be seen in Chapter 10.



40

Listing 4.14: Living Dangerously Early 1990s Style

1 ptr = global_ptr;
2 if (ptr != NULL &% ptr < high_address)
3 do_low(ptr) ;

Listing 4.15: C Compilers Can Invent Loads

1 if (global_ptr !'= NULL &&
2 global_ptr < high_address)
3 do_low(global_ptr);

4.3.4 Accessing Shared Variables

It was not until 2011 that the C standard defined seman-
tics for concurrent read/write access to shared variables.
However, concurrent C code was being written at least
a quarter century earlier [BK85, Inm85]. This raises the
question as to what today’s greybeards did back in long-
past pre-C11 days. A short answer to this question is “they
lived dangerously”.

At least they would have been living dangerously had
they been using 2018 compilers. In (say) the early 1990s,
compilers did fewer optimizations, in part because there
were fewer compiler writers and in part due to the relatively
small memories of that era. Nevertheless, problems did
arise, as shown in Listing 4.14, which the compiler is
within its rights to transform into Listing 4.15. As you
can, the temporary on line 1 of Listing 4.14 has been
optimized away, so that global_ptr will be loaded up to
three times.

Quick Quiz 4.28: What is wrong with loading Listing 4.14’s
global_ptr up to three times? M

Section 4.3.4.1 describes additional problems caused
by plain accesses, Sections 4.3.4.2 and 4.3.4.3 describe
some pre-C11 solutions. Of course, where practical,
the primitives described in Section 4.2.5 or (especially)
Section 4.2.6 should instead be used to avoid data races,
that is, to ensure that if there are multiple concurrent
accesses to a given variable, all of those accesses are
loads.

4.3.4.1 Shared-Variable Shenanigans

Given code that does plain loads and stores,® the compiler
is within its rights to assume that the affected variables are
neither accessed nor modified by any other thread. This
assumption allows the compiler to carry out a large number
of transformations, including load tearing, store tearing,

6 That is, normal loads and stores instead of C11 atomics, inline
assembly, or volatile accesses.

CHAPTER 4. TOOLS OF THE TRADE

load fusing, store fusing, code reordering, invented loads,
invented stores, store-to-load transformations, and dead-
code elimination, all of which work just fine in single-
threaded code. But concurrent code can be broken by each
of these transformations, or shared-variable shenanigans,
as described below.

Load tearing occurs when the compiler uses multiple
load instructions for a single access. For example, the
compiler could in theory compile the load from global_
ptr (seeline 1 of Listing 4.14) as a series of one-byte loads.
If some other thread was concurrently setting global_
ptr to NULL, the result might have all but one byte of
the pointer set to zero, thus forming a “wild pointer”.
Stores using such a wild pointer could corrupt arbitrary
regions of memory, resulting in rare and difficult-to-debug
crashes.

Worse yet, on (say) an 8-bit system with 16-bit pointers,
the compiler might have no choice but to use a pair of
8-bit instructions to access a given pointer. Because the C
standard must support all manner of systems, the standard
cannot rule out load tearing in the general case.

Store tearing occurs when the compiler uses multiple
store instructions for a single access. For example, one
thread might store 0x12345678 to a four-byte integer vari-
able at the same time another thread stored Oxabcdef00.
If the compiler used 16-bit stores for either access, the
result might well be 0x1234ef00, which could come as
quite a surprise to code loading from this integer. Nor
is this a strictly theoretical issue. For example, there are
CPUs that feature small immediate instruction fields, and
on such CPUs, the compiler might split a 64-bit store
into two 32-bit stores in order to reduce the overhead of
explicitly forming the 64-bit constant in a register, even on
a 64-bit CPU. There are historical reports of this actually
happening in the wild (e.g. [KM13]), but there is also a
recent report [Deal9].”

Of course, the compiler simply has no choice but to tear
some stores in the general case, given the possibility of
code using 64-bit integers running on a 32-bit system. But
for properly aligned machine-sized stores, WRITE_ONCE ()
will prevent store tearing.

Load fusing occurs when the compiler uses the result
of a prior load from a given variable instead of repeating
the load. Not only is this sort of optimization just fine in
single-threaded code, it is often just fine in multithreaded

7 Note that this tearing can happen even on properly aligned and
machine-word-sized accesses, and in this particular case, even for volatile
stores. Some might argue that this behavior constitutes a bug in the
compiler, but either way it illustrates the perceived value of store tearing
from a compiler-writer viewpoint.



4.3. ALTERNATIVES TO POSIX OPERATIONS

41

Listing 4.16: Inviting Load Fusing

Listing 4.18: C Compilers Can Fuse Non-Adjacent Loads

| while (!need_to_stop)
2 do_something_quickly();

Listing 4.17: C Compilers Can Fuse Loads
1 if (!need_to_stop)

2 for (55) {

3 do_something_quickly();
4 do_something_quickly();
5 do_something_quickly();
6 do_something_quickly();
7 do_something_quickly();
8 do_something_quickly();
9 do_something_quickly();
10 do_something_quickly();
11 do_something_quickly();
12 do_something_quickly();
13 do_something_quickly();
14 do_something_quickly();
15 do_something_quickly();
16 do_something_quickly();
17 do_something_quickly();
18 do_something_quickly();
19 }

code. Unfortunately, the word “often” hides some truly
annoying exceptions.

For example, suppose that a real-time system needs to
invoke a function named do_something_quickly()
repeatedly until the variable need_to_stop was set,
and that the compiler can see that do_something_
quickly () does not store to need_to_stop. One (un-
safe) way to code this is shown in Listing 4.16. The
compiler might reasonably unroll this loop sixteen times
in order to reduce the per-invocation of the backwards
branch at the end of the loop. Worse yet, because the
compiler knows that do_something_quickly() does
not store to need_to_stop, the compiler could quite
reasonably decide to check this variable only once, re-
sulting in the code shown in Listing 4.17. Once entered,
the loop on lines 2—-19 will never exit, regardless of how
many times some other thread stores a non-zero value to
need_to_stop. The result will at best be consternation,
and might well also include severe physical damage.

The compiler can fuse loads across surprisingly large
spans of code. For example, in Listing 4.18, t0() and
t1() run concurrently, and do_something() and do_
something_else() are inline functions. Line 1 declares
pointer gp, which C initializes to NULL by default. At
some point, line 5 of t0 () stores a non-NULL pointer to gp.
Meanwhile, t1 () loads from gp three times on lines 10,
12, and 15. Given that line 13 finds that gp is non-NULL,
one might hope that the dereference on line 15 would be
guaranteed never to fault. Unfortunately, the compiler is
within its rights to fuse the read on lines 10 and 15, which

1 int *gp;

2

3 void t0(void)

4 {

WRITE_ONCE(gp, &myvar);

W

5
6
7
8 void t1(void)

9 {

10 pl = gp;

1 do_something(pl);

12 p2 = READ_ONCE(gp) ;

13 if (p2) {

14 do_something_else();
15 p3 = *gp;

16}

17 ¥

Listing 4.19: C Compilers Can Fuse Stores

1 void shut_it_down(void)

2

3 status = SHUTTING_DOWN; /* BUGGY!!! %/

4 start_shutdown();

5 while (!other_task_ready) /* BUGGY!'!! */
6 continue;

7 finish_shutdown();

8 status = SHUT_DOWN; /* BUGGY!!! %/

9 do_something_else();

12 void work_until_shut_down(void)

13 {

14 while (status != SHUTTING_DOWN) /* BUGGY!!! x/
15 do_more_work() ;

16 other_task_ready = 1; /* BUGGY!!! %/

17 }

means that if line 10 loads NULL and line 12 loads &myvar,
line 15 could load NULL, resulting in a fault.® Note that
the intervening READ_ONCE () does not prevent the other
two loads from being fused, despite the fact that all three
are loading from the same variable.

Quick Quiz 4.29: Why does it matter whether do_
something() and do_something_else() in Listing 4.18
are inline functions? M

Store fusing can occur when the compiler notices a
pair of successive stores to a given variable with no
intervening loads from that variable. In this case, the
compiler is within its rights to omit the first store. This is
never a problem in single-threaded code, and in fact it is
usually not a problem in correctly written concurrent code.
After all, if the two stores are executed in quick succession,
there is very little chance that some other thread could
load the value from the first store.

However, there are exceptions, for example as shown
in Listing 4.19. The function shut_it_down() stores

8 Will Deacon reports that this happened in the Linux kernel.



42

to the shared variable status on lines 3 and 8, and so
assuming that neither start_shutdown() nor finish_
shutdown () access status, the compiler could reason-
ably remove the store to status on line 3. Unfortunately,
this would mean that work_until_shut_down () would
never exit its loop spanning lines 14 and 15, and thus would
never set other_task_ready, which would in turn mean
that shut_it_down () would never exit its loop spanning
lines 5 and 6, even if the compiler chooses not to fuse the
successive loads from other_task_ready on line 5.

And there are more problems with the code in List-
ing 4.19, including code reordering.

Code reordering is a common compilation technique
used to combine common subexpressions, reduce register
pressure, and improve utilization of the many functional
units available on modern superscalar microprocessors.
It is also another reason why the code in Listing 4.19 is
buggy. For example, suppose that the do_more_work ()
function on line 15 does not access other_task_ready.
Then the compiler would be within its rights to move the
assignment to other_task_ready on line 16 to precede
line 14, which might be a great disappointment for anyone
hoping that the last call to do_more_work() on line 15
happens before the call to finish_shutdown() on line 7.

It might seem futile to prevent the compiler from chang-
ing the order of accesses in cases where the underlying
hardware is free to reorder them. However, modern ma-
chines have exact exceptions and exact interrupts, mean-
ing that any interrupt or exception will appear to have
happened at a specific place in the instruction stream.
This means that the handler will see the effect of all
prior instructions, but won’t see the effect of any subse-
quent instructions. READ_ONCE() and WRITE_ONCE()
can therefore be used to control communication between
interrupted code and interrupt handlers, independent of
the ordering provided by the underlying hardware.’

Invented loads were illustrated by the code in List-
ings 4.14 and 4.15, in which the compiler optimized away
a temporary variable, thus loading from a shared variable
more often than intended.

Invented loads can be a performance hazard. These
hazards can occur when a load of variable in a “hot”
cacheline is hoisted out of an if statement. These hoisting
optimizations are not uncommon, and can cause significant
increases in cache misses, and thus significant degradation
of both performance and scalability.

9 That said, the various standards committees would prefer that
you use atomics or variables of type sig_atomic_t, instead of READ_
ONCE() and WRITE_ONCEQ).

CHAPTER 4. TOOLS OF THE TRADE

Listing 4.20: Inviting an Invented Store

1 if (condition)

2 a=1;

3 else

4 do_a_bunch_of_stuff();

Listing 4.21: Compiler Invents an Invited Store
1 a=1;

2 if (!lcondition) {

3 a = 0;

4 do_a_bunch_of_stuff();

5}

Invented stores can occur in a number of situations.
For example, a compiler emitting code for work_until_
shut_down () in Listing 4.19 might notice that other_
task_ready is not accessed by do_more_work(), and
stored to on line 16. If do_more_work () was a complex
inline function, it might be necessary to do a register spill,
in which case one attractive place to use for temporary
storage is other_task_ready. After all, there are no
accesses to it, so what is the harm?

Of course, a non-zero store to this variable at just the
wrong time would result in the while loop on line 5 termi-
nating prematurely, again allowing finish_shutdown ()
to run concurrently with do_more_work(). Given that
the entire point of this while appears to be to prevent
such concurrency, this is not a good thing.

Using a stored-to variable as a temporary might seem
outlandish, but it is permitted by the standard. Neverthe-
less, readers might be justified in wanting a less outlandish
example, which is provided by Listings 4.20 and 4.21.

A compiler emitting code for Listing 4.20 might know
that the value of a is initially zero, which might be a strong
temptation to optimize away one branch by transforming
this code to that in Listing 4.21. Here, line 1 uncondi-
tionally stores 1 to a, then resets the value back to zero
on line 3 if condition was not set. This transforms the
if-then-else into an if-then, saving one branch.

Quick Quiz 4.30: Ouch! So can’t the compiler invent a store
to a normal variable pretty much any time it likes? W

Finally, pre-C11 compilers could invent writes to unre-
lated variables that happened to be adjacent to written-to
variables [Boe05, Section 4.2]. This variant of invented
stores has been outlawed by the prohibition against com-
piler optimizations that invent data races.

Store-to-load transformations can occur when the
compiler notices that a plain store might not actually
change the value in memory. For example, consider
Listing 4.22. Line 1 fetches p, but the “if” statement



4.3. ALTERNATIVES TO POSIX OPERATIONS

Listing 4.22: Inviting a Store-to-Load Conversion
1 rl = p;

2 if (unlikely(rl))

3 do_something_with(r1);

4 barrier();

5 p = NULL;

Listing 4.23: Compiler Converts a Store to a Load

1 rl =p;

2 if (unlikely(r1))

3 do_something_with(rl);
4 barrier();

s if (p != NULL)

6 p = NULL;

on line 2 also tells the compiler that the developer thinks
that p is usually zero.'® The barrier() statment on
line 4 forces the compiler to forget the value of p, but
one could imagine a compiler choosing to remember the
hint—or getting an additional hint via feedback-directed
optimization. Doing so would cause the compiler to
realize that line 5 is often an expensive no-op.

Such a compiler might therefore guard the store of NULL

with a check, as shown on lines 5 and 6 of Listing 4.23.

Although this transformation is often desirable, it could be

problematic if the actual store was required for ordering.

For example, a write memory barrier (Linux kernel smp_
wmb ()) would order the store, but not the load. This
situation might suggest use of smp_store_release()
over smp_wmb ().

Dead-code elimination can occur when the compiler
notices that the value from a load is never used, or when a
variable is stored to, but never loaded from. This can of
course eliminate an access to a shared variable, which can
in turn defeat a memory-ordering primitive, which could

cause your concurrent code to act in surprising ways.

Experience thus far indicates that relatively few such
surprises will be at all pleasant. Elimination of store-only
variables is especially dangerous in cases where external
code locates the variable via symbol tables: The compiler
is necessarily ignorant of such external-code accesses,
and might thus eliminate a variable that the external code
relies upon.

Reliable concurrent code clearly needs a way to cause
the compiler to preserve the number, order, and type of
important accesses to shared memory, a topic taken up by
Sections 4.3.4.2 and 4.3.4.3, which are up next.

10 The unlikely() function provides this hint to the com-
piler, and different compilers provide different ways of implementing
unlikely().

43

4.3.4.2 A Volatile Solution

Although it is now much maligned, before the advent of
C11 and C++11 [Becl1], the volatile keyword was an
indispensible tool in the parallel programmer’s toolbox.
This raises the question of exactly what volatile means,
a question that is not answered with excessive precision
even by more recent versions of this standard [Smil9].1!
This version guarantees that “Accesses through volatile
glvalues are evaluated strictly according to the rules of
the abstract machine”, that volatile accesses are side
effects, that they are one of the four forward-progress indi-
cators, and that their exact semantics are implementation-
defined. Perhaps the clearest guidance is provided by this
non-normative note:

volatile is a hint to the implementation to
avoid aggressive optimization involving the ob-
ject because the value of the object might be
changed by means undetectable by an implemen-
tation. Furthermore, for some implementations,
volatile might indicate that special hardware
instructions are required to access the object.
See 6.8.1 for detailed semantics. In general, the
semantics of volatile are intended to be the
same in C++ as they are in C.

This wording might be reassuring to those writing low-
level code, except for the fact that compiler writers are
free to completely ignore non-normative notes. Parallel
programmers might instead reassure themselves that com-
piler writers would like to avoid breaking device drivers
(though perhaps only after a few “frank and open” discus-
sions with device-driver developers), and device drivers
impose at least the following constraints [MWPF18]:

1. Implementations are forbidden from tearing an
aligned volatile access when machine instructions of
that access’s size and type are available.'”> Concur-
rent code relies on this constraint to avoid unneces-
sary load and store tearing.

2. Implementations must not assume anything about the
semantics of a volatile access, nor, for any volatile
access that returns a value, about the possible set of
values that might be returned.'> Concurrent code

!l JF Bastien thoroughly documented the history and use cases for
the volatile keyword in C++ [Bas18].

12 Note that this leaves unspecified what to do with 128-bit loads and
stores on CPUs having 128-bit CAS but not 128-bit loads and stores.

