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Preface

The purpose of this book is to help you understand how
to program shared-memory parallel machines without
risking your sanity.! By describing the algorithms and
designs that have worked well in the past, we hope to
help you avoid at least some of the pitfalls that have beset
parallel projects. But you should think of this book as a
foundation on which to build, rather than as a completed
cathedral. Your mission, if you choose to accept, is to
help make further progress in the exciting field of parallel
programming, progress that should in time render this
book obsolete. Parallel programming is not as hard as it
is reputed, and it is hoped that this book makes it even
easier for you.

This book follows a watershed shift in the parallel-
programming field, from being primarily the domain of
science, research, and grand-challenge projects to being
primarily an engineering discipline. In presenting this
engineering discipline, this book will examine the specific
development tasks peculiar to parallel programming, and
describe how they may be most effectively handled, and,
in some surprisingly common special cases, automated.

This book is written in the hope that presenting the
engineering discipline underlying successful parallel-
programming projects will free a new generation of par-
allel hackers from the need to slowly and painstakingly
reinvent old wheels, instead focusing their energy and
creativity on new frontiers. Although the book is intended
primarily for self-study, it is likely to be more generally
useful. It is hoped that this book will be useful to you, and
that the experience of parallel programming will bring
you as much fun, excitement, and challenge as it has
provided the authors over the years.

! Or, perhaps more accurately, without much greater risk to your
sanity than that incurred by non-parallel programming. Which, come to
think of it, might not be saying all that much. Either way, Appendix A
discusses some important questions whose answers are less intuitive in
parallel programs than in sequential program.
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Chapter 1

Introduction

Parallel programming has earned a reputation as one
of the most difficult areas a hacker can tackle. Papers and
textbooks warn of the perils of deadlock, livelock, race
conditions, non-determinism, Amdahl’s-Law limits to
scaling, and excessive realtime latencies. And these perils
are quite real; we authors have accumulated uncounted
years of experience dealing with them, and all of the
emotional scars, grey hairs, and hair loss that go with
such an experience.

However, new technologies have always been difficult
to use at introduction, but have invariably become eas-
ier over time. For example, there was a time when the
ability to drive a car was a rare skill, but in many de-
veloped countries, this skill is now commonplace. This
dramatic change came about for two basic reasons: (1)
cars became cheaper and more readily available, so that
more people had the opportunity to learn to drive, and (2)
cars became simpler to operate, due to automatic trans-
missions, automatic chokes, automatic starters, greatly
improved reliability, and a host of other technological
improvements.

The same is true of a host of other technologies, in-
cluding computers. It is no longer necessary to operate a
keypunch in order to program. Spreadsheets allow most
non-programmers to get results from their computers that
would have required a team of specialists a few decades
ago. Perhaps the most compelling example is web-surfing
and content creation, which since the early 2000s has
been easily done by untrained, uneducated people using
various now-commonplace social-networking tools. As
recently as 1968, such content creation was a far-out re-
search project [Eng68], described at the time as “like a
UFO landing on the White House lawn”’[Gri00].

Therefore, if you wish to argue that parallel program-
ming will remain as difficult as it is currently perceived
by many to be, it is you who bears the burden of proof,

keeping in mind the many centuries of counter-examples
in a variety of fields of endeavor.

1.1 Historic Parallel Programming
Difficulties

As indicated by its title, this book takes a different ap-
proach. Rather than complain about the difficulty of par-
allel programming, it instead examines the reasons why
parallel programming is difficult, and then works to help
the reader to overcome these difficulties. As will be seen,
these difficulties have fallen into several categories, in-
cluding:

1. The historic high cost and relative rarity of parallel
systems.

2. The typical researcher’s and practitioner’s lack of
experience with parallel systems.

3. The paucity of publicly accessible parallel code.

4. The lack of a widely understood engineering disci-
pline of parallel programming.

5. The high cost of communication relative to that of
processing, even in tightly coupled shared-memory
computers.

Many of these historic difficulties are well on the way to
being overcome. First, over the past few decades, the cost
of parallel systems has decreased from many multiples of
that of a house to a fraction of that of a used car, thanks
to the advent of multicore systems. Papers calling out the
advantages of multicore CPUs were published as early
as 1996 [ONH196], IBM introduced simultaneous multi-
threading into its high-end POWER family in 2000, and



multicore in 2001. Intel introduced hyperthreading into
its commodity Pentium line in November 2000, and both
AMD and Intel introduced dual-core CPUs in 2005. Sun
followed with the multicore/multi-threaded Niagara in
late 2005. In fact, in 2008, it is becoming difficult to
find a single-CPU desktop system, with single-core CPUs
being relegated to netbooks and embedded devices.

Second, the advent of low-cost and readily available
multicore system means that the once-rare experience
of parallel programming is now available to almost all
researchers and practitioners. In fact, parallel systems are
now well within the budget of students and hobbyists. We
can therefore expect greatly increased levels of invention
and innovation surrounding parallel systems, and that
increased familiarity will over time make once-forbidding
field of parallel programming much more friendly and
commonplace.

Third, where in the 20" century, large systems of highly
parallel software were almost always closely guarded
proprietary secrets, the 21% century has seen numer-
ous open-source (and thus publicly available) parallel
software projects, including the Linux kernel [Tor0O3c],
database systems [Pos08, MS08], and message-passing
systems [The08, UoC08]. This book will draw primarily
from the Linux kernel, but will provide much material
suitable for user-level applications.

Fourth, even though the large-scale parallel-
programming projects of the 1980s and 1990s were
almost all proprietary projects, these projects have
seeded the community with a cadre of developers who
understand the engineering discipline required to develop
production-quality parallel code. A major purpose of this
book is to present this engineering discipline.

Unfortunately, the fifth difficulty, the high cost of com-
munication relative to that of processing, remains largely
in force. Although this difficulty has been receiving in-
creasing attention during the new millennium, according
to Stephen Hawking, the finite speed of light and the
atomic nature of matter is likely to limit progress in this
area [Gar(07, Moo03]. Fortunately, this difficulty has been
in force since the late 1980s, so that the aforementioned
engineering discipline has evolved practical and effective
strategies for handling it. In addition, hardware designers
are increasingly aware of these issues, so perhaps future
hardware will be more friendly to parallel software as
discussed in Section 2.3.

Quick Quiz 1.1: Come on now!!! Parallel program-
ming has been known to be exceedingly hard for many
decades. You seem to be hinting that it is not so hard.
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What sort of game are you playing? ll

However, even though parallel programming might not
be as hard as is commonly advertised, it is often more
work than is sequential programming.

Quick Quiz 1.2: How could parallel programming
ever be as easy as sequential programming? ll

It therefore makes sense to consider alternatives to
parallel programming. However, it is not possible to
reasonably consider parallel-programming alternatives
without understanding parallel-programming goals. This
topic is addressed in the next section.

1.2 Parallel Programming Goals

The three major goals of parallel programming (over and
above those of sequential programming) are as follows:

1. Performance.
2. Productivity.

3. Generality.

Quick Quiz 1.3: Oh, really??? What about correct-
ness, maintainability, robustness, and so on? l

Quick Quiz 1.4: And if correctness, maintainability,
and robustness don’t make the list, why do productivity
and generality? H

Quick Quiz 1.5: Given that parallel programs are
much harder to prove correct than are sequential pro-
grams, again, shouldn’t correctness really be on the list?
]

Quick Quiz 1.6: What about just having fun? B

Each of these goals is elaborated upon in the following
sections.

1.2.1 Performance

Performance is the primary goal behind most parallel-
programming effort. After all, if performance is not a
concern, why not do yourself a favor, just write sequential
code, and be happy? It will very likely be easier, and you
will probably get done much more quickly.

Quick Quiz 1.7: Are there no cases where parallel
programming is about something other than performance?
]

Note that “performance” is interpreted quite broadly
here, including scalability (performance per CPU) and
efficiency (for example, performance per watt).
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Figure 1.1: MIPS/Clock-Frequency Trend for Intel CPUs

That said, the focus of performance has shifted from
hardware to parallel software. This change in focus is due
to the fact that although Moore’s Law continues to deliver
increases in transistor density, it has ceased to provide the
traditional single-threaded performance increases, as can
be seen in Figure 1.1.! This means that writing single-
threaded code and simply waiting a year or two for the
CPUs to catch up may no longer be an option. Given
the recent trends on the part of all major manufacturers
towards multicore/multithreaded systems, parallelism is
the way to go for those wanting the avail themselves of
the full performance of their systems.

Even so, the first goal is performance rather than scal-
ability, especially given that the easiest way to attain
linear scalability is to reduce the performance of each
CPU [Tor01]. Given a four-CPU system, which would
you prefer? A program that provides 100 transactions
per second on a single CPU, but does not scale at all?
Or a program that provides 10 transactions per second
on a single CPU, but scales perfectly? The first program
seems like a better bet, though the answer might change
if you happened to be one of the lucky few with access to
a 32-CPU system.

! This plot shows clock frequencies for newer CPUs theoretically
capable of retiring one or more instructions per clock, and MIPS for
older CPUs requiring multiple clocks to execute even the simplest
instruction. The reason for taking this approach is that the newer CPUs’
ability to retire multiple instructions per clock is typically limited by
memory-system performance.