13 This is strongly implied by the implementation-defined semantics
called out above.



44

CHAPTER 4. TOOLS OF THE TRADE

Listing 4.24: Avoiding Danger, 2018 Style

Listing 4.27: Disinviting an Invented Store

1 ptr = READ_ONCE(global_ptr);
2 if (ptr !'= NULL && ptr < high_address)
3 do_low(ptr);

Listing 4.25: Preventing Load Fusing

| while (!READ_ONCE(need_to_stop))
2 do_something_quickly();

Listing 4.26: Preventing Store Fusing and Invented Stores

1 void shut_it_down(void)

2

3 WRITE_ONCE(status, SHUTTING_DOWN); /* BUGGY!!! */

4 start_shutdown() ;

5 while (!'READ_ONCE(other_task_ready)) /* BUGGY!!! x/
6 continue;

7 finish_shutdown();

8 WRITE_ONCE(status, SHUT_DOWN); /* BUGGY!!! x*/

9 do_something_else();

12 void work_until_shut_down(void)

13 {

14 while (READ_ONCE(status) != SHUTTING_DOWN) /* BUGGY!!! x*/
15 do_more_work() ;

16 WRITE_ONCE (other_task_ready, 1); /* BUGGY!!! x/

17 }

relies on this constraint to avoid optimizations that
are inapplicable given that other processors might be
concurrently accessing the location in question.

3. Aligned machine-sized non-mixed-size volatile ac-
cesses interact naturally with volatile assembly-code
sequences before and after. This is necessary because
some devices must be accessed using a combina-
tion of volatile MMIO accesses and special-purpose
assembly-language instructions. Concurrent code
relies on this constraint in order to achieve the desired
ordering properties from combinations of volatile ac-
cesses and other means discussed in Section 4.3.4.3.

Concurrent code also relies on the first two constraints
to avoid undefined behavior that could result due to data
races if any of the accesses to a given object was either
non-atomic or non-volatile, assuming that all accesses are
aligned and machine-sized. The semantics of mixed-size
accesses to the same locations are more complex, and are
left aside for the time being.

So how does volatile stack up against the earlier
examples?

Using READ_ONCE() on line 1 of Listing 4.14 avoids
invented loads, resulting in the code shown in Listing 4.24.

As shown in Listing 4.25, READ_ONCE () can also pre-
vent the loop unrolling in Listing 4.17.

1 if (condition)

2 WRITE_ONCE(a, 1);

3 else

4 do_a_bunch_of_stuff();

Listing 4.28: Preventing C Compilers From Fusing Loads

1 while (!'need_to_stop) {

2 barrier();

3 do_something_quickly();
4 barrier();
5

Y

READ_ONCE() and WRITE_ONCE() can also be used
to prevent the store fusing and invented stores that were
shown in Listing 4.19, with the result shown in List-
ing 4.26. However, this does nothing to prevent code
reordering, which requires some additional tricks taught
in Section 4.3.4.3.

Finally, WRITE_ONCE () can be used to prevent the store
invention shown in Listing 4.20, with the resulting code
shown in Listing 4.27.

To summarize, the volatile keyword can prevent
load tearing and store tearing in cases where the loads
and stores are machine-sized and properly aligned. It
can also prevent load fusing, store fusing, invented loads,
and invented stores. However, although it does prevent
the compiler from reordering volatile accesses with
each other, it does nothing to prevent the CPU from
reordering these accesses. Furthermore, it does nothing
to prevent either compiler or CPU from reordering non-
volatile accesses with each other or with volatile
accesses. Preventing these types of reordering requires
the techniques described in the next section.

4.3.4.3 Assembling the Rest of a Solution

Additional ordering has traditionally been provided by
recourse to assembly language, for example, GCC asm
directives. Oddly enough, these directives need not ac-
tually contain assembly language, as exemplified by the
barrier () macro shown in Listing 4.9.

In the barrier () macro, the __asm__ introduces the
asm directive, the __volatile__ prevents the compiler
from optimizing the asm away, the empty string specifies
that no actual instructions are to be emitted, and the
final "memory" tells the compiler that this do-nothing
asm can arbitrarily change memory. In response, the
compiler will avoid moving any memory references across
the barrier () macro. This means that the real-time-
destroying loop unrolling shown in Listing 4.17 can be



4.3. ALTERNATIVES TO POSIX OPERATIONS

Listing 4.29: Preventing Reordering

1 void shut_it_down(void)

2 {

3 WRITE_ONCE(status, SHUTTING_DOWN);
4 smp_mb () ;

5 start_shutdown() ;

6 while (!'READ_ONCE(other_task_ready))
7 continue;

3 smp_mb () ;

9 finish_shutdown();

10 smp_mb () ;

11 WRITE_ONCE(status, SHUT_DOWN);

12 do_something_else();

13}

14

15 void work_until_shut_down(void)

16 {

17 while (READ_ONCE(status) != SHUTTING_DOWN) {
18 smp_mb () ;

19 do_more_work() ;

20 }

21 smp_mb () ;
2 WRITE_ONCE(other_task_ready, 1);
23 }

prevented by adding barrier () calls as shown on lines 2
and 4 of Listing 4.28. These two lines of code prevent the
compiler from pushing the load from need_to_stop into
or pastdo_something_ quickly() from either direction.
However, this does nothing to prevent the CPU from
reordering the references. In many cases, this is not
a problem because the hardware can only do a certain
amount of reordering. However, there are cases such
as Listing 4.19 where the hardware must be constrained.
Listing 4.26 prevented store fusing and invention, and
Listing 4.29 further prevents the remaining reordering
by addition of smp_mb () on lines 4, 8, 10, 18, and 21.
The smp_mb () macro is similar to barrier () shown in
Listing 4.9, but with the empty string replaced by a string
containing the instruction for a full memory barrier, for
example, "mfence" on x86 or "sync" on PowerPC.

Quick Quiz 4.31: But aren’t full memory barriers very
heavyweight? Isn’t there a cheaper way to enforce the ordering
needed in Listing 4.29? W

Ordering is also provided by some read-modify-write
atomic operations, some of which are presented in Sec-
tion 4.3.5. In the general case, memory ordering can be
quite subtle, as discussed in Chapter 15. The next section
covers an alternative to memory ordering, namely limiting
or even entirely avoiding data races.

4.3.4.4 Avoiding Data Races

“Doctor, it hurts my head when I think about
concurrently accessing shared variables!”

45

“Then stop concurrently accessing shared vari-
ables!!!”

The doctor’s advice might seem unhelpful, but one
time-tested way to avoid concurrently accessing shared
variables is access those variables only when holding a
particular lock, as will be discussed in Chapter 7. Another
way is to access a given “shared” variable only from a
given CPU or thread, as will be discussed in Chapter 8. It
is possible to combine these two approaches, for example,
a given variable might be modified only by a given CPU or
thread while holding a particular lock, and might be read
either from that same CPU or thread on the one hand, or
from some other CPU or thread while holding that same
lock on the other. In all of these situations, all accesses to
the shared variables may be plain C-language accesses.

Here is a list of situations allowing plain loads and stores
for some accesses to a given variable, while requiring
markings (such as READ_ONCE () and WRITE_ONCE()) for
other accesses to that same variable:

1. A shared variable is only modified by a given owning
CPU or thread, but is read by other CPUs or threads.
All stores must use WRITE_ONCE(). The owning
CPU or thread may use plain loads. Everything else
must use READ_ONCE () for loads.

2. A shared variable is only modified while holding a
given lock, but is read by code not holding that lock.
All stores must use WRITE_ONCE (). CPUs or threads
holding the lock may use plain loads. Everything
else must use READ_ONCE () for loads.

3. A shared variable is only modified while holding a
given lock by a given owning CPU or thread, but is
read by other CPUs or threads or by code not holding
that lock. All stores must use WRITE_ONCE(). The
owning CPU or thread may use plain loads, as may
any CPU or thread holding the lock. Everything else
must use READ_ONCE () for loads.

4. A shared variable is only accessed by a given CPU
or thread and by a signal or interrupt handler running
in that CPU’s or thread’s context. The handler can
use plain loads and stores, as can any code that
has prevented the handler from being invoked, that
is, code that has blocked signals and/or interrupts.
All other code must use READ_ONCE () and WRITE_
ONCEQ).

5. A shared variable is only accessed by a given CPU
or thread and by a signal or interrupt handler running



46

in that CPU’s or thread’s context, and the handler
always restores the values of any variables that it
has written before return. The handler can use plain
loads and stores, as can any code that has prevented
the handler from being invoked, that is, code that
has blocked signals and/or interrupts. All other code
can use plain loads, but must use WRITE_ONCE ()
to prevent store tearing, store fusing, and invented
stores.

Quick Quiz 4.32: What needs to happen if an interrupt or
signal handler might itself be interrupted? M

In most other cases, loads from and stores to a shared
variable must use READ_ONCE () and WRITE_ONCE() or
stronger, respectively. But it bears repeating that neither
READ_ONCE () nor WRITE_ONCE() provide any ordering
guarantees other than within the compiler. See the above
Section 4.3.4.3 or Chapter 15 for information on such
guarantees.

Examples of many of these data-race-avoidance patterns
are presented in Chapter 5.

4.3.5 Atomic Operations

The Linux kernel provides a wide variety of atomic opera-
tions, but those defined on type atomic_t provide a good
start. Normal non-tearing reads and stores are provided by
atomic_read() and atomic_set (), respectively. Ac-
quire load is provided by smp_load_acquire() and
release store by smp_store_release().

Non-value-returning fetch-and-add operations are pro-
vided by atomic_add(), atomic_sub(), atomic_
inc(), and atomic_dec (), among others. An atomic
decrement that returns a reached-zero indication is pro-
vided by both atomic_dec_and_test () and atomic_
sub_and_test(). An atomic add that returns the
new value is provided by atomic_add_return().
Both atomic_add_unless() and atomic_inc_not_
zero() provide conditional atomic operations, where
nothing happens unless the original value of the atomic
variable is different than the value specified (these are very
handy for managing reference counters, for example).

An atomic exchange operation is provided by atomic_
xchg(), and the celebrated compare-and-swap (CAS)
operation is provided by atomic_cmpxchg(). Both
of these return the old value. Many additional atomic
RMW primitives are available in the Linux kernel, see
the Documentation/core-api/atomic_ops.rst file
in the Linux-kernel source tree.

CHAPTER 4. TOOLS OF THE TRADE

Listing 4.30: Per-Thread-Variable API

DEFINE_PER_THREAD (type, name)
DECLARE_PER_THREAD (type, name)
per_thread(name, thread)
__get_thread_var (name)
init_per_thread(name, v)

This book’s CodeSamples API closely follows that of
the Linux kernel.

4.3.6 Per-CPU Variables

The Linux kernel uses DEFINE_PER_CPU() to define a
per-CPU variable, this_cpu_ptr () to form a reference
to this CPU’s instance of a given per-CPU variable, per_
cpu() to access a specified CPU’s instance of a given
per-CPU variable, along with many other special-purpose
per-CPU operations.

Listing 4.30 shows this book’s per-thread-variable API,
which is patterned after the Linux kernel’s per-CPU-
variable API. This API provides the per-thread equivalent
of global variables. Although this APl s, strictly speaking,
not necessary'#, it can provide a good userspace analogy
to Linux kernel code.

Quick Quiz 4.33: How could you work around the lack of a
per-thread-variable API on systems that do not provide it?

4.3.6.1 DEFINE_PER_THREAD()

The DEFINE_PER_THREAD() primitive defines a per-
thread variable. Unfortunately, it is not possible to pro-
vide an initializer in the way permitted by the Linux
kernel’s DEFINE_PER_CPU() primitive, but there is an
init_per_thread () primitive that permits easy runtime
initialization.

4.3.6.2 DECLARE_PER_THREAD()

The DECLARE_PER_THREAD () primitive is a declaration
in the C sense, as opposed to a definition. Thus, a
DECLARE_PER_THREAD() primitive may be used to ac-
cess a per-thread variable defined in some other file.

4.3.6.3 per_thread()

The per_thread() primitive accesses the specified
thread’s variable.

14 You could instead use __thread or _Thread_local.



4.4. THE RIGHT TOOL FOR THE JOB: HOW TO CHOOSE? 47

4.3.6.4 __get_thread_var()

The __get_thread_var () primitive accesses the cur-
rent thread’s variable.

4.3.6.5 init_per_thread()

The init_per_thread() primitive sets all threads’ in-
stances of the specified variable to the specified value. The
Linux kernel accomplishes this via normal C initialization,
relying in clever use of linker scripts and code executed
during the CPU-online process.

4.3.6.6 Usage Example

Suppose that we have a counter that is incremented very
frequently but read out quite rarely. As will become clear
in Section 5.2, it is helpful to implement such a counter
using a per-thread variable. Such a variable can be defined
as follows:

DEFINE_PER_THREAD(int, counter);

The counter must be initialized as follows:

init_per_thread(counter, 0); ‘

A thread can increment its instance of this counter as
follows:

p_counter = &__get_thread_var(counter);
WRITE_ONCE(*p_counter, *p_counter + 1);

The value of the counter is then the sum of its instances.
A snapshot of the value of the counter can thus be collected
as follows:

for_each_thread(t)
sum += READ_ONCE(per_thread(counter, t));

Again, it is possible to gain a similar effect using other
mechanisms, but per-thread variables combine conve-
nience and high performance, as will be shown in more
detail in Section 5.2.

4.4 TheRight Tool for the Job: How

to Choose?

If you get stuck, change your tools; it may free your
thinking.

Paul Arden, abbreviated

As a rough rule of thumb, use the simplest tool that will
get the job done. If you can, simply program sequentially.
If that is insufficient, try using a shell script to mediate
parallelism. If the resulting shell-script fork ()/exec ()
overhead (about 480 microseconds for a minimal C pro-
gram on an Intel Core Duo laptop) is too large, try using
the C-language fork() and wait () primitives. If the
overhead of these primitives (about 80 microseconds for
a minimal child process) is still too large, then you might
need to use the POSIX threading primitives, choosing the
appropriate locking and/or atomic-operation primitives.
If the overhead of the POSIX threading primitives (typi-
cally sub-microsecond) is too great, then the primitives
introduced in Chapter 9 may be required. Of course, the
actual overheads will depend not only on your hardware,
but most critically on the manner in which you use the
primitives. Furthermore, always remember that inter-
process communication and message-passing can be good
alternatives to shared-memory multithreaded execution,
especially when your code makes good use of the design
principles called out in Chapter 6.

Quick Quiz 4.34: Wouldn’t the shell normally use vfork ()
rather than fork()? W

Because concurrency was added to the C standard
several decades after the C language was first used to
build concurrent systems, there are a number of ways
of concurrently accessing shared variables. All else
being equal, the C11 standard operations described in
Section 4.2.6 should be your first stop. If you need to
access a given shared variable both with plain accesses and
atomically, then the modern GCC atomics described in
Section 4.2.7 might work well for you. If you are working
on an old codebase that uses the classic GCC __sync
API, then you should review Section 4.2.5 as well as the
relevant GCC documentation. If you are working on the
Linux kernel or similar codebase that combines use of the
volatile keyword with inline assembly, or if you need
dependencies to provide ordering, look at the material
presented in Section 4.3.4 as well as that in Chapter 15.



48

Whatever approach you take, please keep in mind that
randomly hacking multi-threaded code is a spectacularly
bad idea, especially given that shared-memory parallel sys-
tems use your own intelligence against you: The smarter
you are, the deeper a hole you will dig for yourself before
you realize that you are in trouble [Pok16]. Therefore,
it is necessary to make the right design choices as well
as the correct choice of individual primitives, as will be
discussed at length in subsequent chapters.

CHAPTER 4. TOOLS OF THE TRADE



Chapter 5

Counting

Counting is perhaps the simplest and most natural thing
a computer can do. However, counting efficiently and
scalably on a large shared-memory multiprocessor can
be quite challenging. Furthermore, the simplicity of the
underlying concept of counting allows us to explore the
fundamental issues of concurrency without the distractions
of elaborate data structures or complex synchronization
primitives. Counting therefore provides an excellent
introduction to parallel programming.

This chapter covers a number of special cases for which

there are simple, fast, and scalable counting algorithms.

But first, let us find out how much you already know about
concurrent counting.

Aseasyas 1,2, 3!

Unknown

number of structures in use exceeds an exact limit (again, say
10,000). Suppose further that these structures are short-lived,
and that the limit is rarely exceeded, that there is almost always
at least one structure in use, and suppose further still that it is
necessary to know exactly when this counter reaches zero, for
example, in order to free up some memory that is not required
unless there is at least one structure in use. W

Quick Quiz 5.5: Removable I/0 device access-count
problem. Suppose that you need to maintain a reference
count on a heavily used removable mass-storage device, so
that you can tell the user when it is safe to remove the device.
As usual, the user indicates a desire to remove the device, and
the system tells the user when it is safe to do so.

Quick Quiz 5.1: Why should efficient and scalable counting
be hard??? After all, computers have special hardware for the
sole purpose of doing counting!!! W

Quick Quiz 5.2: Network-packet counting problem.
Suppose that you need to collect statistics on the number of
networking packets transmitted and received. Packets might
be transmitted or received by any CPU on the system. Suppose
further that your system is capable of handling millions of
packets per second per CPU, and that a systems-monitoring
package reads the count every five seconds. How would you
implement this counter? W

Quick Quiz 5.3: Approximate structure-allocation limit
problem. Suppose that you need to maintain a count of the
number of structures allocated in order to fail any allocations
once the number of structures in use exceeds a limit (say,
10,000). Suppose further that the structures are short-lived,
the limit is rarely exceeded, and a “sloppy” approximate limit
is acceptable. W

Quick Quiz 5.4: Exact structure-allocation limit prob-
lem. Suppose that you need to maintain a count of the number
of structures allocated in order to fail any allocations once the

49

Section 5.1 shows why counting is non-trivial. Sec-
tions 5.2 and 5.3 investigate network-packet counting
and approximate structure-allocation limits, respectively.
Section 5.4 takes on exact structure-allocation limits. Fi-
nally, Section 5.5 presents performance measurements
and discussion.

Sections 5.1 and 5.2 contain introductory material,
while the remaining sections are more advanced.

5.1 Why Isn’t Concurrent Counting
Trivial?

Seek simplicity, and distrust it.

Alfred North Whitehead

Let’s start with something simple, for example, the
straightforward use of arithmetic shown in Listing 5.1
(count_nonatomic.c). Here, we have a counter on
line 1, we increment it on line 5, and we read out its value
on line 10. What could be simpler?



50

Listing 5.1: Just Count!

unsigned long counter = 0;

1

2

3 static __inline__ void inc_count(void)

4 {

5 WRITE_ONCE(counter, READ_ONCE(counter) + 1);
6

7

8

9

[

tatic __inline_

s _ unsigned long read_count(void)
{

10 return READ_ONCE(counter);

n ¥

Listing 5.2: Just Count Atomically!

atomic_t counter = ATOMIC_INIT(O);

1

2

3 static __inline__ void inc_count(void)
4 1

5 atomic_inc(&counter);

6 }

7

8 static __inline__ long read_count(void)
9 {

10 return atomic_read(&counter);

1}

Quick Quiz 5.6: One thing that could be simpler is ++ instead
of that concatenation of READ_ONCE () and WRITE_ONCE().
Why all that extra typing??? H

This approach has the additional advantage of being
blazingly fast if you are doing lots of reading and almost
no incrementing, and on small systems, the performance
is excellent.

There is just one large fly in the ointment: this approach
can lose counts. On my six-core x86 laptop, a short
run invoked inc_count () 285,824,000 times, but the
final value of the counter was only 35,385,525. Although
approximation does have a large place in computing, loss
of seven out of eight counts is a bit excessive.

Quick Quiz 5.7: But can’t a smart compiler prove that line 5
of Listing 5.1 is equivalent to the ++ operator and produce an
x86 add-to-memory instruction? And won’t the CPU cache
cause this to be atomic? W

CHAPTER 5. COUNTING

100000 F———rrrr————rrr——3
2 10000 o
£ i ﬁf ]
1000 - .
5] = ig## E
= . o ]
= 100 b w ¥ 4
o F o, E
g L ]
= 10 E

| [ S— MR B TR S A A L

—

Number of CPUs (Threads)

Figure 5.1: Atomic Increment Scalability on x86

times slower than non-atomic increment, even when only
a single thread is incrementing. '

This poor performance should not be a surprise, given
the discussion in Chapter 3, nor should it be a surprise that
the performance of atomic increment gets slower as the
number of CPUs and threads increase, as shown in Fig-
ure 5.1. In this figure, the horizontal dashed line resting on
the x axis is the ideal performance that would be achieved
by a perfectly scalable algorithm: with such an algorithm,
a given increment would incur the same overhead that it
would in a single-threaded program. Atomic increment of
a single global variable is clearly decidedly non-ideal, and
gets multiple orders of magnitude worse with additional
CPUs.

Quick Quiz 5.9: Why doesn’t the horizontal dashed line on
the x axis meet the diagonal line at x = 1? W

Quick Quiz 5.10: But atomic increment is still pretty fast.
And incrementing a single variable in a tight loop sounds pretty
unrealistic to me, after all, most of the program’s execution
should be devoted to actually doing work, not accounting for
the work it has done! Why should I care about making this go
faster? W

Quick Quiz 5.8: The 8-figure accuracy on the number of
failures indicates that you really did test this. Why would it be
necessary to test such a trivial program, especially when the
bug is easily seen by inspection? M

The straightforward way to count accurately is to use
atomic operations, as shown in Listing 5.2 (count_
atomic.c). Line 1 defines an atomic variable, line 5
atomically increments it, and line 10 reads it out. Be-
cause this is atomic, it keeps perfect count. However, it is
slower: on my six-core x86 laptop, it is more than twenty

For another perspective on global atomic increment,
consider Figure 5.2. In order for each CPU to get a
chance to increment a given global variable, the cache
line containing that variable must circulate among all

! Interestingly enough, non-atomically incrementing a counter will
advance the counter more quickly than atomically incrementing the
counter. Of course, if your only goal is to make the counter increase
quickly, an easier approach is to simply assign a large value to the counter.
Nevertheless, there is likely to be a role for algorithms that use carefully
relaxed notions of correctness in order to gain greater performance and
scalability [And91, ACMSO03, Rin13, Ungl1].



5.2. STATISTICAL COUNTERS

51

[T e Sk IS
l{‘@chel JCache Cachel JCacy
\n@fcmﬁect Intek;mfgd/

One one thousand.
Two one thousand.
Three one thousand...

Figure 5.3: Waiting to Count

the CPUs, as shown by the red arrows. Such circulation
will take significant time, resulting in the poor perfor-
mance seen in Figure 5.1, which might be thought of as
shown in Figure 5.3. The following sections discuss high-
performance counting, which avoids the delays inherent
in such circulation.

Quick Quiz 5.11: But why can’t CPU designers simply
ship the addition operation to the data, avoiding the need to
circulate the cache line containing the global variable being
incremented? W

Listing 5.3: Array-Based Per-Thread Statistical Counters
| DEFINE_PER_THREAD (unsigned long, counter);

3 static void inc_count(void)

4 1 B

_inline_

unsigned long *p_counter = &__get_thread_var(counter);

WRITE_ONCE(*p_counter, *p_counter + 1);
}

10 static
n {

12 int t;

13 unsigned long sum = O;
14

15 for_each_thread(t)

__inline__ unsigned long read_count(void)

16 sum += READ_ONCE(per_thread(counter, t));
17 return sum;
18}

5.2 Statistical Counters

Facts are stubborn things, but statistics are pliable.

Mark Twain

This section covers the common special case of statistical
counters, where the count is updated extremely frequently
and the value is read out rarely, if ever. These will be used
to solve the network-packet counting problem posed in
Quick Quiz 5.2.

5.2.1 Design

Statistical counting is typically handled by providing a
counter per thread (or CPU, when running in the kernel),
so that each thread updates its own counter, as was fore-
shadowed in Section 4.3.6 on page 46. The aggregate
value of the counters is read out by simply summing up
all of the threads’ counters, relying on the commutative
and associative properties of addition. This is an example
of the Data Ownership pattern that will be introduced in
Section 6.3.4 on page 85.

Quick Quiz 5.12: But doesn’t the fact that C’s “integers” are
limited in size complicate things? W

5.2.2 Array-Based Implementation

One way to provide per-thread variables is to allocate
an array with one element per thread (presumably cache
aligned and padded to avoid false sharing).

Quick Quiz 5.13: An array??? But doesn’t that limit the
number of threads? W




52

Such an array can be wrapped into per-thread primitives,
as shown in Listing 5.3 (count_stat.c). Line 1 defines
an array containing a set of per-thread counters of type
unsigned long named, creatively enough, counter.

Lines 3-8 show a function that increments the counters,
using the __get_thread_var () primitive to locate the
currently running thread’s element of the counter array.
Because this element is modified only by the correspond-
ing thread, non-atomic increment suffices. However, this
code uses WRITE_ONCE () to prevent destructive compiler
optimizations. For but one example, the compiler is within
its rights to use a to-be-stored-to location as temporary
storage, thus writing what would be for all intents and
purposes garbage to that location just before doing the
desired store. This could of course be rather confusing
to anything attempting to read out the count. The use
of WRITE_ONCE() prevents this optimization and others
besides.

Quick Quiz 5.14:
GCC apply? H

What other nasty optimizations could

Lines 10—18 show a function that reads out the aggregate
value of the counter, using the for_each_thread()
primitive to iterate over the list of currently running
threads, and using the per_thread () primitive to fetch
the specified thread’s counter. This code also uses READ_
ONCE () to ensure that the compiler doesn’t optimize these
loads into oblivion. For but one example, a pair of
consecutive calls to read_count () might be inlined, and
an intrepid optimizer might notice that the same locations
were being summed and thus incorrectly conclude that it
would be simply wonderful to sum them once and use the
resulting value twice. This sort of optimization might be
rather frustrating to people expecting later read_count ()
calls to account for the activities of other threads. The use
of READ_ONCE() prevents this optimization and others
besides.

Quick Quiz 5.15: How does the per-thread counter variable
in Listing 5.3 get initialized? W

Quick Quiz 5.16: How is the code in Listing 5.3 supposed
to permit more than one counter? W

This approach scales linearly with increasing number
of updater threads invoking inc_count (). As is shown
by the green arrows on each CPU in Figure 5.4, the
reason for this is that each CPU can make rapid progress
incrementing its thread’s variable, without any expensive
cross-system communication. As such, this section solves

CHAPTER 5. COUNTING

[ePoT]
[Cackel

i

| ek
[Cachel| [ [Cachel

Interconnect Interconnect
\\ =
Memory @| System Interconnect }e Memory
i X
Interconnect Interconnect
wdllie wdcClie wdcClie wdllie

Bl .4 = eV .8 =

Figure 5.4: Data Flow For Per-Thread Increment

the network-packet counting problem presented at the
beginning of this chapter.

Quick Quiz 5.17: The read operation takes time to sum
up the per-thread values, and during that time, the counter
could well be changing. This means that the value returned
by read_count () in Listing 5.3 will not necessarily be exact.
Assume that the counter is being incremented at rate r counts
per unit time, and that read_count () ’s execution consumes
A units of time. What is the expected error in the return value?

However, many implementations provide cheaper mech-
anisms for per-thread data that are free from arbitrary
array-size limits. This is the topic of the next section.

5.2.3 Per-Thread-Variable-Based
mentation

Imple-

GCC provides an __thread storage class that provides per-
thread storage. This can be used as shown in Listing 5.4
(count_end. c) to implement a statistical counter that not
only scales well and avoids arbitrary thread-number limits,
but that also incurs little or no performance penalty to
incrementers compared to simple non-atomic increment.

Lines 1-4 define needed variables: counter is the
per-thread counter variable, the counterp [] array allows
threads to access each others’ counters, finalcount ac-
cumulates the total as individual threads exit, and final _
mutex coordinates between threads accumulating the total
value of the counter and exiting threads.

Quick Quiz 5.18: Doesn’t that explicit counterp array
in Listing 5.4 reimpose an arbitrary limit on the number
of threads? Why doesn’t GCC provide a per_thread()
interface, similar to the Linux kernel’s per_cpu() primitive,



5.2. STATISTICAL COUNTERS

53

Listing 5.4: Per-Thread Statistical Counters
unsigned long __thread counter = 0;

unsigned long *counterp[NR_THREADS] = { NULL };
unsigned long finalcount = O0;

DEFINE_SPINLOCK (final_mutex);

static __inline__ void inc_count(void)
{

WRITE_ONCE(counter, counter + 1);
¥

11 static __inline__ unsigned long read_count(void)
12 {

13 int t;

14 unsigned long sum;

16 spin_lock(&final_mutex) ;
17 sum = finalcount;
18 for_each_thread(t)

19 if (counterp[t] !'= NULL)

20 sum += READ_ONCE (*counterp[t]);
21 spin_unlock(&final_mutex) ;

2 return sum;

23}

25 void count_register_thread(unsigned long *p)
%6 {

27 int idx = smp_thread_id();

29 spin_lock(&final_mutex);
30  counterpl[idx] = &counter;
31 spin_unlock(&final_mutex) ;

2}

34 void count_unregister_thread(int nthreadsexpected)
35 {

36 int idx = smp_thread_id();

38 spin_lock(&final_mutex);
39 finalcount += counter;

40 counterp[idx] = NULL;

41 spin_unlock(&final_mutex) ;

to allow threads to more easily access each others’ per-thread
variables? W

The inc_count () function used by updaters is quite
simple, as can be seen on lines 6-9.

The read_count () function used by readers is a bit
more complex. Line 16 acquires a lock to exclude exiting
threads, and line 21 releases it. Line 17 initializes the
sum to the count accumulated by those threads that have
already exited, and lines 18-20 sum the counts being
accumulated by threads currently running. Finally, line 22
returns the sum.

Quick Quiz 5.19: Doesn’t the check for NULL on line 19
of Listing 5.4 add extra branch mispredictions? Why not
have a variable set permanently to zero, and point unused
counter-pointers to that variable rather than setting them to
NuLL? W

Quick Quiz 5.20: Why on earth do we need something as
heavyweight as a lock guarding the summation in the function
read_count () in Listing 5.4? W

Lines 25-32 show the count_register_thread()
function, which must be called by each thread before its
first use of this counter. This function simply sets up this
thread’s element of the counterp[] array to point to its
per-thread counter variable.

Quick Quiz 5.21: Why on earth do we need to acquire the
lock in count_register_thread() in Listing 5.47 Itis a
single properly aligned machine-word store to a location that
no other thread is modifying, so it should be atomic anyway,
right?

Lines 3442 show the count_unregister_
thread () function, which must be called prior to exit
by each thread that previously called count_register_
thread (). Line 38 acquires the lock, and line 41 releases
it, thus excluding any calls to read_count () as well as
other calls to count_unregister_thread(). Line 39
adds this thread’s counter to the global finalcount,
and then line 40 NULLs out its counterp[] array entry.
A subsequent call to read_count () will see the exiting
thread’s count in the global finalcount, and will
skip the exiting thread when sequencing through the
counterp[] array, thus obtaining the correct total.

This approach gives updaters almost exactly the same
performance as a non-atomic add, and also scales linearly.
On the other hand, concurrent reads contend for a sin-
gle global lock, and therefore perform poorly and scale
abysmally. However, this is not a problem for statistical
counters, where incrementing happens often and readout
happens almost never. Of course, this approach is consid-
erably more complex than the array-based scheme, due to
the fact that a given thread’s per-thread variables vanish
when that thread exits.

Quick Quiz 5.22: Fine, but the Linux kernel doesn’t have
to acquire a lock when reading out the aggregate value of
per-CPU counters. So why should user-space code need to do
this??? W

Both the array-based and __thread-based approaches
offer excellent update-side performance and scalability.
However, these benefits result in large read-side expense
for large numbers of threads. The next section shows one
way to reduce read-side expense while still retaining the
update-side scalability.



54

5.2.4 Eventually Consistent Implementa-
tion

One way to retain update-side scalability while greatly
improving read-side performance is to weaken consis-
tency requirements. The counting algorithm in the pre-
vious section is guaranteed to return a value between the
value that an ideal counter would have taken on near the
beginning of read_count ()’s execution and that near
the end of read_count ()’s execution. Eventual consis-
tency [Vog09] provides a weaker guarantee: in absence
of calls to inc_count (), calls to read_count () will
eventually return an accurate count.

We exploit eventual consistency by maintaining a global
counter. However, updaters only manipulate their per-
thread counters. A separate thread is provided to transfer
counts from the per-thread counters to the global counter.
Readers simply access the value of the global counter. If
updaters are active, the value used by the readers will
be out of date, however, once updates cease, the global
counter will eventually converge on the true value—hence
this approach qualifies as eventually consistent.

The implementation is shown in Listing 5.5 (count_
stat_eventual.c). Lines 1-2 show the per-thread vari-
able and the global variable that track the counter’s value,
and line 3 shows stopflag which is used to coordinate
termination (for the case where we want to terminate
the program with an accurate counter value). The inc_
count () function shown on lines 5-10 is similar to its
counterpart in Listing 5.3. The read_count () function
shown on lines 12-15 simply returns the value of the
global_count variable.

However, the count_init () function on lines 3646
creates the eventual () thread shown on lines 17-34,
which cycles through all the threads, summing the per-
thread local counter and storing the sum to the global _
count variable. The eventual () thread waits an arbi-
trarily chosen one millisecond between passes.

The count_cleanup () function on lines 4854 coor-
dinates termination. The calls to smp_mb () here and in
eventual () ensure that all updates to global_count are
visible to code following the call to count_cleanup().

This approach gives extremely fast counter read-out
while still supporting linear counter-update performance.
However, this excellent read-side performance and update-
side scalability comes at the cost of the additional thread
running eventual ().