That said, just because you have multiple CPUs is not
necessarily in and of itself a reason to use them all, espe-
cially given the recent decreases in price of multi-CPU
systems. The key point to understand is that parallel pro-
gramming is primarily a performance optimization, and,
as such, it is one potential optimization of many. If your
program is fast enough as currently written, there is no rea-
son to optimize, either by parallelizing it or by applying
any of a number of potential sequential optimizations.?
By the same token, if you are looking to apply parallelism
as an optimization to a sequential program, then you will
need to compare parallel algorithms to the best sequential
algorithms. This may require some care, as far too many
publications ignore the sequential case when analyzing
the performance of parallel algorithms.

1.2.2 Productivity

Quick Quiz 1.8: Why all this prattling on about non-
technical issues??? And not just any non-technical issue,
but productivity of all things? Who cares? ll

Productivity has been becoming increasingly important
through the decades. To see this, consider that early com-
puters cost millions of dollars at a time when engineering
salaries were a few thousand dollars a year. If dedicating
a team of ten engineers to such a machine would improve
its performance by 10%, their salaries would be repaid
many times over.

One such machine was the CSIRAC, the oldest still-
intact stored-program computer, put in operation in
1949 [Mus04, Mel06]. Given that the machine had but
768 words of RAM, it is safe to say that the productivity
issues that arise in large-scale software projects were not
an issue for this machine. Because this machine was built
before the transistor era, it was constructed of 2,000 vac-
uum tubes, ran with a clock frequency of 1kHz, consumed
30kW of power, and weighed more than three metric tons.

It would be difficult to purchase a machine with this lit-
tle compute power roughly sixty years later (2008), with
the closest equivalents being 8-bit embedded micropro-
cessors exemplified by the venerable Z80 [Wik08]. This
CPU had 8,500 transistors, and can still be purchased in
2008 for less than $2 US per unit in 1,000-unit quantities.
In stark contrast to the CSIRAC, software-development
costs are anything but insignificant for the Z80.

The CSIRAC and the Z80 are two points in a long-term

2 Of course, if you are a hobbyist whose primary interest is writing
parallel software, that is more than enough reason to parallelize whatever
software you are interested in.
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Figure 1.2: MIPS per Die for Intel CPUs

trend, as can be seen in Figure 1.2. This figure plots an
approximation to computational power per die over the
past three decades, showing a consistent four-order-of-
magnitude increase. Note that the advent of multicore
CPUs has permitted this increase to continue unabated
despite the clock-frequency wall encountered in 2003.

One of the inescapable consequences of the rapid de-
crease in the cost of hardware is that software productivity
grows increasingly important. It is no longer sufficient
merely to make efficient use of the hardware, it is now
also necessary to make extremely efficient use of software
developers. This has long been the case for sequential
hardware, but only recently has parallel hardware become
a low-cost commodity. Therefore, the need for high pro-
ductivity in creating parallel software has only recently
become hugely important.

Quick Quiz 1.9: Given how cheap parallel hardware
has become, how can anyone afford to pay people to
program it? l

Perhaps at one time, the sole purpose of parallel soft-
ware was performance. Now, however, productivity is
increasingly important.

1.2.3 Generality

One way to justify the high cost of developing parallel
software is to strive for maximal generality. All else being
equal, the cost of a more-general software artifact can be
spread over more users than can a less-general artifact.

CHAPTER 1. INTRODUCTION

Unfortunately, generality often comes at the cost of per-
formance, productivity, or both. To see this, consider the
following popular parallel programming environments:

C/C++ “Locking Plus Threads” : This category,
which includes POSIX Threads (pthreads) [Ope97],
Windows Threads, and numerous operating-system
kernel environments, offers excellent performance
(at least within the confines of a single SMP system)
and also offers good generality. Pity about the
relatively low productivity.

Java : This programming environment, which is inher-
ently multithreaded, is widely believed to be much
more productive than C or C++, courtesy of the au-
tomatic garbage collector and the rich set of class
libraries, and is reasonably general purpose. How-
ever, its performance, though greatly improved over
the past ten years, is generally considered to be less
than that of C and C++.

MPI : This Message Passing Interface [MPIO8] powers
the largest scientific and technical computing clus-
ters in the world, so offers unparalleled performance
and scalability. It is in theory general purpose, but
has generally been used for scientific and technical
computing. Its productivity is believed by many to
be even less than that of C/C++ “locking plus threads”
environments.

OpenMP : This set of compiler directives can be used to
parallelize loops. It is thus quite specific to this task,
and this specificity often limits its performance. It
is, however, much easier to use than MPI or parallel
C/C++.

SQL : Structured Query Language [Int92] is extremely
specific, applying only to relational database queries.
However, its performance is quite good, doing quite
well in Transaction Processing Performance Council
(TPC) benchmarks [Tra0O1]. Productivity is excellent,
in fact, this parallel programming environment per-
mits people who know almost nothing about parallel
programming to make good use of a large parallel
machine.

The nirvana of parallel programming environments,
one that offers world-class performance, productivity, and
generality, simply does not yet exist. Until such a nir-
vana appears, it will be necessary to make engineering
tradeoffs among performance, productivity, and gener-
ality. One such tradeoff is shown in Figure 1.3, which
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Figure 1.3: Software Layers and Performance, Productiv-
ity, and Generality

shows how productivity becomes increasingly important
at the upper layers of the system stack, while performance
and generality become increasingly important at the lower
layers of the system stack. The huge development costs
incurred near the bottom of the stack must be spread over
equally huge numbers of users on the one hand (hence the
importance of generality), and performance lost near the
bottom of the stack cannot easily be recovered further up
the stack. Near the top of the stack, there might be very
few users for a given specific application, in which case
productivity concerns are paramount. This explains the
tendency towards “bloatware” further up the stack: extra
hardware is often cheaper than would be the extra devel-
opers. This book is intended primarily for developers
working near the bottom of the stack, where performance
and generality are paramount concerns.

It is important to note that a tradeoff between produc-
tivity and generality has existed for centuries in many
fields. For but one example, a nailgun is far more pro-
ductive than is a hammer, but in contrast to the nailgun,
a hammer can be used for many things besides driving
nails. It should therefore be absolutely no surprise to see
similar tradeoffs appear in the field of parallel comput-
ing. This tradeoff is shown schematically in Figure 1.4.
Here, users 1, 2, 3, and 4 have specific jobs that they need
the computer to help them with. The most productive
possible language or environment for a given user is one
that simply does that user’s job, without requiring any
programming, configuration, or other setup.

Quick Quiz 1.10: This is a ridiculously unachievable
ideal! Why not focus on something that is achievable in
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m
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Spemal Purpose
Environment
Productlve for User 2

m

Special-Purpose
Environment
Productive for User 4

General- Purpose
Environment

Figure 1.4: Tradeoff Between Productivity and Generality

practice? l

Unfortunately, a system that does the job required by
user 1 is unlikely to do user 2’s job. In other words, the
most productive languages and environments are domain-
specific, and thus by definition lacking generality.

Another option is to tailor a given programming lan-
guage or environment to the hardware system (for exam-
ple, low-level languages such as assembly, C, C++, or
Java) or to some abstraction (for example, Haskell, Pro-
log, or Snobol), as is shown by the circular region near the
center of Figure 1.4. These languages can be considered
to be general in the sense that they are equally ill-suited
to the jobs required by users 1, 2, 3, and 4. In other
words, their generality is purchased at the expense of de-
creased productivity when compared to domain-specific
languages and environments.

With the three often-conflicting parallel-programming
goals of performance, productivity, and generality in
mind, it is now time to look into avoiding these conflicts
by considering alternatives to parallel programming.

1.3 Alternatives to Parallel Pro-
gramming

In order to properly consider alternatives to parallel pro-
gramming, you must first have thought through what you
expect the parallelism to do for you. As seen in Sec-
tion 1.2, the primary goals of parallel programming are
performance, productivity, and generality.

Although historically most parallel developers might



be most concerned with the first goal, one advantage of
the other goals is that they relieve you of the need to
justify using parallelism. The remainder of this section is
concerned only performance improvement.

It is important to keep in mind that parallelism is but
one way to improve performance. Other well-known
approaches include the following, in roughly increasing
order of difficulty:

1. Run multiple instances of a sequential application.

2. Construct the application to make use of existing
parallel software.

3. Apply performance optimization to the serial appli-
cation.

1.3.1 Multiple Instances of a Sequential
Application

Running multiple instances of a sequential application can
allow you to do parallel programming without actually
doing parallel programming. There are a large number of
ways to approach this, depending on the structure of the
application.

If your program is analyzing a large number of different
scenarios, or is analyzing a large number of independent
data sets, one easy and effective approach is to create a
single sequential program that carries out a single analysis,
then use any of a number of scripting environments (for
example the bash shell) to run a number of instances of
this sequential program in parallel. In some cases, this
approach can be easily extended to a cluster of machines.

This approach may seem like cheating, and in fact
some denigrate such programs as “embarrassingly paral-
lel”. And in fact, this approach does have some potential
disadvantages, including increased memory consumption,
waste of CPU cycles recomputing common intermediate
results, and increased copying of data. However, it is
often extremely effective, garnering extreme performance
gains with little or no added effort.

1.3.2 Make Use of Existing Parallel Soft-
ware

There is no longer any shortage of parallel software en-
vironments that can present a single-threaded program-
ming environment, including relational databases, web-
application servers, and map-reduce environments. For
example, a common design provides a separate program

CHAPTER 1. INTRODUCTION

for each user, each of which generates SQL that is run
concurrently against a common relational database. The
per-user programs are responsible only for the user inter-
face, with the relational database taking full responsibility
for the difficult issues surrounding parallelism and persis-
tence.