CHAPTER 5. COUNTING

Listing 5.5: Array-Based Per-Thread Eventually Consistent
Counters

DEFINE_PER_THREAD (unsigned long, counter);
unsigned long global_count;
int stopflag;

1

2

3

4

5 static __inline__ void inc_count(void)

6 {

7 unsigned long *p_counter = &__get_thread_var(counter);
8

9 WRITE_ONCE(*p_counter, *p_counter + 1);

10}

12 static _
13 {

14 return READ_ONCE(global_count) ;
15 }

_inline__ unsigned long read_count(void)

17 void *eventual(void *arg)
18 {

19 int t;

20 unsigned long sum;

22 while (READ_ONCE(stopflag) < 3) {

23 sum = 0;

24 for_each_thread(t)

25 sum += READ_ONCE(per_thread(counter, t));
26 WRITE_ONCE(global_count, sum);

27 poll(NULL, 0, 1);

2 if (READ_ONCE(stopflag)) {

29 smp_mb () ;

30 WRITE_ONCE(stopflag, stopflag + 1);
31 ¥

32 X

33 return NULL;

34}

35

36 void count_init(void)

37 {

38 int en;

39 thread_id_t tid;

41 en = pthread_create(&tid, NULL, eventual, NULL);
42 if (en !'= 0) {

43 fprintf (stderr, "pthread_create: %s\n", strerror(en));
44 exit (EXIT_FAILURE);

s}

46 }

48 void count_cleanup(void)

49 {

50 WRITE_ONCE(stopflag, 1);

51 while (READ_ONCE(stopflag) < 3)

52 poll(NULL, 0, 1);
53 smp_mb();
54}




5.3. APPROXIMATE LIMIT COUNTERS

Quick Quiz 5.23: Why doesn’t inc_count () in Listing 5.5
need to use atomic instructions? After all, we now have
multiple threads accessing the per-thread counters! W

Quick Quiz 5.24: Won’t the single global thread in the func-
tion eventual () of Listing 5.5 be just as severe a bottleneck
as a global lock would be? W

Quick Quiz 5.25: Won'’t the estimate returned by read_
count () in Listing 5.5 become increasingly inaccurate as the
number of threads rises? Wl

Quick Quiz 5.26: Given that in the eventually-consistent
algorithm shown in Listing 5.5 both reads and updates have
extremely low overhead and are extremely scalable, why
would anyone bother with the implementation described in
Section 5.2.2, given its costly read-side code? W

Quick Quiz 5.27: What is the accuracy of the estimate
returned by read_count () in Listing 5.57 W

5.2.5 Discussion

These three implementations show that it is possible
to obtain near-uniprocessor performance for statistical
counters, despite running on a parallel machine.

Quick Quiz 5.28: What fundamental difference is there
between counting packets and counting the total number of
bytes in the packets, given that the packets vary in size? W

Quick Quiz 5.29: Given that the reader must sum all the
threads’ counters, this counter-read operation could take a long
time given large numbers of threads. Is there any way that
the increment operation can remain fast and scalable while
allowing readers to also enjoy not only reasonable performance
and scalability, but also good accuracy? W

Given what has been presented in this section, you
should now be able to answer the Quick Quiz about
statistical counters for networking near the beginning of
this chapter.

55

5.3 Approximate Limit Counters

An approximate answer to the right problem is worth
a good deal more than an exact answer to an
approximate problem.

John Tukey

Another special case of counting involves limit-checking.
For example, as noted in the approximate structure-
allocation limit problem in Quick Quiz 5.3, suppose that
you need to maintain a count of the number of structures
allocated in order to fail any allocations once the number
of structures in use exceeds a limit, in this case, 10,000.
Suppose further that these structures are short-lived, that
this limit is rarely exceeded, and that this limit is approx-
imate in that it is OK to exceed it sometimes by some
bounded amount (see Section 5.4 if you instead need the
limit to be exact).

5.3.1 Design

One possible design for limit counters is to divide the
limit of 10,000 by the number of threads, and give each
thread a fixed pool of structures. For example, given 100
threads, each thread would manage its own pool of 100
structures. This approach is simple, and in some cases
works well, but it does not handle the common case where
a given structure is allocated by one thread and freed by
another [MS93]. On the one hand, if a given thread takes
credit for any structures it frees, then the thread doing
most of the allocating runs out of structures, while the
threads doing most of the freeing have lots of credits that
they cannot use. On the other hand, if freed structures
are credited to the CPU that allocated them, it will be
necessary for CPUs to manipulate each others’ counters,
which will require expensive atomic instructions or other
means of communicating between threads.’

In short, for many important workloads, we cannot fully
partition the counter. Given that partitioning the counters
was what brought the excellent update-side performance
for the three schemes discussed in Section 5.2, this might
be grounds for some pessimism. However, the eventually
consistent algorithm presented in Section 5.2.4 provides
an interesting hint. Recall that this algorithm kept two sets
of books, a per-thread counter variable for updaters and a
global_count variable for readers, with an eventual ()

2 That said, if each structure will always be freed by the same CPU
(or thread) that allocated it, then this simple partitioning approach works
extremely well.



56

thread that periodically updated global_count to be
eventually consistent with the values of the per-thread
counter. The per-thread counter perfectly partitioned
the counter value, while global_count kept the full
value.

For limit counters, we can use a variation on this theme
where we partially partition the counter. For example,
consider four threads with each having not only a per-
thread counter, but also a per-thread maximum value
(call it countermax).

But then what happens if a given thread needs to
increment its counter, but counter is equal to its
countermax? The trick here is to move half of that
thread’s counter value to a globalcount, then incre-
ment counter. For example, if a given thread’s counter
and countermax variables were both equal to 10, we do
the following:

1. Acquire a global lock.
2. Add five to globalcount.

3. To balance out the addition, subtract five from this
thread’s counter.

4. Release the global lock.

5. Increment this thread’s counter, resulting in a value
of six.

Although this procedure still requires a global lock,
that lock need only be acquired once for every five in-
crement operations, greatly reducing that lock’s level of
contention. We can reduce this contention as low as we
wish by increasing the value of countermax. However,
the corresponding penalty for increasing the value of
countermax is reduced accuracy of globalcount. To
see this, note that on a four-CPU system, if countermax
is equal to ten, globalcount will be in error by at most
40 counts. In contrast, if countermax is increased to
100, globalcount might be in error by as much as 400
counts.

This raises the question of just how much we care about
globalcount’s deviation from the aggregate value of
the counter, where this aggregate value is the sum of
globalcount and each thread’s counter variable. The
answer to this question depends on how far the aggregate
value is from the counter’s limit (call it global countmax).
The larger the difference between these two values, the
larger countermax can be without risk of exceeding the
globalcountmax limit. This means that the value of a

CHAPTER 5. COUNTING

Listing 5.6: Simple Limit Counter Variables

I unsigned long __thread counter = 0;

2 unsigned long __thread countermax = 0;
3 unsigned long globalcountmax = 10000;
4 unsigned long globalcount = 0;
5
6
7

unsigned long globalreserve = 0;
unsigned long *counterp[NR_THREADS] = { NULL };
DEFINE_SPINLOCK (gblcnt_mutex);

given thread’s countermax variable can be set based on
this difference. When far from the limit, the countermax
per-thread variables are set to large values to optimize for
performance and scalability, while when close to the limit,
these same variables are set to small values to minimize
the error in the checks against the globalcountmax limit.

This design is an example of parallel fastpath, which is
an important design pattern in which the common case
executes with no expensive instructions and no interactions
between threads, but where occasional use is also made
of a more conservatively designed (and higher overhead)
global algorithm. This design pattern is covered in more
detail in Section 6.4.

5.3.2 Simple Limit Counter Implementa-
tion

Listing 5.6 shows both the per-thread and global variables
used by this implementation. The per-thread counter
and countermax variables are the corresponding thread’s
local counter and the upper bound on that counter, re-
spectively. The globalcountmax variable on line 3
contains the upper bound for the aggregate counter, and
the globalcount variable on line 4 is the global counter.
The sum of globalcount and each thread’s counter
gives the aggregate value of the overall counter. The
globalreserve variable on line 5 is at least the sum of
all of the per-thread countermax variables. The relation-
ship among these variables is shown by Figure 5.5:

1. The sum of globalcount and globalreserve
must be less than or equal to globalcountmax.

2. The sum of all threads’ countermax values must be
less than or equal to globalreserve.

3. Each thread’s counter must be less than or equal to
that thread’s countermax.

Each element of the counterp[] array references the
corresponding thread’s counter variable, and, finally, the
gblcnt_mutex spinlock guards all of the global variables,
in other words, no thread is permitted to access or modify



5.3. APPROXIMATE LIMIT COUNTERS

Figure 5.5: Simple Limit Counter Variable Relationships

any of the global variables unless it has acquired gblcnt _
mutex.

Listing 5.7 shows the add_count (), sub_count (),
and read_count () functions (count_lim.c).

Quick Quiz 5.30: Why does Listing 5.7 provide add_
count () and sub_count () instead of the inc_count () and
dec_count () interfaces show in Section 5.2?

Lines 1-18 show add_count (), which adds the speci-
fied value delta to the counter. Line 3 checks to see if
there is room for delta on this thread’s counter, and, if
so, line 4 adds it and line 5 returns success. This is the
add_counter () fastpath, and it does no atomic opera-
tions, references only per-thread variables, and should not
incur any cache misses.

Quick Quiz 5.31: What is with the strange form of the
condition on line 3 of Listing 5.7? Why not the more intuitive
form of the fastpath shown in Listing 5.8? Wl

If the test on line 3 fails, we must access global variables,
and thus must acquire gblcnt_mutex on line 7, which we
release on line 11 in the failure case or on line 16 in the suc-
cess case. Line 8 invokes globalize_count (), shown
in Listing 5.9, which clears the thread-local variables,
adjusting the global variables as needed, thus simplifying
global processing. (But don’t take my word for it, try
coding it yourself!) Lines 9 and 10 check to see if addition
of delta can be accommodated, with the meaning of
the expression preceding the less-than sign shown in Fig-

57

Listing 5.7: Simple Limit Counter Add, Subtract, and Read

int add_count(unsigned long delta)

1 static __inline__

2 {
3 if (countermax - counter >= delta) {
4 WRITE_ONCE(counter, counter + delta);

5 return 1;

6 )}

7 spin_lock(&gblcnt_mutex);

8  globalize_count();

9  if (globalcountmax -

10 globalcount - globalreserve < delta) {
11 spin_unlock(&gblcnt_mutex) ;

12 return O;

13}

14 globalcount += delta;

15 balance_count();

16 spin_unlock(&gblcnt_mutex) ;

17 return 1;

18}

19

20 static __inline__ int sub_count(unsigned long delta)
21 {

2 if (counter >= delta) {

23 WRITE_ONCE(counter, counter - delta);

24 return 1;

35}

26 spin_lock(&gblcnt_mutex);
27 globalize_count();
28 if (globalcount < delta) {

29 spin_unlock(&gblcnt_mutex) ;
30 return 0O;
31 }

32 globalcount -= delta;

33 balance_count();

34 spin_unlock(&gblcnt_mutex) ;
35 return 1;

36 }

37

38 static __inline__ unsigned long read_count(void)
39 {

40 int t;

41 unsigned long sum;

42

43 spin_lock(&gblcnt_mutex);

44 sum = globalcount;

45 for_each_thread(t)

46 if (counterp[t] != NULL)

47 sum += READ_ONCE (*counterp[t]);
48 spin_unlock(&gblcnt_mutex) ;

49  return sum;

50 }

Listing 5.8: Intuitive Fastpath

3 if (counter + delta <= countermax) {

4 WRITE_ONCE(counter, counter + delta);
5 return 1;

6 )

Edition.2-rc9



58

ure 5.5 as the difference in height of the two red (leftmost)
bars. If the addition of delta cannot be accommodated,
then line 11 (as noted earlier) releases gblcnt_mutex
and line 12 returns indicating failure.

Otherwise, we take the slowpath. Line 14 adds delta
to globalcount, and then line 15 invokes balance_
count () (shown in Listing 5.9) in order to update both the
global and the per-thread variables. This call to balance_
count () will usually set this thread’s countermax to
re-enable the fastpath. Line 16 then releases gblcnt_
mutex (again, as noted earlier), and, finally, line 17 returns
indicating success.

Quick Quiz 5.32: Why does globalize_count () zero the
per-thread variables, only to later call balance_count () to
refill them in Listing 5.7? Why not just leave the per-thread
variables non-zero? W

Lines 20-36 show sub_count (), which subtracts the
specified delta from the counter. Line 22 checks to see if
the per-thread counter can accommodate this subtraction,
and, if so, line 23 does the subtraction and line 24 returns
success. These lines form sub_count ()’s fastpath, and,
as with add_count (), this fastpath executes no costly
operations.

If the fastpath cannot accommodate subtraction of
delta, execution proceeds to the slowpath on lines 26-35.
Because the slowpath must access global state, line 26 ac-
quires gblcnt_mutex, which is released either by line 29
(in case of failure) or by line 34 (in case of success).
Line 27 invokes globalize_count (), shown in List-
ing 5.9, which again clears the thread-local variables,
adjusting the global variables as needed. Line 28 checks
to see if the counter can accommodate subtracting delta,
and, if not, line 29 releases gblcnt_mutex (as noted
earlier) and line 30 returns failure.

Quick Quiz 5.33: Given that globalreserve counted
against us in add_count (), why doesn’t it count for us in
sub_count () in Listing 5.7? W

Quick Quiz 5.34: Suppose that one thread invokes add_
count () shown in Listing 5.7, and then another thread in-
vokes sub_count (). Won’t sub_count () return failure even
though the value of the counter is non-zero? W

If, on the other hand, line 28 finds that the counter
can accommodate subtracting delta, we complete the
slowpath. Line 32 does the subtraction and then line 33 in-
vokes balance_count () (shown in Listing 5.9) in order
to update both global and per-thread variables (hopefully

CHAPTER 5. COUNTING

Listing 5.9: Simple Limit Counter Utility Functions

| static __inline__ void globalize_count(void)
2 {
3 globalcount += counter;

4 counter = 0;

5 globalreserve -= countermax;
6 countermax = 0;

7}

8

9 static _ void balance_count (void)
10 {

11 countermax = globalcountmax -

12 globalcount - globalreserve;
13 countermax /= num_online_threads();

14 globalreserve += countermax;

15 counter = countermax / 2;

16 if (counter > globalcount)

_inline_

17 counter = globalcount;
18 globalcount -= counter;
19}

20

21 void count_register_thread(void)
2 {

23 int idx = smp_thread_id();

24

25 spin_lock(&gblcnt_mutex);

26 counterp[idx] = &counter;

27 spin_unlock(&gblcnt_mutex) ;

28 }

29

30 void count_unregister_thread(int nthreadsexpected)
31 {

32 int idx = smp_thread_id();

33

34 spin_lock(&gblcnt_mutex);

35 globalize_count () ;

36 counterp[idx] = NULL;

37 spin_unlock(&gblcnt_mutex) ;

38 }

re-enabling the fastpath). Then line 34 releases gblcnt_
mutex, and line 35 returns success.

Quick Quiz 5.35: Why have both add_count () and sub_
count () in Listing 5.7? Why not simply pass a negative
number to add_count ()? H

Lines 38-50 show read_count (), which returns the
aggregate value of the counter. It acquires gblcnt_
mutex on line 43 and releases it on line 48, excluding
global operations from add_count () and sub_count (),
and, as we will see, also excluding thread creation and
exit. Line 44 initializes local variable sum to the value of
globalcount, and then the loop spanning lines 4547
sums the per-thread counter variables. Line 49 then
returns the sum.

Listing 5.9 shows a number of utility functions used by
the add_count (), sub_count (), and read_count ()
primitives shown in Listing 5.7.

Lines 1-7 show globalize_count (), which zeros
the current thread’s per-thread counters, adjusting the
global variables appropriately. It is important to note that



5.3. APPROXIMATE LIMIT COUNTERS

this function does not change the aggregate value of the
counter, but instead changes how the counter’s current
value is represented. Line 3 adds the thread’s counter
variable to globalcount, and line 4 zeroes counter.
Similarly, line 5 subtracts the per-thread countermax
from globalreserve, and line 6 zeroes countermax. It
is helpful to refer to Figure 5.5 when reading both this
function and balance_count (), which is next.

Lines 9-19 show balance_count (), which is roughly
speaking the inverse of globalize_count (). This func-
tion’s job is to set the current thread’s countermax vari-
able to the largest value that avoids the risk of the counter
exceeding the globalcountmax limit. Changing the
current thread’s countermax variable of course requires
corresponding adjustments to counter, globalcount
and globalreserve, as can be seen by referring back to
Figure 5.5. By doing this, balance_count () maximizes
use of add_count () ’s and sub_count () ’s low-overhead
fastpaths. As with globalize_count (), balance_
count () is not permitted to change the aggregate value
of the counter.