Taking this approach often sacrifices some perfor-
mance, at least when compared to carefully hand-coding
a fully parallel application. However, such sacrifice is
often justified given the great reduction in development
effort required.

1.3.3 Performance Optimization

Up through the early 2000s, CPU performance was dou-
bling every 18 months. In such an environment, it is often
much more important to create new functionality than to
do careful performance optimization. Now that Moore’s
Law is “only” increasing transistor density instead of in-
creasing both transistor density and per-transistor perfor-
mance, it might be a good time to rethink the importance
of performance optimization.

After all, performance optimization can reduce power
consumption as well as increasing performance.

From this viewpoint, parallel programming is but an-
other performance optimization, albeit one that is be-
coming much more attractive as parallel systems become
cheaper and more readily available. However, it is wise
to keep in mind that the speedup available from paral-
lelism is limited to roughly the number of CPUs, while
the speedup potentially available from straight software
optimization can be multiple orders of magnitude.

Furthermore, different programs might have different
performance bottlenecks. Parallel programming will only
help with some bottlenecks. For example, suppose that
your program spends most of its time waiting on data from
your disk drive. In this case, making your program use
multiple CPUs is not likely to gain much performance. In
fact, if the program was reading from a large file laid out
sequentially on a rotating disk, parallelizing your program
might well make it a lot slower. You should instead add
more disk drives, optimize the data so that the file can be
smaller (thus faster to read), or, if possible, avoid the need
to read quite so much of the data.

Quick Quiz 1.11: What other bottlenecks might pre-
vent additional CPUs from providing additional perfor-
mance?

Parallelism can be a powerful optimization technique,
but it is not the only such technique, nor is it appropriate
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for all situations. Of course, the easier it is to parallelize
your program, the more attractive parallelization becomes
as an optimization. Parallelization has a reputation of
being quite difficult, which leads to the question “exactly
what makes parallel programming so difficult?”

1.4 What Makes Parallel Program-
ming Hard?

It is important to note that the difficulty of parallel pro-
gramming is as much a human-factors issue as it is a set of
technical properties of the parallel programming problem.
This is the case because we need human beings to be able
to tell parallel systems what to do, and this two-way com-
munication between human and computer is as much a
function of the human as it is of the computer. Therefore,
appeals to abstractions or to mathematical analyses will
necessarily be of severely limited utility.

In the Industrial Revolution, the interface between hu-
man and machine was evaluated by human-factor studies,
then called time-and-motion studies. Although there have
been a few human-factor studies examining parallel pro-
gramming [ENS05, ES05, HCS™T05, SS94], these studies
have been extremely narrowly focused, and hence unable
to demonstrate any general results. Furthermore, given
that the normal range of programmer productivity spans
more than an order of magnitude, it is unrealistic to expect
an affordable study to be capable of detecting (say) a 10%
difference in productivity. Although the multiple-order-
of-magnitude differences that such studies can reliably
detect are extremely valuable, the most impressive im-
provements tend to be based on a long series of 10%
improvements.

We must therefore take a different approach.

One such approach is to carefully consider the tasks
that parallel programmers must undertake that are not
required of sequential programmers. We can then evaluate
how well a given programming language or environment
assists the developer with these tasks. These tasks fall into
the four categories shown in Figure 1.5, each of which is
covered in the following sections.

1.4.1 Work Partitioning

Work partitioning is absolutely required for parallel exe-
cution: if there is but one “glob” of work, then it can be
executed by at most one CPU at a time, which is by defini-
tion sequential execution. However, partitioning the code

P
Performance

N
Productivity

Work

Y Partitioning Y

A Resource
Parallel Partitioning and
Access Control Y Replication
A : A
Interacting
With Hardware

Generality

Figure 1.5: Categories of Tasks Required of Parallel Pro-
grammers

requires great care. For example, uneven partitioning can
result in sequential execution once the small partitions
have completed [Amd67]. In less extreme cases, load
balancing can be used to fully utilize available hardware,
thus attaining more-optimal performance.

In addition, partitioning of work can complicate han-
dling of global errors and events: a parallel program may
need to carry out non-trivial synchronization in order to
safely process such global events.

Each partition requires some sort of communication:
after all, if a given thread did not communicate at all,
it would have no effect and would thus not need to be
executed. However, because communication incurs over-
head, careless partitioning choices can result in severe
performance degradation.

Furthermore, the number of concurrent threads must
often be controlled, as each such thread occupies common
resources, for example, space in CPU caches. If too many
threads are permitted to execute concurrently, the CPU
caches will overflow, resulting in high cache miss rate,
which in turn degrades performance. On the other hand,
large numbers of threads are often required to overlap
computation and I/O.

Quick Quiz 1.12: What besides CPU cache capacity
might require limiting the number of concurrent threads?
]

Finally, permitting threads to execute concurrently
greatly increases the program’s state space, which can
make the program difficult to understand, degrading pro-
ductivity. All else being equal, smaller state spaces having
more regular structure are more easily understood, but
this is a human-factors statement as much as it is a tech-
nical or mathematical statement. Good parallel designs



might have extremely large state spaces, but neverthe-
less be easy to understand due to their regular structure,
while poor designs can be impenetrable despite having a
comparatively small state space. The best designs exploit
embarrassing parallelism, or transform the problem to
one having an embarrassingly parallel solution. In either
case, “embarrassingly parallel” is in fact an embarrass-
ment of riches. The current state of the art enumerates
good designs; more work is required to make more gen-
eral judgements on state-space size and structure.

1.4.2 Parallel Access Control

Given a sequential program with only a single thread,
that single thread has full access to all of the program’s
resources. These resources are most often in-memory data
structures, but can be CPUs, memory (including caches),
I/0 devices, computational accelerators, files, and much
else besides.

The first parallel-access-control issue is whether the
form of the access to a given resource depends on that re-
source’s location. For example, in many message-passing
environments, local-variable access is via expressions and
assignments, while remote-variable access uses an en-
tirely different syntax, usually involving messaging. The
POSIX Threads environment [Ope97], Structured Query
Language (SQL) [Int92], and partitioned global address-
space (PGAS) environments such as Universal Parallel C
(UPC) [EGCDO3] offer implicit access, while Message
Passing Interface (MPI) [MPI08] offers explicit access
because access to remote data requires explicit messaging.

The other parallel-access-control issue is how threads
coordinate access to the resources. This coordination is
carried out by the very large number of synchronization
mechanisms provided by various parallel languages and
environments, including message passing, locking, trans-
actions, reference counting, explicit timing, shared atomic
variables, and data ownership. Many traditional parallel-
programming concerns such as deadlock, livelock, and
transaction rollback stem from this coordination. This
framework can be elaborated to include comparisons of
these synchronization mechanisms, for example locking
vs. transactional memory [MMWO07], but such elabora-
tion is beyond the scope of this section.
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1.4.3 Resource Partitioning and Replica-
tion

The most effective parallel algorithms and systems exploit
resource parallelism, so much so that it is usually wise to
begin parallelization by partitioning your write-intensive
resources and replicating frequently accessed read-mostly
resources. The resource in question is most frequently
data, which might be partitioned over computer systems,
mass-storage devices, NUMA nodes, CPU cores (or dies
or hardware threads), pages, cache lines, instances of syn-
chronization primitives, or critical sections of code. For
example, partitioning over locking primitives is termed
“data locking” [BK85].

Resource partitioning is frequently application depen-
dent, for example, numerical applications frequently par-
tition matrices by row, column, or sub-matrix, while com-
mercial applications frequently partition write-intensive
data structures and replicate read-mostly data structures.
For example, a commercial application might assign the
data for a given customer to a given few computer sys-
tems out of a large cluster. An application might statically
partition data, or dynamically change the partitioning over
time.

Resource partitioning is extremely effective, but it can
be quite challenging for complex multilinked data struc-
tures.

1.4.4 Interacting With Hardware

Hardware interaction is normally the domain of the op-
erating system, the compiler, libraries, or other software-
environment infrastructure. However, developers working
with novel hardware features and components will often
need to work directly with such hardware. In addition,
direct access to the hardware can be required when squeez-
ing the last drop of performance out of a given system. In
this case, the developer may need to tailor or configure
the application to the cache geometry, system topology,
or interconnect protocol of the target hardware.

In some cases, hardware may be considered to be a
resource which may be subject to partitioning or access
control, as described in the previous sections.

1.4.5 Composite Capabilities

Although these four capabilities are fundamental, good
engineering practice uses composites of these capabilities.
For example, the data-parallel approach first partitions
the data so as to minimize the need for inter-partition
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Figure 1.6: Ordering of Parallel-Programming Tasks

communication, partitions the code accordingly, and fi-
nally maps data partitions and threads so as to maximize
throughput while minimizing inter-thread communication,
as shown in Figure 1.6. The developer can then consider
each partition separately, greatly reducing the size of the
relevant state space, in turn increasing productivity. Of
course, some problems are non-partitionable but on the
other hand, clever transformations into forms permitting
partitioning can greatly enhance both performance and
scalability [Met99].