Lines 11-13 compute this thread’s share of that por-
tion of globalcountmax that is not already covered by
either globalcount or globalreserve, and assign the
computed quantity to this thread’s countermax. Line 14
makes the corresponding adjustment to globalreserve.
Line 15 sets this thread’s counter to the middle of the
range from zero to countermax. Line 16 checks to
see whether globalcount can in fact accommodate this
value of counter, and, if not, line 17 decreases counter
accordingly. Finally, in either case, line 18 makes the
corresponding adjustment to globalcount.

Quick Quiz 5.36: Why set counter to countermax / 2
in line 15 of Listing 5.9? Wouldn’t it be simpler to just take
countermax counts? W

It is helpful to look at a schematic depicting how the
relationship of the counters changes with the execution
of first globalize_count () and then balance_count,
as shown in Figure 5.6. Time advances from left to right,
with the leftmost configuration roughly that of Figure 5.5.
The center configuration shows the relationship of these
same counters after globalize_count () is executed by
thread 0. As can be seen from the figure, thread 0’s
counter (“c 0” in the figure) is added to globalcount,
while the value of globalreserve isreduced by this same
amount. Both thread 0’s counter and its countermax
(“cm 0” in the figure) are reduced to zero. The other three
threads’ counters are unchanged. Note that this change
did not affect the overall value of the counter, as indicated

59

by the bottommost dotted line connecting the leftmost
and center configurations. In other words, the sum of
globalcount and the four threads’ counter variables is
the same in both configurations. Similarly, this change did
not affect the sum of globalcount and globalreserve,
as indicated by the upper dotted line.

The rightmost configuration shows the relationship
of these counters after balance_count () is executed,
again by thread 0. One-quarter of the remaining count,
denoted by the vertical line extending up from all three
configurations, is added to thread 0’s countermax and
half of that to thread 0’s counter. The amount added to
thread 0’s counter is also subtracted from globalcount
in order to avoid changing the overall value of the counter
(which is again the sum of globalcount and the three
threads’ counter variables), again as indicated by the
lowermost of the two dotted lines connecting the center and
rightmost configurations. The globalreserve variable
is also adjusted so that this variable remains equal to the
sum of the four threads’ countermax variables. Because
thread 0’s counter is less than its countermax, thread 0
can once again increment the counter locally.

Quick Quiz 5.37: In Figure 5.6, even though a quarter of the
remaining count up to the limit is assigned to thread 0, only an
eighth of the remaining count is consumed, as indicated by the
uppermost dotted line connecting the center and the rightmost
configurations. Why is that?

Lines 21-28 show count_register_thread(),
which sets up state for newly created threads. This
function simply installs a pointer to the newly created
thread’s counter variable into the corresponding entry of
the counterp[] array under the protection of gblcnt_
mutex.

Finally, lines 30-38 show count_unregister_
thread (), which tears down state for a soon-to-be-exiting
thread. Line 34 acquires gblcnt_mutex and line 37 re-
leases it. Line 35 invokes globalize_count () to clear
out this thread’s counter state, and line 36 clears this
thread’s entry in the counterp[] array.

5.3.3 Simple Limit Counter Discussion

This type of counter is quite fast when aggregate val-
ues are near zero, with some overhead due to the com-
parison and branch in both add_count()’s and sub_
count ()’s fastpaths. However, the use of a per-thread
countermax reserve means that add_count () can fail
even when the aggregate value of the counter is nowhere
near globalcountmax. Similarly, sub_count () can fail



60

globalize_count ()

CHAPTER 5. COUNTING

balance_count ()

Figure 5.6: Schematic of Globalization and Balancing

even when the aggregate value of the counter is nowhere
near zero.

In many cases, this is unacceptable. Even if the
globalcountmax is intended to be an approximate limit,
there is usually a limit to exactly how much approxima-
tion can be tolerated. One way to limit the degree of
approximation is to impose an upper limit on the value
of the per-thread countermax instances. This task is
undertaken in the next section.

5.3.4 Approximate Limit Counter Imple-
mentation

Because this implementation (count_lim_app.c) is
quite similar to that in the previous section (Listings 5.6,
5.7, and 5.9), only the changes are shown here. List-
ing 5.10 is identical to Listing 5.6, with the addition of
MAX_COUNTERMAX, which sets the maximum permissible
value of the per-thread countermax variable.

Similarly, Listing 5.11 is identical to the balance_
count () function in Listing 5.9, with the addition of
lines 6 and 7, which enforce the MAX_COUNTERMAX limit
on the per-thread countermax variable.

Listing 5.10: Approximate Limit Counter Variables

1

2
3
4
5
6
7
8

unsigned long __thread counter = 0;

unsigned long __thread countermax = 0;

unsigned long globalcountmax = 10000;

unsigned long globalcount = 0;

unsigned long globalreserve = 0;

unsigned long *counterp[NR_THREADS] = { NULL };
DEFINE_SPINLOCK (gblcnt_mutex) ;

#define MAX_COUNTERMAX 100

Listing 5.11: Approximate Limit Counter Balancing

1
2
3
4
5
6
7
8

9
10
11
12
13

static void balance_count(void)
{
countermax = globalcountmax -
globalcount - globalreserve;
countermax /= num_online_threads();
if (countermax > MAX_COUNTERMAX)
countermax = MAX_COUNTERMAX;
globalreserve += countermax;
counter = countermax / 2;
if (counter > globalcount)
counter = globalcount;
globalcount -= counter;

}

Edition.2-rc9



5.4. EXACT LIMIT COUNTERS

5.3.5 Approximate Limit Counter Discus-
sion

These changes greatly reduce the limit inaccuracy seen in
the previous version, but present another problem: any
given value of MAX_COUNTERMAX will cause a workload-
dependent fraction of accesses to fall off the fastpath. As
the number of threads increase, non-fastpath execution
will become both a performance and a scalability problem.
However, we will defer this problem and turn instead to
counters with exact limits.

5.4 Exact Limit Counters

Exactitude can be expensive. Spend wisely.

Unknown

To solve the exact structure-allocation limit problem noted
in Quick Quiz 5.4, we need a limit counter that can
tell exactly when its limits are exceeded. One way of
implementing such a limit counter is to cause threads
that have reserved counts to give them up. One way to
do this is to use atomic instructions. Of course, atomic
instructions will slow down the fastpath, but on the other
hand, it would be silly not to at least give them a try.

5.4.1 Atomic Limit Counter Implementa-
tion

Unfortunately, if one thread is to safely remove counts
from another thread, both threads will need to atomically
manipulate that thread’s counter and countermax vari-
ables. The usual way to do this is to combine these two
variables into a single variable, for example, given a 32-bit
variable, using the high-order 16 bits to represent counter
and the low-order 16 bits to represent countermax.

Quick Quiz 5.38: Why is it necessary to atomically manip-
ulate the thread’s counter and countermax variables as a
unit? Wouldn’t it be good enough to atomically manipulate
them individually? W

The variables and access functions for a simple atomic
limit counter are shown in Listing 5.12 (count_lim_
atomic.c). The counter and countermax variables in
earlier algorithms are combined into the single variable
counterandmax shown on line 1, with counter in the
upper half and countermax in the lower half. This

61

Listing 5.12: Atomic Limit Counter Variables and Access

Functions
__thread counterandmax = ATOMIC_INIT(0);

1 atomic_t

2 unsigned long globalcountmax = 1 << 25;

3 unsigned long globalcount = 0;

4 unsigned long globalreserve = 0;

5 atomic_t *counterp[NR_THREADS] = { NULL };
6 DEFINE_SPINLOCK(gblcnt_mutex) ;

7 #define CM_BITS (sizeof(atomic_t) * 4)

8 #define MAX_COUNTERMAX ((1 << CM_BITS) - 1)
10 static __inline__ void

11 split_counterandmax_int(int cami, int *c, int *cm)
12 {

13 *c = (cami >> CM_BITS) & MAX_COUNTERMAX;

14 *cm = cami & MAX_COUNTERMAX;

15 }

17 static __inline__ void
18 split_counterandmax(atomic_t *cam, int *old, int *c, int *cm)
19 {

20 unsigned int cami = atomic_read(cam) ;

22 *0ld = cami;
23 split_counterandmax_int(cami, c, cm);
2% }

26 static _
27 {

28 unsigned int cami;

_inline__ int merge_counterandmax(int c, int cm)

30 cami = (c << CM_BITS) | cm;
31 return ((int)cami);

2}

variable is of type atomic_t, which has an underlying
representation of int.

Lines 2—6 show the definitions for globalcountmax,
globalcount, globalreserve, counterp, and
gblcnt_mutex, all of which take on roles similar to
their counterparts in Listing 5.10. Line 7 defines CM_
BITS, which gives the number of bits in each half of
counterandmax, and line 8 defines MAX_COUNTERMAX,
which gives the maximum value that may be held in either
half of counterandmax.

Quick Quiz 5.39: In what way does line 7 of Listing 5.12
violate the C standard? W

Lines 10-15 show the split_counterandmax_
int () function, which, when given the underlying int
from the atomic_t counterandmax variable, splits it
into its counter (c) and countermax (cm) components.
Line 13 isolates the most-significant half of this int,
placing the result as specified by argument c, and line 14
isolates the least-significant half of this int, placing the
result as specified by argument cm.

Lines 17-24 show the split_counterandmax () func-
tion, which picks up the underlying int from the spec-
ified variable on line 20, stores it as specified by the



62

old argument on line 22, and then invokes split_
counterandmax_int () to split it on line 23.
Quick Quiz 5.40: Given that there is only one

counterandmax variable, why bother passing in a pointer
to it on line 18 of Listing 5.12? W

Lines 2632 show the merge _counterandmax () func-
tion, which can be thought of as the inverse of split_
counterandmax (). Line 30 merges the counter and
countermax values passed in ¢ and cm, respectively, and
returns the result.

Quick Quiz 5.41: Why does merge_counterandmax () in
Listing 5.12 return an int rather than storing directly into an
atomic_t? M

Listing 5.13 shows the add_count() and sub_
count () functions.

Lines 1-32 show add_count (), whose fastpath spans
lines 8—15, with the remainder of the function being the
slowpath. Lines 8—14 of the fastpath form a compare-and-
swap (CAS) loop, with the atomic_cmpxchg() primi-
tives on lines 13—14 performing the actual CAS. Line 9
splits the current thread’s counterandmax variable into
its counter (in c¢) and countermax (in cm) components,
while placing the underlying int into old. Line 10
checks whether the amount delta can be accommodated
locally (taking care to avoid integer overflow), and if not,
line 11 transfers to the slowpath. Otherwise, line 12
combines an updated counter value with the original
countermax value into new. The atomic_cmpxchg()
primitive on lines 13—14 then atomically compares this
thread’s counterandmax variable to old, updating its
value to new if the comparison succeeds. If the compari-
son succeeds, line 15 returns success, otherwise, execution
continues in the loop at line 8.

Quick Quiz 5.42: Yecch! Why the ugly goto on line 11 of

Listing 5.13? Haven’t you heard of the break statement???
|

Quick Quiz 5.43: Why would the atomic_cmpxchg()
primitive at lines 13—14 of Listing 5.13 ever fail? After all, we
picked up its old value on line 9 and have not changed it! H

Lines 16-31 of Listing 5.13 show add_count()’s
slowpath, which is protected by gblcnt_mutex, which
is acquired on line 17 and released on lines 24 and 30.
Line 18 invokes globalize_count (), which moves this
thread’s state to the global counters. Lines 19-20 check
whether the delta value can be accommodated by the
current global state, and, if not, line 21 invokes f1lush_
local_count () to flush all threads’ local state to the

CHAPTER 5. COUNTING

Listing 5.13: Atomic Limit Counter Add and Subtract

1 int add_count(unsigned long delta)
2 {

3 int c;

4 int cm;

5 int old;

6 int new;

8 do {

9 split_counterandmax (&counterandmax, &old, &c, &cm);
10 if (delta > MAX_COUNTERMAX || c + delta > cm)

11 goto slowpath;

12 new = merge_counterandmax(c + delta, cm);

13} while (atomic_cmpxchg(&counterandmax,

14 old, new) != old);

15 return 1;

16 slowpath:

17 spin_lock(&gblcnt_mutex);
18 globalize_count();
19 if (globalcountmax - globalcount -

20 globalreserve < delta) {

21 flush_local_count();

22 if (globalcountmax - globalcount -
23 globalreserve < delta) {

24 spin_unlock(&gblcnt_mutex) ;

25 return 0O;

26 }

27 ¥

28 globalcount += delta;

29 balance_count();

30 spin_unlock(&gblcnt_mutex) ;
31 return 1;

32}

34 int sub_count(unsigned long delta)
35 {

36 int c;

37 int cm;

38 int old;

39 int new;

41 do {

) split_counterandmax (&counterandmax, &old, &c, &cm);
43 if (delta > c)

44 goto slowpath;

45 new = merge_counterandmax(c - delta, cm);
46 } while (atomic_cmpxchg(&counterandmax,

47 old, new) != old);
48 return 1;

49 slowpath:

50 spin_lock(&gblcnt_mutex);

51 globalize_count();

52 if (globalcount < delta) {

53 flush_local_count();

54 if (globalcount < delta) {

55 spin_unlock(&gblcnt_mutex) ;

56 return 0;

57 }

58}

59 globalcount -= delta;

60 balance_count();
61 spin_unlock(&gblcnt_mutex) ;
62 return 1;




5.4. EXACT LIMIT COUNTERS

63

Listing 5.14: Atomic Limit Counter Read

Listing 5.15: Atomic Limit Counter Utility Functions 1

| unsigned long read_count(void)
2 {

int c;

int cm;

int old;

int t;

unsigned long sum;

P Y R N

9 spin_lock(&gblcnt_mutex) ;
10 sum = globalcount;
1 for_each_thread(t)

12 if (counterp[t] != NULL) {

13 split_counterandmax(counterp[t], &old, &c, &cm);
14 sum += c;

15 }

16 spin_unlock(&gblcnt_mutex);
17 return sum;

18 ¥

global counters, and then lines 22-23 recheck whether
delta can be accommodated. If, after all that, the addition
of delta still cannot be accommodated, then line 24
releases gblcnt_mutex (as noted earlier), and then line 25
returns failure.

Otherwise, line 28 adds delta to the global counter,
line 29 spreads counts to the local state if appropriate,
line 30 releases gblcnt_mutex (again, as noted earlier),
and finally, line 31 returns success.

Lines 34-63 of Listing 5.13 show sub_count (), which
is structured similarly to add_count (), having a fastpath
on lines 41-48 and a slowpath on lines 49-62. A line-by-
line analysis of this function is left as an exercise to the
reader.

Listing 5.14 shows read_count (). Line 9 acquires
gblcnt_mutex and line 16 releases it. Line 10 initializes
local variable sum to the value of globalcount, and the
loop spanning lines 11-15 adds the per-thread counters to
this sum, isolating each per-thread counter using split_
counterandmax on line 13. Finally, line 17 returns the
sum.

Listings 5.15 and 5.16 show the utility func-
tions globalize_count(), flush_local_count(),
balance_count (), count_register_thread(), and
count_unregister_thread(). The code for
globalize_count () is shown on lines 1-12, of List-
ing 5.15 and is similar to that of previous algorithms, with
the addition of line 7, which is now required to split out
counter and countermax from counterandmax.

The code for flush_local_count (), which moves
all threads’ local counter state to the global counter, is
shown on lines 14-32. Line 22 checks to see if the value
of globalreserve permits any per-thread counts, and,
if not, line 23 returns. Otherwise, line 24 initializes

I static void globalize_count(void)

2 {

3 int c;

4 int cm;

5 int old;

6

7 split_counterandmax (&counterandmax, &old, &c, &cm);
8 globalcount += c;

9 globalreserve -= cm;

10 old = merge_counterandmax(0, 0);
11 atomic_set (&counterandmax, old);
12}

13

14 static void flush_local_count(void)
15 {

16 int c;

17 int cm;

18 int old;

19 int t;

20 int zero;

21

2 if (globalreserve == 0)

23 return;

24 zero = merge_counterandmax (0, 0);
25 for_each_thread(t)

26 if (counterp[t] != NULL) {

27 old = atomic_xchg(counterp[t], zero);
28 split_counterandmax_int(old, &c, &cm);
29 globalcount += c;

30 globalreserve -= cm;

31 ¥

2}

local variable zero to a combined zeroed counter and
countermax. The loop spanning lines 25-31 sequences
through each thread. Line 26 checks to see if the current
thread has counter state, and, if so, lines 27-30 move that
state to the global counters. Line 27 atomically fetches
the current thread’s state while replacing it with zero.
Line 28 splits this state into its counter (in local variable
c) and countermax (in local variable cm) components.
Line 29 adds this thread’s counter to globalcount,
while line 30 subtracts this thread’s countermax from
globalreserve.

Quick Quiz 5.44: What stops a thread from simply refilling its
counterandmax variable immediately after flush_local_
count () on line 14 of Listing 5.15 empties it? W

Quick Quiz 5.45: What prevents concurrent execution of
the fastpath of either add_count () or sub_count () from
interfering with the counterandmax variable while flush_
local_count () is accessing it on line 27 of Listing 5.15?

Lines 1-22 on Listing 5.16 show the code for
balance_count (), which refills the calling thread’s local
counterandmax variable. This function is quite similar
to that of the preceding algorithms, with changes required
to handle the merged counterandmax variable. Detailed



64

Listing 5.16: Atomic Limit Counter Utility Functions 2

| static void balance_count (void)
2 {

3 int c;

4 int cm;

5 int old;

6 unsigned long limit;

7

8 limit = globalcountmax - globalcount -
9 globalreserve;

10 limit /= num_online_threads();

11 if (limit > MAX_COUNTERMAX)

12 cm = MAX_COUNTERMAX;
13 else
14 cm = limit;

15 globalreserve += cm;
16 c=cm/ 2;
17 if (c > globalcount)

18 c = globalcount;

19 globalcount -= c;

20 old = merge_counterandmax(c, cm);
21 atomic_set (&counterandmax, old);
2 }

23

24 void count_register_thread(void)
25 {

26 int idx = smp_thread_id();

28 spin_lock(&gblcnt_mutex);

29 counterpl[idx] = &counterandmax;

30 spin_unlock(&gblcnt_mutex) ;

31}

32

33 void count_unregister_thread(int nthreadsexpected)
34 {

35 int idx = smp_thread_id();

37 spin_lock(&gblcnt_mutex);
38 globalize_count();

39 counterp[idx] = NULL;

40 spin_unlock(&gblcnt_mutex) ;

analysis of the code is left as an exercise for the reader, as
itis with the count_register_thread () function start-
ing on line 24 and the count_unregister_thread()
function starting on line 33.

Quick Quiz 5.46: Given that the atomic_set () primitive
does a simple store to the specified atomic_t, how can line 21
of balance_count () in Listing 5.16 work correctly in face of
concurrent flush_local_count () updates to this variable?

The next section qualitatively evaluates this design.

5.4.2 Atomic Limit Counter Discussion

This is the first implementation that actually allows the
counter to be run all the way to either of its limits, but it
does so at the expense of adding atomic operations to the
fastpaths, which slow down the fastpaths significantly on
some systems. Although some workloads might tolerate
this slowdown, it is worthwhile looking for algorithms

CHAPTER 5. COUNTING

Figure 5.7: Signal-Theft State Machine

with better read-side performance. One such algorithm
uses a signal handler to steal counts from other threads.
Because signal handlers run in the context of the signaled
thread, atomic operations are not necessary, as shown in
the next section.

Quick Quiz 5.47: But signal handlers can be migrated to
some other CPU while running. Doesn’t this possibility require
that atomic instructions and memory barriers are required to
reliably communicate between a thread and a signal handler
that interrupts that thread? H

5.4.3 Signal-Theft Limit Counter Design

Even though per-thread state will now be manipulated
only by the corresponding thread, there will still need
to be synchronization with the signal handlers. This
synchronization is provided by the state machine shown
in Figure 5.7.

The state machine starts out in the IDLE state, and when
add_count () or sub_count () find that the combination
of the local thread’s count and the global count cannot
accommodate the request, the corresponding slowpath sets
each thread’s theft state to REQ (unless that thread has
no count, in which case it transitions directly to READY).
Only the slowpath, which holds the gblcnt_mutex lock,
is permitted to transition from the IDLE state, as indicated
by the green color.> The slowpath then sends a signal

3 For those with black-and-white versions of this book, IDLE and
READY are green, REQ is red, and ACK is blue.



5.4. EXACT LIMIT COUNTERS

to each thread, and the corresponding signal handler
checks the corresponding thread’s theft and counting
variables. If the theft state is not REQ, then the signal
handler is not permitted to change the state, and therefore
simply returns. Otherwise, if the counting variable is set,
indicating that the current thread’s fastpath is in progress,
the signal handler sets the theft state to ACK, otherwise
to READY.

If the theft state is ACK, only the fastpath is permitted
to change the theft state, as indicated by the blue color.
When the fastpath completes, it sets the theft state to
READY.

Once the slowpath sees a thread’s theft state is
READY, the slowpath is permitted to steal that thread’s
count. The slowpath then sets that thread’s theft state to
IDLE.

Quick Quiz 5.48: In Figure 5.7, why is the REQ theft state
colored red? M

Quick Quiz 5.49: In Figure 5.7, what is the point of having
separate REQ and ACK theft states? Why not simplify the
state machine by collapsing them into a single REQACK state?
Then whichever of the signal handler or the fastpath gets there
first could set the state to READY. H

5.4.4 Signal-Theft Limit Counter Imple-
mentation

Listing 5.17 (count_lim_sig.c) shows the data struc-
tures used by the signal-theft based counter implemen-
tation. Lines 1-7 define the states and values for the
per-thread theft state machine described in the preceding
section. Lines 8—17 are similar to earlier implementa-
tions, with the addition of lines 14 and 15 to allow remote
access to a thread’s countermax and theft variables,
respectively.

Listing 5.18 shows the functions responsible for migrat-
ing counts between per-thread variables and the global
variables. Lines 1-7 show globalize_count (), which
is identical to earlier implementations. Lines 9-19 show
flush_local_count_sig(), which is the signal han-
dler used in the theft process. Lines 11 and 12 check to
see if the theft state is REQ, and, if not returns without
change. Line 13 executes a memory barrier to ensure
that the sampling of the theft variable happens before any
change to that variable. Line 14 sets the theft state to
ACK, and, if line 15 sees that this thread’s fastpaths are
not running, line 16 sets the theft state to READY.

65

Listing 5.17: Signal-Theft Limit Counter Data

#define THEFT_IDLE O
#define THEFT_REQ 1
#define THEFT_ACK 2
#define THEFT_READY 3

int __thread theft = THEFT_IDLE;

int __thread counting = 0;

unsigned long __thread counter = 0;

9 unsigned long __thread countermax = 0;

10 unsigned long globalcountmax = 10000;

11 unsigned long globalcount = 0;

12 unsigned long globalreserve = 0;

13 unsigned long *counterp[NR_THREADS] = { NULL };
14 unsigned long *countermaxp[NR_THREADS] = { NULL };
15 int *theftp[NR_THREADS] = { NULL };

16 DEFINE_SPINLOCK(gblcnt_mutex);

17 #define MAX_COUNTERMAX 100

1
2
3
4
5
6
7
8

Quick Quiz 5.50: In Listing 5.18’s function f1lush_local_
count_sig(), why are there READ_ONCE() and WRITE_
ONCE() wrappers around the uses of the theft per-thread
variable? W

Lines 21-49 show flush_local_count (), which is
called from the slowpath to flush all threads’ local counts.
The loop spanning lines 26—34 advances the theft state
for each thread that has local count, and also sends that
thread a signal. Line 27 skips any non-existent threads.
Otherwise, line 28 checks to see if the current thread
holds any local count, and, if not, line 29 sets the thread’s
theft state to READY and line 30 skips to the next thread.
Otherwise, line 32 sets the thread’s theft state to REQ
and line 33 sends the thread a signal.

Quick Quiz 5.51: In Listing 5.18, why is it safe for line 28 to
directly access the other thread’s countermax variable? W

Quick Quiz 5.52: In Listing 5.18, why doesn’t line 33 check
for the current thread sending itself a signal?

Quick Quiz 5.53: The code shown in Listings 5.17 and 5.18
works with GCC and POSIX. What would be required to make
it also conform to the ISO C standard? W

The loop spanning lines 35-48 waits until each thread
reaches READY state, then steals that thread’s count.
Lines 36-37 skip any non-existent threads, and the loop
spanning lines 38—42 waits until the current thread’s
theft state becomes READY. Line 39 blocks for a mil-
lisecond to avoid priority-inversion problems, and if line 40
determines that the thread’s signal has not yet arrived,
line 41 resends the signal. Execution reaches line 43 when
the thread’s theft state becomes READY, so lines 43—46
do the thieving. Line 47 then sets the thread’s theft state
back to IDLE.



66

Listing 5.18: Signal-Theft Limit Counter Value-Migration Func-
tions

I static void globalize_count(void)
2 {

3 globalcount += counter;

4 counter = 0;

5 globalreserve -= countermax;

6 countermax = 0;

7

8

}

9 static void flush_local_count_sig(int unused)
10 {

11 if (READ_ONCE(theft) != THEFT_REQ)

12 return;

13 smp_mb();

14 WRITE_ONCE(theft, THEFT_ACK);

15 if (!counting) {

16 WRITE_ONCE(theft, THEFT_READY);
17 }

18 smp_mb () ;

19}

21 static void flush_local_count(void)
2 {

23 int t;

24 thread_id_t tid;

26 for_each_tid(t, tid)

27 if (theftp[t] != NULL) {

28 if (*countermaxp[t] == 0) {

29 WRITE_ONCE(*theftp[t], THEFT_READY);
30 continue;

31 ¥

32 WRITE_ONCE(*theftp[t], THEFT_REQ);

33 pthread_kill(tid, SIGUSR1);

34 }

35 for_each_tid(t, tid) {

36 if (theftp[t] == NULL)

37 continue;

38 while (READ_ONCE(*theftp[t]) != THEFT_READY) {
39 poll(NULL, 0, 1);

40 if (READ_ONCE(*theftp[t]) == THEFT_REQ)
41 pthread_kill(tid, SIGUSR1);

42 }

43 globalcount += *counterp[t];

44 *counterp[t] = 0;

45 globalreserve -= *countermaxplt];

46 *countermaxp[t] = 0;

47 WRITE_ONCE (*theftp[t], THEFT_IDLE);
s}

49 }

50

51 static void balance_count(void)

52 {

53 countermax = globalcountmax - globalcount -
54 globalreserve;

55 countermax /= num_online_threads();
56 if (countermax > MAX_COUNTERMAX)

57 countermax = MAX_COUNTERMAX;

58 globalreserve += countermax;

59 counter = countermax / 2;

60 if (counter > globalcount)

61 counter = globalcount;
62 globalcount -= counter;
63 }

CHAPTER 5. COUNTING

Listing 5.19: Signal-Theft Limit Counter Add Function

int add_count (unsigned long delta)
{
int fastpath = 0;

barrier();
if (READ_ONCE(theft) <= THEFT_REQ &&
countermax - counter >= delta) {
WRITE_ONCE(counter, counter + delta);
10 fastpath = 1;
11 ¥
12 barrier();
13 WRITE_ONCE(counting, 0);
14 barrier();
15 if (READ_ONCE(theft) == THEFT_ACK) {

1

2

3

4

5  WRITE_ONCE(counting, 1);
6

4

8

9

16 smp_mb () ;

17 WRITE_ONCE(theft, THEFT_READY);
18}

19 if (fastpath)

20 return 1;

21 spin_lock(&gblcnt_mutex) ;
2 globalize_count();
23 if (globalcountmax - globalcount -

2 globalreserve < delta) {

25 flush_local_count();

26 if (globalcountmax - globalcount -
27 globalreserve < delta) {

28 spin_unlock(&gblcnt_mutex) ;

29 return 0;

30 ¥

31 i

32 globalcount += delta;

33 balance_count();

34 spin_unlock(&gblcnt_mutex) ;
35 return 1;

Quick Quiz 5.54: In Listing 5.18, why does line 41 resend
the signal? W

Lines 51-63 show balance_count (), which is similar
to that of earlier examples.

Listing 5.19 shows the add_count () function. The
fastpath spans lines 5-20, and the slowpath lines 21-35.
Line 5 sets the per-thread counting variable to 1 so that
any subsequent signal handlers interrupting this thread will
set the theft state to ACK rather than READY, allowing
this fastpath to complete properly. Line 6 prevents the
compiler from reordering any of the fastpath body to
precede the setting of counting. Lines 7 and 8 check
to see if the per-thread data can accommodate the add_
count () and if there is no ongoing theft in progress, and
if so line 9 does the fastpath addition and line 10 notes
that the fastpath was taken.

In either case, line 12 prevents the compiler from
reordering the fastpath body to follow line 13, which
permits any subsequent signal handlers to undertake theft.
Line 14 again disables compiler reordering, and then
line 15 checks to see if the signal handler deferred the
theft state-change to READY, and, if so, line 16 executes



5.4. EXACT LIMIT COUNTERS

Listing 5.20: Signal-Theft Limit Counter Subtract Function

1 int sub_count(unsigned long delta)
2 {

3 int fastpath = 0;

4

5 WRITE_ONCE(counting, 1);

6 barrier();
7 if (READ_ONCE(theft) <= THEFT_REQ &&

8 counter >= delta) {

9 WRITE_ONCE(counter, counter - delta);
10 fastpath = 1;

11 }

12 barrier();

13 WRITE_ONCE(counting, 0);

14 barrier();

15 if (READ_ONCE(theft) == THEFT_ACK) {

16 smp_mb () ;

17 WRITE_ONCE(theft, THEFT_READY);
18}

19 if (fastpath)

20 return 1;

21 spin_lock(&gblcnt_mutex) ;
2 globalize_count();
23 if (globalcount < delta) {

24 flush_local_count();

25 if (globalcount < delta) {

26 spin_unlock(&gblcnt_mutex) ;
27 return 0;

28 }

29 )

30 globalcount -= delta;

31 balance_count();

32 spin_unlock(&gblcnt_mutex);
33 return 1;

Listing 5.21: Signal-Theft Limit Counter Read Function

nsigned long read_count(void)

u
{
int t;
unsigned long sum;

spin_lock(&gblcnt_mutex);
sum = globalcount;
for_each_thread(t)

if (counterp[t] != NULL)
10 sum += READ_ONCE (*counterp[t]);
11 spin_unlock(&gblcnt_mutex) ;
12 return sum;

13}

1
2
3
4
5
6
7
8
9

a memory barrier to ensure that any CPU that sees line 17
setting state to READY also sees the effects of line 9. If
the fastpath addition at line 9 was executed, then line 20
returns success.

Otherwise, we fall through to the slowpath starting at
line 21. The structure of the slowpath is similar to those
of earlier examples, so its analysis is left as an exercise
to the reader. Similarly, the structure of sub_count ()
on Listing 5.20 is the same as that of add_count (), so
the analysis of sub_count () is also left as an exercise
for the reader, as is the analysis of read_count() in
Listing 5.21.

67

Listing 5.22: Signal-Theft Limit Counter Initialization Func-

tions
0id count_init(void)

1 v

2 {

3 struct sigaction sa;

4

5 sa.sa_handler = flush_local_count_sig;
6  sigemptyset(&sa.sa_mask);

sa.sa_flags = 0;
8  if (sigaction(SIGUSR1, &sa, NULL) != 0) {

-

9 perror("sigaction");
10 exit (EXIT_FAILURE);
11 X

12}

14 void count_register_thread(void)
15 {
16 int idx = smp_thread_id();

18 spin_lock(&gblcnt_mutex);

19 counterp[idx] = &counter;

20  countermaxpl[idx] = &countermax;
21 theftp[idx] = &theft;

2 spin_unlock(&gblcnt_mutex) ;

23 }

25 void count_unregister_thread(int nthreadsexpected)
26 {
27 int idx = smp_thread_id();

29 spin_lock(&gblcnt_mutex);
30 globalize_count();

31 counterp[idx] = NULL;

32 countermaxp[idx] = NULL;

33 theftp[idx] = NULL;

34 spin_unlock(&gblcnt_mutex) ;




68

Lines 1-12 of Listing 5.22 show count_init (), which
set up flush_local_count_sig() as the signal han-
dler for SIGUSR1, enabling the pthread_kill() calls
in flush_local_count() to invoke flush_local_
count_sig(). The code for thread registry and unregistry
is similar to that of earlier examples, so its analysis is left
as an exercise for the reader.

5.4.5 Signal-Theft Limit Counter Discus-
sion

The signal-theft implementation runs more than eight
times as fast as the atomic implementation on my six-core
x86 laptop. Is it always preferable?

The signal-theft implementation would be vastly prefer-
able on Pentium-4 systems, given their slow atomic in-
structions, but the old 80386-based Sequent Symmetry
systems would do much better with the shorter path length
of the atomic implementation. However, this increased
update-side performance comes at the prices of higher
read-side overhead: Those POSIX signals are not free. If
ultimate performance is of the essence, you will need to
measure them both on the system that your application is
to be deployed on.

Quick Quiz 5.55: Not only are POSIX signals slow, sending
one to each thread simply does not scale. What would you do
if you had (say) 10,000 threads and needed the read side to be
fast? W

This is but one reason why high-quality APIs are so
important: they permit implementations to be changed as
required by ever-changing hardware performance charac-
teristics.