14.6 How Do Languages and Environ-
ments Assist With These Tasks?

Although many environments require that the developer
deal manually with these tasks, there are long-standing
environments that bring significant automation to bear.
The poster child for these environments is SQL, many
implementations of which automatically parallelize single
large queries and also automate concurrent execution of
independent queries and updates.

These four categories of tasks must be carried out in all
parallel programs, but that of course does not necessarily
mean that the developer must manually carry out these
tasks. We can expect to see ever-increasing automation of
these four tasks as parallel systems continue to become
cheaper and more readily available.

Quick Quiz 1.13: Are there any other obstacles to
parallel programming? W

1.5 Guide to This Book

This book is not a collection of optimal algorithms with
tiny areas of applicability; instead, it is a handbook of
widely applicable and heavily used techniques. We of
course could not resist the urge to include some of our
favorites that have not (yet!) passed the test of time (what
author could?), but we have nonetheless gritted our teeth
and banished our darlings to appendices. Perhaps in time,
some of them will see enough use that we can promote
them into the main body of the text.

1.5.1 Quick Quizzes

“Quick quizzes” appear throughout this book. Some of
these quizzes are based on material in which that quick
quiz appears, but others require you to think beyond that
section, and, in some cases, beyond the entire book. As
with most endeavors, what you get out of this book is
largely determined by what you are willing to put into
it. Therefore, readers who invest some time into these
quizzes will find their effort repaid handsomely with in-
creased understanding of parallel programming.

Answers to the quizzes may be found in Appendix G
starting on page 309.

Quick Quiz 1.14: Where are the answers to the Quick
Quizzes found? M

Quick Quiz 1.15: Some of the Quick Quiz questions
seem to be from the viewpoint of the reader rather than
the author. Is that really the intent? H

Quick Quiz 1.16: These Quick Quizzes just are not
my cup of tea. What do you recommend? H

1.5.2 Sample Source Code

This book discusses its fair share of source code, and
in many cases this source code may be found in the
CodeSamples directory of this book’s git tree. For
example, on UNIX systems, you should be able to type:

find CodeSamples -name rcu_rcpls.c -print

to locate the file rcu_rcpls. c, which is called out
in Section 8.3.5. Other types of systems have well-known
ways of locating files by filename.

The source to this book may be found in the git
archive at git://git.kernel.org/pub/scm/
linux/kernel/git/paulmck/perfbook.git,
and git itself is available as part of most main-
stream Linux distributions. PDFs of this book are
sporadically posted at http://kernel.org/pub/


git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
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linux/kernel/people/paulmck/perfbook/
perfbook.html.


http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

Chapter 2

Hardware and its Habits

Most people have an intuitive understanding that pass-
ing messages between systems is considerably more ex-
pensive than performing simple calculations within the
confines of a single system. However, it is not always
so clear that communicating among threads within the
confines of a single shared-memory system can also be
quite expensive. This chapter therefore looks the cost
of synchronization and communication within a shared-
memory system. This chapter merely scratches the sur-
face of shared-memory parallel hardware design; readers
desiring more detail would do well to start with a recent
edition of Hennessy and Patterson’s classic text [HP95].

Quick Quiz 2.1: Why should parallel programmers
bother learning low-level properties of the hardware?
Wouldn’t it be easier, better, and more general to remain
at a higher level of abstraction? Hl

2.1 Overview

Careless reading of computer-system specification sheets
might lead one to believe that CPU performance is a
footrace on a clear track, as illustrated in Figure 2.1, where
the race always goes to the swiftest.

Although there are a few CPU-bound benchmarks that
approach the ideal shown in Figure 2.1, the typical pro-
gram more closely resembles an obstacle course than
arace track. This is because the internal architecture of
CPUs has changed dramatically over the past few decades,
courtesy of Moore’s Law. These changes are described in
the following sections.

2.1.1 Pipelined CPUs

In the early 1980s, the typical microprocessor fetched an
instruction, decoded it, and executed it, typically taking
at least three clock cycles to complete one instruction
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Figure 2.1: CPU Performance at its Best

before proceeding to the next. In contrast, the CPU of
the late 1990s and early 2000s will be executing many
instructions simultaneously, using a deep “pipeline” to
control the flow of instructions internally to the CPU, this
difference being illustrated by Figure 2.2.

Achieving full performance with a CPU having a long
pipeline requires highly predictable control flow through
the program. Suitable control flow can be provided by
a program that executes primarily in tight loops, for ex-
ample, programs doing arithmetic on large matrices or
vectors. The CPU can then correctly predict that the
branch at the end of the loop will be taken in almost all
cases. In such programs, the pipeline can be kept full and
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the CPU can execute at full speed.

Figure 2.3: CPU Meets a Pipeline Flush

If, on the other hand, the program has many loops with
small loop counts, or if the program is object oriented
with many virtual objects that can reference many differ-
ent real objects, all with different implementations for
frequently invoked member functions, then it is difficult
or even impossible for the CPU to predict where a given
branch might lead. The CPU must then either stall waiting
for execution to proceed far enough to know for certain
where the branch will lead, or guess — and, in the face
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of programs with unpredictable control flow, frequently
guess wrong. In either case, the pipeline will empty and
have to be refilled, leading to stalls that can drastically
reduce performance, as fancifully depicted in Figure 2.3.
Unfortunately, pipeline flushes are not the only hazards
in the obstacle course that modern CPUs must run. The
next section covers the hazards of referencing memory.

2.1.2 Memory References

In the 1980s, it often took less time for a microprocessor
to load a value from memory than it did to execute an
instruction. In 2006, a microprocessor might be capable
of executing hundreds or even thousands of instructions in
the time required to access memory. This disparity is due
to the fact that Moore’s Law has increased CPU perfor-
mance at a much greater rate than it has increased memory
performance, in part due to the rate at which memory sizes
have grown. For example, a typical 1970s minicomputer
might have 4KB (yes, kilobytes, not megabytes, let alone
gigabytes) of main memory, with single-cycle access. In
2008, CPU designers still can construct a 4KB memory
with single-cycle access, even on systems with multi-GHz
clock frequencies. And in fact they frequently do con-
struct such memories, but they now call them “level-0
caches”.

Although the large caches found on modern micropro-
cessors can do quite a bit to help combat memory-access
latencies, these caches require highly predictable data-
access patterns to successfully hide memory latencies.
Unfortunately, common operations, such as traversing a
linked list, have extremely unpredictable memory-access
patterns — after all, if the pattern was predictable, us
software types would not bother with the pointers, right?

Therefore, as shown in Figure 2.4, memory references
are often severe obstacles for modern CPUs.

Thus far, we have only been considering obstacles
that can arise during a given CPU’s execution of single-
threaded code. Multi-threading presents additional obsta-
cles to the CPU, as described in the following sections.

2.1.3 Atomic Operations

One such obstacle is atomic operations. The whole idea of
an atomic operation in some sense conflicts with the piece-
at-a-time assembly-line operation of a CPU pipeline. To
hardware designers’ credit, modern CPUs use a number
of extremely clever tricks to make such operations look
atomic even though they are in fact being executed piece-
at-a-time, but even so, there are cases where the pipeline



2.1. OVERVIEW

Figure 2.4: CPU Meets a Memory Reference

must be delayed or even flushed in order to permit a given
atomic operation to complete correctly.

The resulting effect on performance is depicted in Fig-
ure 2.5.

Unfortunately, atomic operations usually apply only to
single elements of data. Because many parallel algorithms
require that ordering constraints be maintained between
updates of multiple data elements, most CPUs provide
memory barriers. These memory barriers also serve as
performance-sapping obstacles, as described in the next
section.

Quick Quiz 2.2: What types of machines would allow
atomic operations on multiple data elements? ll

2.14 Memory Barriers

Memory barriers will be considered in more detail in
Section 12.2 and Appendix C. In the meantime, consider
the following simple lock-based critical section:

1 spin_lock (&mylock) ;
2 a=a+ 1;
3 spin_unlock (&mylock) ;

If the CPU were not constrained to execute these state-
ments in the order shown, the effect would be that the
variable “a” would be incremented without the protection
of “mylock”, which would certainly defeat the purpose
of acquiring it. To prevent such destructive reordering,
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Figure 2.5: CPU Meets an Atomic Operation

locking primitives contain either explicit or implicit mem-
ory barriers. Because the whole purpose of these memory
barriers is to prevent reorderings that the CPU would
otherwise undertake in order to increase performance,
memory barriers almost always reduce performance, as
depicted in Figure 2.6.

2.1.5 Cache Misses

An additional multi-threading obstacle to CPU perfor-
mance is the “cache miss”. As noted earlier, modern
CPUs sport large caches in order to reduce the perfor-
mance penalty that would otherwise be incurred due to
high memory latencies. However, these caches are actu-
ally counter-productive for variables that are frequently
shared among CPUs. This is because when a given CPU
wishes to modify the variable, it is most likely the case
that some other CPU has modified it recently. In this case,
the variable will be in that other CPU’s cache, but not in
this CPU’s cache, which will therefore incur an expensive
cache miss (see Section C.1 for more detail). Such cache
misses form a major obstacle to CPU performance, as
shown in Figure 2.7.

2.1.6 1/0 Operations

A cache miss can be thought of as a CPU-to-CPU /O
operation, and as such is one of the cheapest I/O oper-
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Figure 2.6: CPU Meets a Memory Barrier

ations available. I/O operations involving networking,
mass storage, or (worse yet) human beings pose much
greater obstacles than the internal obstacles called out in
the prior sections, as illustrated by Figure 2.8.

This is one of the differences between shared-memory
and distributed-system parallelism: shared-memory paral-
lel programs must normally deal with no obstacle worse
than a cache miss, while a distributed parallel program
will typically incur the larger network communication
latencies. In both cases, the relevant latencies can be
thought of as a cost of communication—a cost that would
be absent in a sequential program. Therefore, the ratio
between the overhead of the communication to that of the
actual work being performed is a key design parameter.
A major goal of parallel design is to reduce this ratio as
needed to achieve the relevant performance and scalability
goals.

Of course, it is one thing to say that a given operation is
an obstacle, and quite another to show that the operation
is a significant obstacle. This distinction is discussed in
the following sections.
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2.2 Overheads

This section presents actual overheads of the obstacles to
performance listed out in the previous section. However,
it is first necessary to get a rough view of hardware system
architecture, which is the subject of the next section.

2.2.1 Hardware System Architecture

Figure 2.9 shows a rough schematic of an eight-core com-
puter system. Each die has a pair of CPU cores, each
with its cache, as well as an interconnect allowing the pair
of CPUs to communicate with each other. The system
interconnect in the middle of the diagram allows the four
dies to communicate, and also connects them to main
memory.

Data moves through this system in units of “cache
lines”, which are power-of-two fixed-size aligned blocks
of memory, usually ranging from 32 to 256 bytes in size.
When a CPU loads a variable from memory to one of its
registers, it must first load the cacheline containing that
variable into its cache. Similarly, when a CPU stores a
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value from one of its registers into memory, it must also
load the cacheline containing that variable into its cache,
but must also ensure that no other CPU has a copy of that
cacheline.

For example, if CPU 0 were to perform a compare-
and-swap (CAS) operation on a variable whose cacheline
resided in CPU 7’s cache, the following over-simplified
sequence of events might ensue:

1. CPU 0 checks its local cache, and does not find the
cacheline.

2. The request is forwarded to CPU 0’s and 1’s intercon-
nect, which checks CPU 1°s local cache, and does
not find the cacheline.

3. The request is forwarded to the system interconnect,
which checks with the other three dies, learning that
the cacheline is held by the die containing CPU 6
and 7.

4. The request is forwarded to CPU 6’s and 7’s inter-
connect, which checks both CPUs’ caches, finding
the value in CPU 7’s cache.

5. CPU 7 forwards the cacheline to its interconnect,
and also flushes the cacheline from its cache.
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6. CPU 6’s and 7’s interconnect forwards the cacheline
to the system interconnect.

7. The system interconnect forwards the cacheline to
CPU 0’s and 1’s interconnect.

8. CPU 0’s and 1’s interconnect forwards the cacheline
to CPU 0’s cache.

9. CPU 0 can now perform the CAS operation on the
value in its cache.

Quick Quiz 2.3: This is a simplified sequence of
events? How could it possibly be any more complex?
]

Quick Quiz 2.4: Why is it necessary to flush the cache-
line from CPU 7’s cache? B

2.2.2 Costs of Operations

The overheads of some common operations important
to parallel programs are displayed in Table 2.1. This
system’s clock period rounds to 0.6ns. Although it is not
unusual for modern microprocessors to be able to retire
multiple instructions per clock period, the operations will
be normalized to a full clock period in the third column,
labeled “Ratio”. The first thing to note about this table is
the large values of many of the ratios.

The best-case CAS operation consumes almost forty
nanoseconds, a duration more than sixty times that of the
clock period. Here, “best case” means that the same CPU
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Operation H Cost (ns) \ Ratio
Clock period 0.6 1.0
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0
Comms Fabric 3,000 5,000
Global Comms 130,000,000 | 216,000,000

Table 2.1: Performance of Synchronization Mechanisms
on 4-CPU 1.8GHz AMD Opteron 844 System

now performing the CAS operation on a given variable
was the last CPU to operate on this variable, so that the
corresponding cache line is already held in that CPU’s
cache, Similarly, the best-case lock operation (a “round
trip” pair consisting of a lock acquisition followed by
a lock release) consumes more than sixty nanoseconds,
or more than one hundred clock cycles. Again, “best
case” means that the data structure representing the lock
is already in the cache belonging to the CPU acquiring and
releasing the lock. The lock operation is more expensive
than CAS because it requires two atomic operations on
the lock data structure.

An operation that misses the cache consumes almost
one hundred and forty nanoseconds, or more than two
hundred clock cycles. A CAS operation, which must look
at the old value of the variable as well as store a new value,
consumes over three hundred nanoseconds, or more than
five hundred clock cycles. Think about this a bit. In the
time required to do one CAS operation, the CPU could
have executed more than five hundred normal instructions.
This should demonstrate the limitations of fine-grained
locking.

Quick Quiz 2.5: Surely the hardware designers could
be persuaded to improve this situation! Why have they
been content with such abysmal performance for these
single-instruction operations? ll

I/O operations are even more expensive. A high per-
formance (and expensive!) communications fabric, such
as InfiniBand or any number of proprietary interconnects,
has a latency of roughly three microseconds, during which
time five thousand instructions might have been executed.
Standards-based communications networks often require
some sort of protocol processing, which further increases
the latency. Of course, geographic distance also increases
latency, with the theoretical speed-of-light latency around
the world coming to roughly 130 milliseconds, or more
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than 200 million clock cycles.
Quick Quiz 2.6: These numbers are insanely large!
How can I possibly get my head around them? B

2.3 Hardware Free Lunch?

The major reason that concurrency has been receiving so
much focus over the past few years is the end of Moore’s-
Law induced single-threaded performance increases (or
“free lunch” [Sut08]), as shown in Figure 1.1 on page 3.
This section briefly surveys a few ways that hardware
designers might be able to bring back some form of the
“free lunch”.

However, the preceding section presented some sub-
stantial hardware obstacles to exploiting concurrency.
One severe physical limitation that hardware designers
face is the finite speed of light. As noted in Figure 2.9
on page 15, light can travel only about an 8-centimeters
round trip in a vacuum during the duration of a 1.8 GHz
clock period. This distance drops to about 3 centimeters
for a 5 GHz clock. Both of these distances are relatively
small compared to the size of a modern computer system.

To make matters even worse, electrons in silicon move
from three to thirty times more slowly than does light
in a vacuum, and common clocked logic constructs run
still more slowly, for example, a memory reference may
need to wait for a local cache lookup to complete before
the request may be passed on to the rest of the system.
Furthermore, relatively low speed and high power drivers
are required to move electrical signals from one silicon
die to another, for example, to communicate between a
CPU and main memory.

There are nevertheless some technologies (both hard-
ware and software) that might help improve matters:

1. 3D integration,

2. Novel materials and processes,

3. Substituting light for electrons,

4. Special-purpose accelerators, and

5. Existing parallel software.

Each of these is described in one of the following sec-
tions.
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2.3.1 3D Integration

3-dimensional integration (3DI) is the practice of bonding
very thin silicon dies to each other in a vertical stack.
This practice provides potential benefits, but also poses
significant fabrication challenges [KniO8].

Perhaps the most important benefit of 3DI is decreased
path length through the system, as shown in Figure 2.10.
A 3-centimeter silicon die is replaced with a stack of four
1.5-centimeter dies, in theory decreasing the maximum
path through the system by a factor of two, keeping in
mind that each layer is quite thin. In addition, given
proper attention to design and placement, long horizontal
electrical connections (which are both slow and power
hungry) can be replaced by short vertical electrical con-
nections, which are both faster and more power efficient.

However, delays due to levels of clocked logic will
not be decreased by 3D integration, and significant man-
ufacturing, testing, power-supply, and heat-dissipation
problems must be solved for 3D integration to reach pro-
duction while still delivering on its promise. The heat-
dissipation problems might be solved using semiconduc-
tors based on diamond, which is a good conductor for
heat, but an electrical insulator. That said, it remains
difficult to grow large single diamond crystals, to say
nothing of slicing them into wafers. In addition, it seems
unlikely that any of these technologies will be able to de-
liver the exponential increases to which some people have
become accustomed. That said, they may be necessary
steps on the path to the late Jim Gray’s “smoking hairy
golf balls” [Gra02].

2.3.2 Novel Materials and Processes

Stephen Hawking is said to have claimed that semiconduc-
tor manufacturers have but two fundamental problems: (1)
the finite speed of light and (2) the atomic nature of mat-
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ter [Gar(Q7]. It is possible that semiconductor manufactur-
ers are approaching these limits, but there are nevertheless
a few avenues of research and development focused on
working around these fundamental limits.

One workaround for the atomic nature of matter are so-
called “high-K dielectric” materials, which allow larger
devices to mimic the electrical properties of infeasibly
small devices. These materials pose some severe fabrica-
tion challenges, but nevertheless may help push the fron-
tiers out a bit farther. Another more-exotic workaround
stores multiple bits in a single electron, relying on the
fact that a given electron can exist at a number of energy
levels. It remains to be seen if this particular approach can
be made to work reliably in production semiconductor
devices.

Another proposed workaround is the “quantum dot”
approach that allows much smaller device sizes, but which
is still in the research stage.