Quick Quiz 5.56: What if you want an exact limit counter to
be exact only for its lower limit, but to allow the upper limit to
be inexact? W

5.4.6 Applying Exact Limit Counters

Although the exact limit counter implementations pre-
sented in this section can be very useful, they are not
much help if the counter’s value remains near zero at
all times, as it might when counting the number of out-
standing accesses to an I/O device. The high overhead
of such near-zero counting is especially painful given
that we normally don’t care how many references there
are. As noted in the removable I/O device access-count
problem posed by Quick Quiz 5.5, the number of accesses

CHAPTER 5. COUNTING

is irrelevant except in those rare cases when someone is
actually trying to remove the device.

One simple solution to this problem is to add a large
“bias” (for example, one billion) to the counter in order
to ensure that the value is far enough from zero that the
counter can operate efficiently. When someone wants
to remove the device, this bias is subtracted from the
counter value. Counting the last few accesses will be quite
inefficient, but the important point is that the many prior
accesses will have been counted at full speed.

Quick Quiz 5.57: What else had you better have done when
using a biased counter? H

Although a biased counter can be quite helpful and
useful, it is only a partial solution to the removable I/O
device access-count problem called out on page 49. When
attempting to remove a device, we must not only know
the precise number of current I/O accesses, we also need
to prevent any future accesses from starting. One way
to accomplish this is to read-acquire a reader-writer lock
when updating the counter, and to write-acquire that same
reader-writer lock when checking the counter. Code for
doing I/O might be as follows:

1 | read_lock(&mylock) ;
2| if (removing) {
3 read_unlock(&mylock) ;
4 cancel_io();
5|} else {

6 add_count (1) ;
7 read_unlock(&mylock) ;
8 do_io();

9 sub_count (1) ;

0

Line 1 read-acquires the lock, and either line 3 or 7
releases it. Line 2 checks to see if the device is being
removed, and, if so, line 3 releases the lock and line 4
cancels the I/0O, or takes whatever action is appropriate
given that the device is to be removed. Otherwise, line 6
increments the access count, line 7 releases the lock, line 8
performs the I/O, and line 9 decrements the access count.

Quick Quiz 5.58: This is ridiculous! We are read-acquiring
a reader-writer lock to update the counter? What are you
playing at??? W

The code to remove the device might be as follows:

1 | write_lock(&mylock);

2 | removing = 1;

3 | sub_count (mybias) ;

4 | write_unlock(&mylock) ;

5 | while (read_count() != 0) {
6| poll(NULL, 0, 1);



5.5. PARALLEL COUNTING DISCUSSION

70}

8 | remove_device();

Line 1 write-acquires the lock and line 4 releases it.
Line 2 notes that the device is being removed, and the
loop spanning lines 5—7 waits for any I/O operations to
complete. Finally, line 8 does any additional processing
needed to prepare for device removal.

Quick Quiz 5.59: What other issues would need to be
accounted for in a real system? W

5.5 Parallel Counting Discussion

This idea that there is generality in the specific is of
far-reaching importance.

Douglas R. Hofstadter

This chapter has presented the reliability, performance, and
scalability problems with traditional counting primitives.
The C-language ++ operator is not guaranteed to function
reliably in multithreaded code, and atomic operations to a
single variable neither perform nor scale well. This chapter
therefore presented a number of counting algorithms that
perform and scale extremely well in certain special cases.

It is well worth reviewing the lessons from these count-
ing algorithms. To that end, Section 5.5.1 summarizes
performance and scalability, Section 5.5.2 discusses the
need for specialization, and finally, Section 5.5.3 enumer-
ates lessons learned and calls attention to later chapters
that will expand on these lessons.

5.5.1 Parallel Counting Performance

The top half of Table 5.1 shows the performance of the
four parallel statistical counting algorithms. All four algo-
rithms provide near-perfect linear scalability for updates.
The per-thread-variable implementation (count_end. c)
is significantly faster on updates than the array-based
implementation (count_stat. c), but is slower at reads
on large numbers of core, and suffers severe lock con-
tention when there are many parallel readers. This con-
tention can be addressed using the deferred-processing
techniques introduced in Chapter 9, as shown on the
count_end_rcu.c row of Table 5.1. Deferred process-
ing also shines on the count_stat_eventual.c row,
courtesy of eventual consistency.

69

Quick Quiz 5.60: On the count_stat.c row of Table 5.1,
we see that the read-side scales linearly with the number of
threads. How is that possible given that the more threads there
are, the more per-thread counters must be summed up? W

Quick Quiz 5.61: Even on the fourth row of Table 5.1,
the read-side performance of these statistical counter imple-
mentations is pretty horrible. So why bother with them?

The bottom half of Table 5.1 shows the performance of
the parallel limit-counting algorithms. Exact enforcement
of the limits incurs a substantial update-side performance
penalty, although on this x86 system that penalty can
be reduced by substituting signals for atomic operations.
All of these implementations suffer from read-side lock
contention in the face of concurrent readers.

Quick Quiz 5.62: Given the performance data shown in the
bottom half of Table 5.1, we should always prefer signals over
atomic operations, right? H

Quick Quiz 5.63: Can advanced techniques be applied to
address the lock contention for readers seen in the bottom half
of Table 5.17 M

In short, this chapter has demonstrated a number of
counting algorithms that perform and scale extremely
well in a number of special cases. But must our parallel
counting be confined to special cases? Wouldn’t it be
better to have a general algorithm that operated efficiently
in all cases? The next section looks at these questions.

5.5.2 Parallel Counting Specializations

The fact that these algorithms only work well in their
respective special cases might be considered a major
problem with parallel programming in general. After
all, the C-language ++ operator works just fine in single-
threaded code, and not just for special cases, but in general,
right?

This line of reasoning does contain a grain of truth, but
is in essence misguided. The problem is not parallelism
as such, but rather scalability. To understand this, first
consider the C-language ++ operator. The fact is that it
does not work in general, only for a restricted range of
numbers. If you need to deal with 1,000-digit decimal
numbers, the C-language ++ operator will not work for
you.

Quick Quiz 5.64: The ++ operator works just fine for 1,000-
digit numbers! Haven’t you heard of operator overloading???




70

CHAPTER 5. COUNTING

Table 5.1: Statistical/Limit Counter Performance on x86

) < Reads (ns)
Algorithm g€ Updates
(count_x*.c) Section [ﬁ (ns) 1CPU 8CPUs 64CPUs 420 CPUs

stat 5.2.2 6.3 294 303 315 612
stat_eventual 524 6.4 1 1 1 1
end 523 2.9 301 6,309 147,594 239,683
end_rcu 13.5.1 2.9 454 481 508 2,317
lim 532 N 3.2 435 6,678 156,175 239,422
lim_app 534 N 2.4 485 7,041 173,108 239,682
lim_atomic 541 Y 19.7 513 7,085 199,957 239,450
lim_sig 544 Y 4.7 519 6,805 120,000 238,811

This problem is not specific to arithmetic. Suppose you
need to store and query data. Should you use an ASCII
file? XML? A relational database? A linked list? A dense
array? A B-tree? A radix tree? Or one of the plethora of
other data structures and environments that permit data to
be stored and queried? It depends on what you need to
do, how fast you need it done, and how large your data set
is—even on sequential systems.

Similarly, if you need to count, your solution will
depend on how large of numbers you need to work with,
how many CPUs need to be manipulating a given number
concurrently, how the number is to be used, and what level
of performance and scalability you will need.

Nor is this problem specific to software. The design
for a bridge meant to allow people to walk across a small
brook might be a simple as a single wooden plank. But you
would probably not use a plank to span the kilometers-wide
mouth of the Columbia River, nor would such a design be
advisable for bridges carrying concrete trucks. In short,
just as bridge design must change with increasing span
and load, so must software design change as the number of
CPUs increases. That said, it would be good to automate
this process, so that the software adapts to changes in
hardware configuration and in workload. There has in fact
been some research into this sort of automation [AHS*03,
SAH*03], and the Linux kernel does some boot-time
reconfiguration, including limited binary rewriting. This
sort of adaptation will become increasingly important as
the number of CPUs on mainstream systems continues to
increase.

In short, as discussed in Chapter 3, the laws of physics
constrain parallel software just as surely as they constrain
mechanical artifacts such as bridges. These constraints
force specialization, though in the case of software it

might be possible to automate the choice of specialization
to fit the hardware and workload in question.

Of course, even generalized counting is quite special-
ized. We need to do a great number of other things with
computers. The next section relates what we have learned
from counters to topics taken up later in this book.

5.5.3 Parallel Counting Lessons

The opening paragraph of this chapter promised that our
study of counting would provide an excellent introduction
to parallel programming. This section makes explicit
connections between the lessons from this chapter and the
material presented in a number of later chapters.

The examples in this chapter have shown that an impor-
tant scalability and performance tool is partitioning. The
counters might be fully partitioned, as in the statistical
counters discussed in Section 5.2, or partially partitioned
as in the limit counters discussed in Sections 5.3 and 5.4.
Partitioning will be considered in far greater depth in Chap-
ter 6, and partial parallelization in particular in Section 6.4,
where it is called parallel fastpath.

Quick Quiz 5.65: But if we are going to have to partition
everything, why bother with shared-memory multithreading?
Why not just partition the problem completely and run as
multiple processes, each in its own address space? M

The partially partitioned counting algorithms used lock-
ing to guard the global data, and locking is the subject
of Chapter 7. In contrast, the partitioned data tended to
be fully under the control of the corresponding thread, so
that no synchronization whatsoever was required. This
data ownership will be introduced in Section 6.3.4 and
discussed in more detail in Chapter 8.



5.5. PARALLEL COUNTING DISCUSSION

Because integer addition and subtraction are extremely
cheap compared to typical synchronization operations,
achieving reasonable scalability requires synchronization
operations be used sparingly. One way of achieving this
is to batch the addition and subtraction operations, so that
a great many of these cheap operations are handled by a
single synchronization operation. Batching optimizations
of one sort or another are used by each of the counting
algorithms listed in Table 5.1.

Finally, the eventually consistent statistical counter dis-
cussed in Section 5.2.4 showed how deferring activity
(in that case, updating the global counter) can provide
substantial performance and scalability benefits. This
approach allows common case code to use much cheaper
synchronization operations than would otherwise be pos-
sible. Chapter 9 will examine a number of additional ways
that deferral can improve performance, scalability, and
even real-time response.

Summarizing the summary:

1. Partitioning promotes performance and scalability.

2. Partial partitioning, that is, partitioning applied only
to common code paths, works almost as well.

3. Partial partitioning can be applied to code (as in
Section 5.2’s statistical counters’ partitioned updates
and non-partitioned reads), but also across time (as in
Section 5.3’s and Section 5.4’s limit counters running
fast when far from the limit, but slowly when close
to the limit).

4. Partitioning across time often batches updates locally
in order to reduce the number of expensive global
operations, thereby decreasing synchronization over-
head, in turn improving performance and scalability.
All the algorithms shown in Table 5.1 make heavy
use of batching.

5. Read-only code paths should remain read-only: Spu-
rious synchronization writes to shared memory
kill performance and scalability, as seen in the
count_end.c row of Table 5.1.

6. Judicious use of delay promotes performance and
scalability, as seen in Section 5.2.4.

7. Parallel performance and scalability is usually a
balancing act: Beyond a certain point, optimizing
some code paths will degrade others. The count_
stat.c and count_end_rcu.c rows of Table 5.1
illustrate this point.

71
Batch
<
»L Work
Partitioning
1 Y
Resource
Parallel F Partitioning and

Access Control ) Replication

) )

4)[ Interacting ]«

Weaken With Hardware Partition
L J

Figure 5.8: Optimization and the Four Parallel-
Programming Tasks

8. Different levels of performance and scalability will
affect algorithm and data-structure design, as do a
large number of other factors. Figure 5.1 illustrates
this point: Atomic increment might be completely
acceptable for a two-CPU system, but be completely
inadequate for an eight-CPU system.

Summarizing still further, we have the “big three” meth-
ods of increasing performance and scalability, namely
(1) partitioning over CPUs or threads, (2) batching so that
more work can be done by each expensive synchronization
operations, and (3) weakening synchronization operations
where feasible. As a rough rule of thumb, you should
apply these methods in this order, as was noted earlier
in the discussion of Figure 2.6 on page 15. The parti-
tioning optimization applies to the “Resource Partitioning
and Replication” bubble, the batching optimization to the
“Work Partitioning” bubble, and the weakening optimiza-
tion to the “Parallel Access Control” bubble, as shown in
Figure 5.8. Of course, if you are using special-purpose
hardware such as digital signal processors (DSPs), field-
programmable gate arrays (FPGAS), or general-purpose
graphical processing units (GPGPUs), you may need to
pay close attention to the “Interacting With Hardware”
bubble throughout the design process. For example, the
structure of a GPGPU’s hardware threads and memory
connectivity might richly reward very careful partitioning
and batching design decisions.

In short, as noted at the beginning of this chapter, the
simplicity of counting have allowed us to explore many
fundamental concurrency issues without the distraction
of complex synchronization primitives or elaborate data
structures. Such synchronization primitives and data
structures are covered in later chapters.



72

CHAPTER 5. COUNTING



Chapter 6

Divide and rule.

Philip Il of Macedon

Partitioning and Synchronization Design

This chapter describes how to design software to take ad-
vantage of modern commodity multicore systems by using
idioms, or “design patterns” [Ale79, GHIV95, SSRB00],
to balance performance, scalability, and response time.
Correctly partitioned problems lead to simple, scalable,
and high-performance solutions, while poorly partitioned
problems result in slow and complex solutions. This
chapter will help you design partitioning into your code,
with some discussion of batching and weakening as well.
The word “design” is very important: You should parti-
tion first, batch second, weaken third, and code fourth.
Changing this order often leads to poor performance and
scalability along with great frustration.!

To this end, Section 6.1 presents partitioning exercises,
Section 6.2 reviews partitionability design criteria, Sec-
tion 6.3 discusses synchronization granularity selection,
Section 6.4 overviews important parallel-fastpath design
patterns that provide speed and scalability on common-
case fastpaths while using simpler less-scalable “slow path”
fallbacks for unusual situations, and finally Section 6.5
takes a brief look beyond partitioning.

6.1 Partitioning Exercises

Whenever a theory appears to you as the only
possible one, take this as a sign that you have neither
understood the theory nor the problem which it was
intended to solve.

Karl Popper

Although partitioning is more widely understood than it
was in the early 2000s, its value is still underappreciated.

! That other great dodge around the Laws of Physics, read-only
replication, is covered in Chapter 9.

73

Figure 6.1: Dining Philosophers Problem

Section 6.1.1 therefore takes more highly parallel look at
the classic Dining Philosophers problem and Section 6.1.2
revisits the double-ended queue.

6.1.1 Dining Philosophers Problem

Figure 6.1 shows a diagram of the classic Dining Philoso-
phers problem [Dij71]. This problem features five philoso-
phers who do nothing but think and eat a “very difficult
kind of spaghetti” which requires two forks to eat.> A
given philosopher is permitted to use only the forks to his
or her immediate right and left, but will not put a given
fork down until sated.

The object is to construct an algorithm that, quite
literally, prevents starvation. One starvation scenario
would be if all of the philosophers picked up their leftmost
forks simultaneously. Because none of them will put down

2 But feel free to instead think in terms of chopsticks.



74 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Figure 6.2: Partial Starvation Is Also Bad

Figure 6.3: Dining Philosophers Problem, Textbook
Solution

their fork until after they finished eating, and because none
of them may pick up their second fork until at least one
of them has finished eating, they all starve. Please note
that it is not sufficient to allow at least one philosopher to
eat. As Figure 6.2 shows, starvation of even a few of the
philosophers is to be avoided.

Dijkstra’s solution used a global semaphore, which
works fine assuming negligible communications delays,
an assumption that became invalid in the late 1980s or
early 1990s.> More recent solutions number the forks
as shown in Figure 6.3. Each philosopher picks up the

3 It is all too easy to denigrate Dijkstra from the viewpoint of the
year 2021, more than 50 years after the fact. If you still feel the need
to denigrate Dijkstra, my advice is to publish something, wait 50 years,
and then see how well your ideas stood the test of time.

lowest-numbered fork next to his or her plate, then picks
up the other fork. The philosopher sitting in the uppermost
position in the diagram thus picks up the leftmost fork first,
then the rightmost fork, while the rest of the philosophers
instead pick up their rightmost fork first. Because two of
the philosophers will attempt to pick up fork 1 first, and
because only one of those two philosophers will succeed,
there will be five forks available to four philosophers. At
least one of these four will have two forks, and will thus
be able to eat.