Although the speed of light would be a hard limit, the
fact is that semiconductor devices are limited by the speed
of electrons rather than that of light, given that electrons
in semiconductor materials move at between 3% and 30%
of the speed of light in a vacuum. The use of copper
connections on silicon devices is one way to increase the
speed of electrons, and it is quite possible that additional
advances will push closer still to the actual speed of light.
In addition, there have been some experiments with tiny
optical fibers as interconnects within and between chips,
based on the fact that the speed of light in glass is more
than 60% of the speed of light in a vacuum. One obsta-
cle to such optical fibers is the inefficiency conversion
between electricity and light and vice versa, resulting in
both power-consumption and heat-dissipation problems.

That said, absent some fundamental advances in the
field of physics, any exponential increases in the speed of
data flow will be sharply limited by the actual speed of
light in a vacuum.

2.3.3 Special-Purpose Accelerators

A general-purpose CPU working on a specialized problem
is often spending significant time and energy doing work
that is only tangentially related to the problem at hand.
For example, when taking the dot product of a pair of
vectors, a general-purpose CPU will normally use a loop
(possibly unrolled) with a loop counter. Decoding the
instructions, incrementing the loop counter, testing this
counter, and branching back to the top of the loop are in
some sense wasted effort: the real goal is instead to multi-
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ply corresponding elements of the two vectors. Therefore,
a specialized piece of hardware designed specifically to
multiply vectors could get the job done more quickly and
with less energy consumed.

This is in fact the motivation for the vector instructions
present in many commodity microprocessors. Because
these instructions operate on multiple data items simulta-
neously, they would permit a dot product to be computed
with less instruction-decode and loop overhead.

Similarly, specialized hardware can more efficiently
encrypt and decrypt, compress and decompress, encode
and decode, and many other tasks besides. Unfortunately,
this efficiency does not come for free. A computer system
incorporating this specialized hardware will contain more
transistors, which will consume some power even when
not in use. Software must be modified to take advantage
of this specialized hardware, and this specialized hard-
ware must be sufficiently generally useful that the high
up-front hardware-design costs can be spread over enough
users to make the specialized hardware affordable. In part
due to these sorts of economic considerations, specialized
hardware has thus far appeared only for a few application
areas, including graphics processing (GPUs), vector pro-
cessors (MMX, SSE, and VMX instructions), and, to a
lesser extent, encryption.

Nevertheless, given the end of Moore’s-Law-induced
single-threaded performance increases, it seems safe to
predict that there will be an increasing variety of special-
purpose hardware going forward.

2.3.4 Existing Parallel Software

Although multicore CPUs seem to have taken the com-
puting industry by surprise, the fact remains that shared-
memory parallel computer systems have been commer-
cially available for more than a quarter century. This is
more than enough time for significant parallel software to
make its appearance, and it indeed has. Parallel operating
systems are quite commonplace, as are parallel threading
libraries, parallel relational database management sys-
tems, and parallel numerical software. Using existing
parallel software goes a long ways towards solving any
parallel-software crisis we might encounter.

Perhaps the most common example is the parallel re-
lational database management system. It is not unusual
for single-threaded programs, often written in high-level
scripting languages, to access a central relational database
concurrently. In the resulting highly parallel system, only
the database need actually deal directly with parallelism.
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A very nice trick when it works!

2.4 Software Design Implications

The values of the ratios in Table 2.1 are critically im-
portant, as they limit the efficiency of a given parallel
application. To see this, suppose that the parallel applica-
tion uses CAS operations to communicate among threads.
These CAS operations will typically involve a cache miss,
that is, assuming that the threads are communicating pri-
marily with each other rather than with themselves. Sup-
pose further that the unit of work corresponding to each
CAS communication operation takes 300ns, which is suf-
ficient time to compute several floating-point transcen-
dental functions. Then about half of the execution time
will be consumed by the CAS communication operations!
This in turn means that a two-CPU system running such a
parallel program would run no faster than one a sequential
implementation running on a single CPU.

The situation is even worse in the distributed-system
case, where the latency of a single communications oper-
ation might take as long as thousands or even millions of
floating-point operations. This illustrates how important
it is for communications operations to be extremely infre-
quent and to enable very large quantities of processing.

Quick Quiz 2.7: Given that distributed-systems com-
munication is so horribly expensive, why does anyone
bother with them? W

The lesson should be quite clear: parallel algorithms
must be explicitly designed to run nearly independent
threads. The less frequently the threads communicate,
whether by atomic operations, locks, or explicit messages,
the better the application’s performance and scalability
will be. In short, achieving excellent parallel performance
and scalability means striving for embarrassingly paral-
lel algorithms and implementations, whether by careful
choice of data structures and algorithms, use of existing
parallel applications and environments, or transforming
the problem into one for which an embarrassingly parallel
solution exists.

Chapter 5 will discuss design disciplines that promote
performance and scalability.



Chapter 3

Tools of the Trade

This chapter provides a brief introduction to some ba-
sic tools of the parallel-programming trade, focusing
mainly on those available to user applications running
on operating systems similar to Linux. Section 3.1 be-
gins with scripting languages, Section 3.2 describes the
multi-process parallelism supported by the POSIX API,
Section 3.2 touches on POSIX threads, and finally, Sec-
tion 3.3 describes atomic operations.

Please note that this chapter provides but a brief intro-
duction. More detail is available from the references cited,
and more information on how best to use these tools will
be provided in later chapters.

3.1 Scripting Languages

The Linux shell scripting languages provide simple but
effective ways of managing parallelism. For example,
suppose that you had a program compute_1it that you
needed to run twice with two different sets of arguments.
This can be accomplished as follows:

compute_it 1 > compute_it.l.out &
compute_it 2 > compute_it.2.out &
wait

cat compute_it.1l.out

cat compute_it.2.out

g W N

Lines 1 and 2 launch two instances of this program,
redirecting their output to two separate files, with the &
character directing the shell to run the two instances of
the program in the background. Line 3 waits for both
instances to complete, and lines 4 and 5 display their
output. The resulting execution is as shown in Figure 3.1:
the two instances of compute_it execute in parallel,
wait completes after both of them do, and then the two
instances of cat execute sequentially.

Quick Quiz 3.1: But this silly shell script isn’t a real
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compute_it 1 > compute_it 2 >
compute_it.l.out & compute_it.2.out &

’cat compute_it.1l.out ‘

’cat compute_it.2.out ‘

Figure 3.1: Execution Diagram for Parallel Shell Execu-
tion

parallel program! Why bother with such trivia??? l

Quick Quiz 3.2: Is there a simpler way to create a
parallel shell script? If so, how? If not, why not? l

For another example, the make software-build script-
ing language provides a —7 option that specifies how
much parallelism should be introduced into the build pro-
cess. For example, typing make -3j4 when building a
Linux kernel specifies that up to four parallel compiles be
carried out concurrently.

It is hoped that these simple examples convince you
that parallel programming need not always be complex or
difficult.

Quick Quiz 3.3: But if script-based parallel program-
ming is so easy, why bother with anything else? l
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1 pid = fork();
2 if (pid == 0) {
3 /* child =/
} else if (pid < 0) {
/+ parent, upon error */
perror ("fork");
exit (-1);
} else {
/* parent, pid == child ID =%/

O 0 W J o Ul

Figure 3.2: Using the fork() Primitive

3.2 POSIX Multiprocessing

This section scratches the surface of the POSIX environ-
ment, including pthreads [Ope97], as this environment is
readily available and widely implemented. Section 3.2.1
provides a glimpse of the POSIX fork () and related
primitives, Section 3.2.2 touches on thread creation and
destruction, Section 3.2.3 gives a brief overview of POSIX
locking, and, finally, Section 3.4 presents the analogous
operations within the Linux kernel.

3.2.1 POSIX Process Creation and De-
struction

Processes are created using the fork () primitive, they
may be destroyed using the k111 () primitive, they may
destroy themselves using the exit () primitive. A pro-
cess executing a fork () primitive is said to be the “par-
ent” of the newly created process. A parent may wait on
its children using the wait () primitive.

Please note that the examples in this section are quite
simple. Real-world applications using these primitives
might need to manipulate signals, file descriptors, shared
memory segments, and any number of other resources. In
addition, some applications need to take specific actions
if a given child terminates, and might also need to be
concerned with the reason that the child terminated. These
concerns can of course add substantial complexity to the
code. For more information, see any of a number of
textbooks on the subject [Ste92].

If fork () succeeds, it returns twice, once for the
parent and again for the child. The value returned from
fork () allows the caller to tell the difference, as shown
in Figure 3.2 (forkjoin.c). Line 1 executes the
fork () primitive, and saves its return value in local
variable pid. Line 2 checks to see if pid is zero, in
which case, this is the child, which continues on to ex-
ecute line 3. As noted earlier, the child may terminate
viathe exit () primitive. Otherwise, this is the parent,

CHAPTER 3. TOOLS OF THE TRADE

1 void waitall (void)

2 {

3 int pid;

4 int status;

5

6 for (;;) {

7 pid = wait (&status);
8 if (pid == -1) {

9 if (errno == ECHILD)
10 break;

11 perror ("wait");
12 exit (-1);
13 }

Figure 3.3: Using the wait() Primitive

which checks for an error return from the fork () prim-
itive on line 4, and prints an error and exits on lines 5-7
if so. Otherwise, the fork () has executed successfully,
and the parent therefore executes line 9 with the variable
pid containing the process ID of the child.

The parent process may use the wait () primitive
to wait for its children to complete. However, use of
this primitive is a bit more complicated than its shell-
script counterpart, as each invocation of wait () waits
for but one child process. It is therefore customary to
wrap wait () into a function similar to the waitall ()
function shown in Figure 3.3 (api-pthread.h), this
waitall () function having semantics similar to the
shell-script wait command. Each pass through the loop
spanning lines 6-15 waits on one child process. Line 7
invokes the wait () primitive, which blocks until a child
process exits, and returns that child’s process ID. If the
process ID is instead -1, this indicates that the wait ()
primitive was unable to wait on a child. If so, line 9
checks for the ECHILD errno, which indicates that there
are no more child processes, so that line 10 exits the loop.
Otherwise, lines 11 and 12 print an error and exit.

Quick Quiz 3.4: Why does this wait () primitive
need to be so complicated? Why not just make it work
like the shell-script wait does?

It is critically important to note that the parent and
child do not share memory. This is illustrated by the
program shown in Figure 3.4 (forkjoinvar.c), in
which the child sets a global variable x to 1 on line 6,
prints a message on line 7, and exits on line 8. The parent
continues at line 14, where it waits on the child, and on
line 15 finds that its copy of the variable x is still zero.
The output is thus as follows:

Child process set x=1
Parent process sees x=0
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1 int x = 0;

2 int pid;

3

4 pid = fork();

5 if (pid == 0) { /* child */

6 x = 1;

7 printf ("Child process set x=1\n");

8 exit (0);

9}
10 if (pid < 0) { /* parent, upon error x/

11 perror ("fork");

12 exit (-1);

13 }

14 waitall();

15 printf ("Parent process sees x=%d\n", x);

Figure 3.4: Processes Created Via fork() Do Not Share
Memory
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void *mythread(void xarg)

{
x = 1;
printf ("Child process set x=1\n");
return NULL;

W J o0 WN

10 int main(int argc, char xargvl[])
11 |

12 pthread_t tid;

13 void *vp;

14

15 if (pthread_create(&tid, NULL,

16 mythread, NULL) != 0) {
17 perror ("pthread_create");

18 exit (-1);

19 }

20 if (pthread_join(tid, &vp) != 0) {

21 perror ("pthread_join");

22 exit (-1);

23 }

24 printf ("Parent process sees x=%d\n", x);
25 return 0;

26 }

Figure 3.5: Threads Created Via pthread_create ()
Share Memory

Quick Quiz 3.5: Isn’t there a lot more to fork () and
wait () than discussed here?

The finest-grained parallelism requires shared memory,
and this is covered in Section 3.2.2. That said, shared-
memory parallelism can be significantly more complex
than fork-join parallelism.

3.2.2 POSIX Thread Creation and De-
struction

To create a thread within an existing process, invoke the
pthread_create () primitive, for example, as shown
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on lines 15 and 16 of Figure 3.5 (pcreate.c). The
first argument is a pointer to a pthread_t in which
to store the ID of the thread to be created, the second
NULL argument is a pointer to an optional pthread_
attr_t, the third argument is the function (in this case,
mythread () that is to be invoked by the new thread,
and the last NULL argument is the argument that will be
passed to mythread.

In this example, mythread () simply returns, but it
could instead call pthread_exit ().

Quick Quiz 3.6: If the mythread () function in Fig-
ure 3.5 can simply return, why bother with pthread_
exit ()?7H

The pthread_join () primitive, shown on line 20,
is analogous to the fork-join wait () primitive. It blocks
until the thread specified by the t id variable completes
execution, either by invoking pthread_exit () or
by returning from the thread’s top-level function. The
thread’s exit value will be stored through the pointer
passed as the second argument to pthread_join ().
The thread’s exit value is either the value passed to
pthread_exit () or the value returned by the thread’s
top-level function, depending on how the thread in ques-
tion exits.

The program shown in Figure 3.5 produces output as
follows, demonstrating that memory is in fact shared be-
tween the two threads:

Child process set x=1
Parent process sees x=1

Note that this program carefully makes sure that only
one of the threads stores a value to variable x at a time.
Any situation in which one thread might be storing a value
to a given variable while some other thread either loads
from or stores to that same variable is termed a “data
race”. Because the C language makes no guarantee that
the results of a data race will be in any way reasonable,
we need some way of safely accessing and modifying data
concurrently, such as the locking primitives discussed in
the following section.

Quick Quiz 3.7: If the C language makes no guaran-
tees in presence of a data race, then why does the Linux
kernel have so many data races? Are you trying to tell me
that the Linux kernel is completely broken??? ll

3.2.3 POSIX Locking

The POSIX standard allows the programmer to avoid data
races via “POSIX locking”. POSIX locking features a
number of primitives, the most fundamental of which are
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pthread_mutex_lock () and pthread_mutex_
unlock (). These primitives operate on locks, which are
of type pthread_mutex_t. These locks may be de-
clared statically and initialized with PTHREAD_MUTEX__
INITIALIZER, or they may be allocated dynamically
and initialized using the pthread_mutex_init ()
primitive. The demonstration code in this section will
take the former course.

The pthread_mutex_lock () primitive “acquires’
the specified lock, and the pthread_mutex_
unlock () “releases” the specified lock. Because these
are “exclusive” locking primitives, only one thread at a
time may “hold” a given lock at a given time. For exam-
ple, if a pair of threads attempt to acquire the same lock
concurrently, one of the pair will be “granted” the lock
first, and the other will wait until the first thread releases
the lock.

Quick Quiz 3.8: What if I want several threads to hold
the same lock at the same time?

1)

This exclusive-locking property is demonstrated using
the code shown in Figure 3.6 (Lock. c). Line 1 defines
and initializes a POSIX lock named 1ock_ a, while line 2
similarly defines and initializes a lock named lock_b.
Line 3 defines and initializes a shared variable x.

Lines 5-28 defines a function lock_reader ()
which repeatedly reads the shared variable x while hold-
ing the lock specified by arg. Line 10 casts arg to
a pointer to a pthread_mutex_t, as required by the
pthread_mutex_lock () and pthread_mutex_
unlock () primitives.

Quick Quiz 3.9: Why not simply make the argument
to lock_reader () on line 5 of Figure 3.6 be a pointer
toapthread_mutex_t?

Lines 12-15 acquire the specified pthread_mutex_
t, checking for errors and exiting the program if any
occur. Lines 16-23 repeatedly check the value of %, print-
ing the new value each time that it changes. Line 22
sleeps for one millisecond, which allows this demonstra-
tion to run nicely on a uniprocessor machine. Line 24-27
release the pthread_mutex_t, again checking for er-
rors and exiting the program if any occur. Finally, line 28
returns NULL, again to match the function type required
by pthread_create ().

Quick Quiz 3.10: Writing four lines of code for each
acquisition and release of a pthread_mutex_t sure
seems painful! Isn’t there a better way? W

Lines 31-49 of Figure 3.6 shows lock_writer (),
which periodically update the shared variable x while
holding the specified pthread_mutex_t. As with
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1 pthread_mutex_t lock_a = PTHREAD_MUTEX_INITIALIZER;
2 pthread_mutex_t lock_b = PTHREAD_MUTEX_INITIALIZER;
3 int x = 0;
4
5 void xlock_reader (void xarg)
6 {
7 int 1i;
8 int newx = -1;
9 int oldx = -1;
10 pthread_mutex_t *pmlp = (pthread_mutex_t =x)arg;
11
12 if (pthread_mutex_lock (pmlp) != 0) {
13 perror ("lock_reader:pthread_mutex_lock");
14 exit (-1);
15 }
16 for (1 = 0; 1 < 100; i++) {
17 newx = ACCESS_ONCE (x);
18 if (newx != oldx) {
19 printf ("lock_reader(): x = %d\n", newx);
20 }
21 oldx = newx;
22 poll (NULL, 0, 1);
23 }
24 if (pthread_mutex_unlock (pmlp) != 0) {
25 perror ("lock_reader:pthread_mutex_unlock");
26 exit (-1);
27 }
28 return NULL;
29 }
30
31 void xlock_writer (void =*arg)
32 {
33 int 1i;
34 pthread_mutex_t *pmlp = (pthread_mutex_t =x)arg;
35
36 if (pthread_mutex_lock (pmlp) != 0) {
37 perror ("lock_reader:pthread_mutex_lock");
38 exit (-1);
39 }
40 for (1 = 0; 1 < 3; i++) {
41 ACCESS_ONCE (x) ++;
42 poll (NULL, 0, 5);
43 }
44 if (pthread_mutex_unlock (pmlp) != 0) {
45 perror ("lock_reader:pthread_mutex_unlock") ;
46 exit (-1);
47 }
48 return NULL;
49 }

Figure 3.6: Demonstration of Exclusive Locks
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1 printf ("Creating two threads using same lock:\n");
2 if (pthread_create(&tidl, NULL,

3 lock_reader, &lock_a) != 0) {
4 perror ("pthread_create");

5 exit (-1);

6 }

7 if (pthread_create(&tid2, NULL,

8 lock_writer, &lock_a) != 0) {
9 perror ("pthread_create");
10 exit (-1);
11 }
12 if (pthread_join(tidl, &vp) != 0) {
13 perror ("pthread_join");
14 exit (-1);
15 }
16 if (pthread_join(tid2, &vp) != 0) {
17 perror ("pthread_join");
18 exit (-1);
19 }

Figure 3.7: Demonstration of Same Exclusive Lock

lock_reader (), line 34 casts arg to a pointer to
pthread_mutex_t, lines 36-39 acquires the specified
lock, and lines 44-47 releases it. While holding the lock,
lines 40-48 increment the shared variable x, sleeping for
five milliseconds between each increment.