This general technique of numbering resources and
acquiring them in numerical order is heavily used as a
deadlock-prevention technique. However, it is easy to
imagine a sequence of events that will result in only one
philosopher eating at a time even though all are hungry:

1. P2 picks up fork 1, preventing P1 from taking a fork.
2. P3 picks up fork 2.

3. P4 picks up fork 3.

PS5 picks up fork 4.

PS5 picks up fork 5 and eats.

PS5 puts down forks 4 and 5.

N vk

P4 picks up fork 4 and eats.

In short, this algorithm can result in only one philoso-
pher eating at a given time, even when all five philosophers
are hungry, despite the fact that there are more than enough
forks for two philosophers to eat concurrently. It should
be possible to do better than this!

One approach is shown in Figure 6.4, which includes
four philosophers rather than five to better illustrate the



6.1. PARTITIONING EXERCISES

Figure 6.4: Dining Philosophers Problem, Partitioned

partition technique. Here the upper and rightmost philoso-
phers share a pair of forks, while the lower and leftmost
philosophers share another pair of forks. If all philoso-
phers are simultaneously hungry, at least two will always
be able to eat concurrently. In addition, as shown in the
figure, the forks can now be bundled so that the pair are
picked up and put down simultaneously, simplifying the
acquisition and release algorithms.

Quick Quiz 6.1: Is there a better solution to the Dining
Philosophers Problem? W

This is an example of “horizontal parallelism” [Inm85]
or “data parallelism”, so named because there is no depen-
dency among the pairs of philosophers. In a horizontally
parallel data-processing system, a given item of data would
be processed by only one of a replicated set of software
components.

Quick Quiz 6.2: And in just what sense can this “horizontal
parallelism” be said to be “horizontal”? W

6.1.2 Double-Ended Queue

A double-ended queue is a data structure containing a
list of elements that may be inserted or removed from
either end [Knu73]. It has been claimed that a lock-based
implementation permitting concurrent operations on both
ends of the double-ended queue is difficult [GroO7]. This
section shows how a partitioning design strategy can result
in a reasonably simple implementation, looking at three
general approaches in the following sections.

75

Lock L Lock R
Header L Header R

Lock L Lock R
HeaderL [< ’{ 0 }( =1 Header R

Lock L Lock R

HeaderL [< =1 0 [= =] 1 [ =] HeaderR

Lock L Lock R

et <= o [<> 1

Header R

Lock L Lock R

Header L n n Header R

Figure 6.5: Double-Ended Queue With Left- and Right-
Hand Locks

6.1.2.1 Left- and Right-Hand Locks

One seemingly straightforward approach would be to use
a doubly linked list with a left-hand lock for left-hand-end
enqueue and dequeue operations along with a right-hand
lock for right-hand-end operations, as shown in Figure 6.5.
However, the problem with this approach is that the two
locks’ domains must overlap when there are fewer than
four elements on the list. This overlap is due to the fact
that removing any given element affects not only that
element, but also its left- and right-hand neighbors. These
domains are indicated by color in the figure, with blue with
downward stripes indicating the domain of the left-hand
lock, red with upward stripes indicating the domain of the
right-hand lock, and purple (with no stripes) indicating
overlapping domains. Although it is possible to create
an algorithm that works this way, the fact that it has no
fewer than five special cases should raise a big red flag,
especially given that concurrent activity at the other end of
the list can shift the queue from one special case to another
at any time. It is far better to consider other designs.

6.1.2.2 Compound Double-Ended Queue

One way of forcing non-overlapping lock domains is
shown in Figure 6.6. Two separate double-ended queues
are run in tandem, each protected by its own lock. This



76 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Lock L Lock R

_ e

DEQ L DEQR

Figure 6.6: Compound Double-Ended Queue

means that elements must occasionally be shuttled from
one of the double-ended queues to the other, in which case
both locks must be held. A simple lock hierarchy may
be used to avoid deadlock, for example, always acquiring
the left-hand lock before acquiring the right-hand lock.
This will be much simpler than applying two locks to the
same double-ended queue, as we can unconditionally left-
enqueue elements to the left-hand queue and right-enqueue
elements to the right-hand queue. The main complication
arises when dequeuing from an empty queue, in which
case it is necessary to:

1. If holding the right-hand lock, release it and acquire
the left-hand lock.

Acquire the right-hand lock.
Rebalance the elements across the two queues.

Remove the required element if there is one.

A

Release both locks.

Quick Quiz 6.3: In this compound double-ended queue
implementation, what should be done if the queue has become
non-empty while releasing and reacquiring the lock?

The resulting code (locktdeq. c) is quite straightfor-
ward. The rebalancing operation might well shuttle a given
element back and forth between the two queues, wasting
time and possibly requiring workload-dependent heuris-
tics to obtain optimal performance. Although this might
well be the best approach in some cases, it is interesting
to try for an algorithm with greater determinism.

6.1.2.3 Hashed Double-Ended Queue

One of the simplest and most effective ways to determinis-
tically partition a data structure is to hash it. It is possible
to trivially hash a double-ended queue by assigning each
element a sequence number based on its position in the list,
so that the first element left-enqueued into an empty queue
is numbered zero and the first element right-enqueued
into an empty queue is numbered one. A series of ele-
ments left-enqueued into an otherwise-idle queue would
be assigned decreasing numbers (-1, -2, =3, .. .), while

DEQO DEQ2 | DEQ3

Lock 0 Lock2 | Lock 3

Index L

Index R

Lock L Lock R

Figure 6.7: Hashed Double-Ended Queue

a series of elements right-enqueued into an otherwise-idle
queue would be assigned increasing numbers (2, 3,4, .. .).
A key point is that it is not necessary to actually represent
a given element’s number, as this number will be implied
by its position in the queue.

Given this approach, we assign one lock to guard the
left-hand index, one to guard the right-hand index, and one
lock for each hash chain. Figure 6.7 shows the resulting
data structure given four hash chains. Note that the lock
domains do not overlap, and that deadlock is avoided by
acquiring the index locks before the chain locks, and by
never acquiring more than one lock of a given type (index
or chain) at a time.

Each hash chain is itself a double-ended queue, and
in this example, each holds every fourth element. The
uppermost portion of Figure 6.8 shows the state after a
single element (“R;”’) has been right-enqueued, with the
right-hand index having been incremented to reference
hash chain 2. The middle portion of this same figure
shows the state after three more elements have been
right-enqueued. As you can see, the indexes are back to
their initial states (see Figure 6.7), however, each hash
chain is now non-empty. The lower portion of this figure
shows the state after three additional elements have been
left-enqueued and an additional element has been right-
enqueued.

From the last state shown in Figure 6.8, a left-dequeue
operation would return element “L_,” and leave the left-
hand index referencing hash chain 2, which would then
contain only a single element (“R,”). In this state, a
left-enqueue running concurrently with a right-enqueue
would result in lock contention, but the probability of
such contention can be reduced to arbitrarily low levels
by using a larger hash table.

Figure 6.9 shows how 16 elements would be organized
in a four-hash-bucket parallel double-ended queue. Each
underlying single-lock double-ended queue holds a one-
quarter slice of the full parallel double-ended queue.



6.1. PARTITIONING EXERCISES

R4
DEQO | DEQ1 | DEQ2 | DEQ3
Index L Index R
R4 R1 R2 R3
DEQO | DEQ1 | DEQ2 | DEQ3
Index L Index R
R4 Rs Ro Rs
Lo R+ Lo L_q
DEQO | DEQ1 | DEQ2 | DEQ3
Index L Index R

Figure 6.8: Hashed Double-Ended Queue After Inser-
tions

Listing 6.1 shows the corresponding C-language data
structure, assuming an existing struct deq that provides
a trivially locked double-ended-queue implementation.
This data structure contains the left-hand lock on line 2,
the left-hand index on line 3, the right-hand lock on line 4
(which is cache-aligned in the actual implementation), the
right-hand index on line 5, and, finally, the hashed array
of simple lock-based double-ended queues on line 6. A
high-performance implementation would of course use
padding or special alignment directives to avoid false
sharing.

Tl

Listing 6.1: Lock-Based Parallel Double-Ended Queue Data
Structure

1 struct pdeq {

2 spinlock_t 1llock;

3 int lidx;

4 spinlock_t rlock;

5 int ridx;

6 struct deq bkt [PDEQ_N_BKTS];
73}

Listing 6.2: Lock-Based Parallel Double-Ended Queue Imple-

mentation
truct cds_list_head *pdeq_pop_l(struct pdeq *d)

s

{
struct cds_list_head *e;
int i;

spin_lock(&d->1lock) ;

i = moveright(d->1idx);

e = deq_pop_1(&d->bkt[i]);
if (e != NULL)

10 d->1lidx = i;

11 spin_unlock(&d->1lock) ;

12 return e;

13}

14

15 struct cds_list_head *pdeq_pop_r(struct pdeq *d)
16 {

17 struct cds_list_head *e;

18 int i;

19

20 spin_lock(&d->rlock) ;

21 i = moveleft(d->ridx);

22 e = deq_pop_r(&d->bkt[il);
23 if (e != NULL)

24 d->ridx = i;

25 spin_unlock(&d->rlock) ;

26 return e;

27 }

28

29 void pdeq_push_l(struct cds_list_head *e, struct pdeq *d)
30 {

31 int i;

32

33 spin_lock(&d->1lock) ;

34 i = d->1idx;

35 deq_push_l(e, &d->bkt[il);
36  d->lidx = moveleft(d->1idx);
37 spin_unlock(&d->11lock) ;

38 F

39

40 void pdeq_push_r(struct cds_list_head *e, struct pdeq *d)
a1 {

42 int i;

43

44 spin_lock(&d->rlock) ;

45 i = d->ridx;

46 deq_push_r(e, &d->bkt[il);
47 d->ridx = moveright(d->ridx);
48 spin_unlock(&d->rlock) ;

49 ¥

1
2
3
4
5
6
7
8
9




78 CHAPTER 6. PARTITIONING AND SYNCHRONIZATION DESIGN

Rs | Rs | Rs | Ry

Lo Ry Rz Rs3

La| Lag| Lol Ly

L_g L7 Ls Ls

Figure 6.9: Hashed Double-Ended Queue With 16 Ele-
ments

Listing 6.2 (1ockhdeq. c) shows the implementation of
the enqueue and dequeue functions.* Discussion will focus
on the left-hand operations, as the right-hand operations
are trivially derived from them.

Lines 1-13 show pdeq_pop_1(), which left-dequeues
and returns an element if possible, returning NULL other-
wise. Line 6 acquires the left-hand spinlock, and line 7
computes the index to be dequeued from. Line 8 dequeues
the element, and, if line 9 finds the result to be non-NULL,
line 10 records the new left-hand index. Either way, line 11
releases the lock, and, finally, line 12 returns the element
if there was one, or NULL otherwise.

Lines 29-38 show pdeq_push_1(), which left-
enqueues the specified element. Line 33 acquires the
left-hand lock, and line 34 picks up the left-hand in-
dex. Line 35 left-enqueues the specified element onto
the double-ended queue indexed by the left-hand index.
Line 36 then updates the left-hand index and line 37
releases the lock.

As noted earlier, the right-hand operations are com-
pletely analogous to their left-handed counterparts, so
their analysis is left as an exercise for the reader.

Quick Quiz 6.4: Is the hashed double-ended queue a good
solution? Why or why not? H

6.1.2.4 Compound Double-Ended Queue Revisited

This section revisits the compound double-ended queue,
using a trivial rebalancing scheme that moves all the
elements from the non-empty queue to the now-empty
queue.

Quick Quiz 6.5: Move all the elements to the queue that
became empty? In what possible universe is this brain-dead
solution in any way optimal??? Wl

4 One could easily create a polymorphic implementation in any
number of languages, but doing so is left as an exercise for the reader.

Listing 6.3: Compound Parallel Double-Ended Queue Imple-

mentation
truct cds_list_head *pdeq_pop_l(struct pdeq *d)

1 s

2 {

3 struct cds_list_head x*e;
4

5 spin_lock(&d->1lock);

6 e = deq_pop_l(&d->1deq);
7 if (e == NULL) {

8 spin_lock(&d->rlock) ;

9 e = deq_pop_l(&d->rdeq) ;

10 cds_list_splice(&d->rdeq.chain, &d->ldeq.chain);
11 CDS_INIT_LIST_HEAD(&d->rdeq.chain);

12 spin_unlock(&d->rlock) ;

13}

14 spin_unlock(&d->1lock);
15 return e;

16 ¥

18 struct cds_list_head *pdeq_pop_r(struct pdeq *d)
19 {

20 struct cds_list_head *e;

2 spin_lock(&d->rlock) ;
23 e = deq_pop_r(&d->rdeq);
24  if (e == NULL) {

25 spin_unlock(&d->rlock) ;

26 spin_lock(&d->1lock) ;

27 spin_lock(&d->rlock);

28 e = deq_pop_r(&d->rdeq) ;

29 if (e == NULL) {

30 e = deq_pop_r(&d->1deq);

31 cds_list_splice(&d->1ldeq.chain, &d->rdeq.chain);
32 CDS_INIT_LIST_HEAD(&d->1ldeq.chain);
33 }

34 spin_unlock(&d->11lock) ;

35 X

36 spin_unlock(&d->rlock) ;

37 return e;

38 }

39

40 void pdeq_push_l(struct cds_list_head *e, struct pdeq *d)
a1 {

2 spin_lock(&d->1lock);

43 deq_push_1(e, &d->1ldeq);

44 spin_unlock(&d->1lock) ;

4}

46

47 void pdeq_push_r(struct cds_list_head *e, struct pdeq *d)
48 {

49 spin_lock(&d->rlock) ;

50 deq_push_r(e, &d->rdeq);

51 spin_unlock(&d->rlock) ;

52 }

In contrast to the hashed implementation presented in
the previous section, the compound implementation will
build on a sequential implementation of a double-ended
queue that uses neither locks nor atomic operations.

Listing 6.3 shows the implementation. Unlike the
hashed implementation, this compound implementation is
asymmetric, so that we must consider the pdeq_pop_1()
and pdeq_pop_r () implementations separately.

Quick Quiz 6.6: Why can’t the compound parallel double-
ended queue implementation be symmetric? H




6.1. PARTITIONING EXERCISES

The pdeq_pop_1() implementation is shown on
lines 1-16 of the figure. Line 5 acquires the left-hand lock,
which line 14 releases. Line 6 attempts to left-dequeue
an element from the left-hand underlying double-ended
queue, and, if successful, skips lines 8—13 to simply return
this element. Otherwise, line 8 acquires the right-hand
lock, line 9 left-dequeues an element from the right-hand
queue, and line 10 moves any remaining elements on the
right-hand queue to the left-hand queue, line 11 initializes
the right-hand queue, and line 12 releases the right-hand
lock. The element, if any, that was dequeued on line 9
will be returned.

The pdeq_pop_r() implementation is shown on
lines 18-38 of the figure. As before, line 22 acquires
the right-hand lock (and line 36 releases it), and line 23
attempts to right-dequeue an element from the right-hand
queue, and, if successful, skips lines 25-35 to simply
return this element. However, if line 24 determines that
there was no element to dequeue, line 25 releases the
right-hand lock and lines 26-27 acquire both locks in
the proper order. Line 28 then attempts to right-dequeue
an element from the right-hand list again, and if line 29
determines that this second attempt has failed, line 30
right-dequeues an element from the left-hand queue (if
there is one available), line 31 moves any remaining ele-
ments from the left-hand queue to the right-hand queue,
and line 32 initializes the left-hand queue. Either way,
line 34 releases the left-hand lock.

Quick Quiz 6.7: Why is it necessary to retry the right-
dequeue operation on line 28 of Listing 6.3? W

Quick Quiz 6.8: Surely the left-hand lock must sometimes be
available!!! So why is it necessary that line 25 of Listing 6.3
unconditionally release the right-hand lock? W

The pdeq_push_1() implementation is shown on
lines 40-45 of Listing 6.3. Line 42 acquires the left-
hand spinlock, line 43 left-enqueues the element onto the
left-hand queue, and finally line 44 releases the lock. The
pdeq_push_r () implementation (shown on lines 47-52)
is quite similar.

Quick Quiz 6.9: But in the case where data is flowing in
only one direction, the algorithm shown in Listing 6.3 will
have both ends attempting to acquire the same lock whenever
the consuming end empties its underlying double-ended queue.
Doesn’t that mean that sometimes this algorithm fails to provide
concurrent access to both ends of the queue even when the
queue contains an arbitrarily large number of elements?

79

6.1.2.5 Double-Ended Queue Discussion

The compound implementation is somewhat more com-
plex than the hashed variant presented in Section 6.1.2.3,
but is still reasonably simple. Of course, a more intelligent
rebalancing scheme could be arbitrarily complex, but the
simple scheme shown here has been shown to perform well
compared to software alternatives [DCW™*11] and even
compared to algorithms using hardware assist [DLM*10].
Nevertheless, the best we can hope for from such a scheme
is 2x scalability, as at most two threads can be hol