Figure 3.7 shows a code fragment that runs lock_
reader () and lock_writer () as thread using the
same lock, namely, 1ock_a. Lines 2-6 create a thread
running lock_reader (), and then Lines 7-11 create
a thread running lock_writer (). Lines 12-19 wait
for both threads to complete. The output of this code
fragment is as follows:

Creating two threads using same lock:
lock_reader(): x = 0

Because both threads are using the same lock, the
lock_reader () thread cannot see any of the interme-
diate values of x produced by lock_writer () while
holding the lock.

Quick Quiz 3.11: Is “x = 0” the only possible output
from the code fragment shown in Figure 3.7? If so, why?
If not, what other output could appear, and why? l

Figure 3.8 shows a similar code fragment, but this time
using different locks: lock_a for lock_reader ()
and lock_b for lock_writer (). The output of this
code fragment is as follows:

Creating two threads w/different locks:

lock_reader () : x 0

lock_reader () : x

lock_reader(): x
) X

1
2
lock_reader () : 3

Because the two threads are using different locks, they
do not exclude each other, and can run concurrently. The
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1 printf ("Creating two threads w/different locks:\n");
2 x = 0;
3 if (pthread_create(&tidl, NULL,
4 lock_reader, &lock_a) != 0) {
5 perror ("pthread_create");
6 exit (-1);
7 }
8 if (pthread_create(&tid2, NULL,
9 lock_writer, &lock_b) != 0) {
10 perror ("pthread_create");
11 exit (-1);
12 }
13 if (pthread_join(tidl, &vp) != 0) {
14 perror ("pthread_join");
15 exit (-1);
16 }
17 if (pthread_join(tid2, &vp) != 0) {
18 perror ("pthread_join");
19 exit (-1);
20 }

Figure 3.8: Demonstration of Different Exclusive Locks

lock_reader () function can therefore see the inter-
mediate values of x stored by lock_writer ().

Quick Quiz 3.12: Using different locks could cause
quite a bit of confusion, what with threads seeing each
others’ intermediate states. So should well-written paral-
lel programs restrict themselves to using a single lock in
order to avoid this kind of confusion? ll

Quick Quiz 3.13: In the code shown in Figure 3.8,
is lock_reader () guaranteed to see all the values
produced by lock_writer () ? Why or why not? B

Quick Quiz 3.14: Wait a minute here!!! Figure 3.7
didn’t initialize shared variable x, so why does it need to
be initialized in Figure 3.87 W

Although there is quite a bit more to POSIX exclusive
locking, these primitives provide a good start and are in
fact sufficient in a great many situations. The next section
takes a brief look at POSIX reader-writer locking.

3.2.4 POSIX Reader-Writer Locking

The POSIX API provides a reader-writer lock, which
is represented by a pthread_rwlock_t. As with
pthread _mutex_t, pthread rwlock_t may
be statically initialized via PTHREAD_RWLOCK_
INITIALIZER or dynamically initialized via
the pthread_rwlock_init () primitive. The
pthread_rwlock_rdlock () primitive  read-
acquires the specified pthread_rwlock_t, the
pthread_rwlock_wrlock () primitive  write-
acquires it, and the pthread_rwlock_unlock ()
primitive releases it. Only a single thread may write-hold
a given pthread_rwlock_t at any given time, but
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pthread_rwlock_t rwl = PTHREAD_RWLOCK_INITIALIZER;
int holdtime = 0;

int thinktime = 0;

long long xreadcounts;

int nreadersrunning = 0;

#define GOFLAG_INIT 0
#define GOFLAG_RUN 1

9 #define GOFLAG_STOP 2
10 char goflag = GOFLAG_INIT;

W J oUW N

11

12 void *reader (void xarg)

13 {

14 int 1i;

15 long long loopcnt = 0;

16 long me = (long)arg;

17

18 __sync_fetch_and_add(&nreadersrunning, 1);
19 while (ACCESS_ONCE (goflag) == GOFLAG_INIT) {
20 continue;

21 }

22 while (ACCESS_ONCE (goflag) == GOFLAG_RUN) {
23 if (pthread_rwlock_rdlock (&rwl) != 0) {
24 perror ("pthread_rwlock_rdlock");

25 exit (-1);

26 }

27 for (1 = 1; i < holdtime; i++) {

28 barrier();

29 }

30 if (pthread_rwlock_unlock (&rwl) != 0) {
31 perror ("pthread_rwlock_unlock");

32 exit (-1);

33 }

34 for (1 = 1; 1 < thinktime; i++) {

35 barrier();

36 }

37 loopcnt++;

38 }

39 readcounts[me] = loopcnt;

40 return NULL;

41 '}

Figure 3.9: Measuring Reader-Writer Lock Scalability

multiple threads may read-hold a given pthread_
rwlock_t, at least while there is no thread currently
write-holding it.

As you might expect, reader-writer locks are designed
for read-mostly situations. In these situations, a reader-
writer lock can provide greater scalability than can an
exclusive lock because the exclusive lock is by defini-
tion limited to a single thread holding the lock at any
given time, while the reader-writer lock permits an arbi-
trarily large number of readers to concurrently hold the
lock. However, in practice, we need to know how much
additional scalability is provided by reader-writer locks.

Figure 3.9 (rwlockscale.c) shows one way of
measuring reader-writer lock scalability. Line 1 shows
the definition and initialization of the reader-writer lock,
line 2 shows the holdtime argument controlling the
time each thread holds the reader-writer lock, line 3 shows
the thinktime argument controlling the time between
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the release of the reader-writer lock and the next acqui-
sition, line 4 defines the readcounts array into which
each reader thread places the number of times it acquired
the lock, and line 5 defines the nreadersrunning
variable, which determines when all reader threads have
started running.

Lines 7-10 define goflag, which synchronizes the
start and the end of the test. This variable is initially set to
GOFLAG_INIT, then set to GOFLAG_RUN after all the
reader threads have started, and finally set to GOFLAG__
STOP to terminate the test run.

Lines 12-41 define reader (), which is the
reader thread. Line 18 atomically increments the
nreadersrunning variable to indicate that this thread
is now running, and lines 19-21 wait for the test to start.
The ACCESS_ONCE () primitive forces the compiler to
fetch gof lag on each pass through the loop—the com-
piler would otherwise be within its rights to assume that
the value of gof1lag would never change.

The loop spanning lines 22-38 carries out the per-
formance test. Lines 23-26 acquire the lock, lines 27-
29 hold the lock for the specified duration (and the
barrier () directive prevents the compiler from op-
timizing the loop out of existence), lines 30-33 release
the lock, and lines 34-36 wait for the specified duration
before re-acquiring the lock. Line 37 counts this lock
acquisition.

Line 38 moves the lock-acquisition count to this
thread’s element of the readcounts[] array, and
line 40 returns, terminating this thread.

Figure 3.10 shows the results of running this test on
a 64-core Power-5 system with two hardware threads
per core for a total of 128 software-visible CPUs. The
thinktime parameter was zero for all these tests, and
the holdt ime parameter set to values ranging from one
thousand (“1K” on the graph) to 100 million (“100M” on
the graph). The actual value plotted is:

Ly

NL; (3.1

where N is the number of threads, Ly is the number of
lock acquisitions by N threads, and L is the number of
lock acquisitions by a single thread. Given ideal hardware
and software scalability, this value will always be 1.0.
As can be seen in the figure, reader-writer locking
scalability is decidedly non-ideal, especially for smaller
sizes of critical sections. To see why read-acquisition
can be so slow, consider that all the acquiring threads
must update the pthread_rwlock_t data structure.
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Figure 3.10: Reader-Writer Lock Scalability

Therefore, if all 128 executing threads attempt to read-
acquire the reader-writer lock concurrently, they must
update this underlying pthread_rwlock_t one ata
time. One lucky thread might do so almost immediately,
but the least-lucky thread must wait for all the other 127
threads to do their updates. This situation will only get
worse as you add CPUs.

Quick Quiz 3.15: Isn’t comparing against single-CPU
throughput a bit harsh? ll

Quick Quiz 3.16: But 1,000 instructions is not a par-
ticularly small size for a critical section. What do I do if
I need a much smaller critical section, for example, one
containing only a few tens of instructions? ll

Quick Quiz 3.17: In Figure 3.10, all of the traces other
than the 100M trace deviate gently from the ideal line. In
contrast, the 100M trace breaks sharply from the ideal
line at 64 CPUs. In addition, the spacing between the
100M trace and the 10M trace is much smaller than that
between the 10M trace and the 1M trace. Why does the
100M trace behave so much differently than the other
traces? H

Quick Quiz 3.18: Power-5 is several years old, and
new hardware should be faster. So why should anyone
worry about reader-writer locks being slow? ll

Despite these limitations, reader-writer locking is quite
useful in many cases, for example when the readers must
do high-latency file or network I/O. There are alternatives,
some of which will be presented in Chapters 4 and 8.
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Given that Figure 3.10 shows that the overhead of reader-
writer locking is most severe for the smallest critical sec-
tions, it would be nice to have some other way to protect
the tiniest of critical sections. One such way are atomic
operations. We have seen one atomic operations already,
in the form of the __sync_fetch_and_add () prim-
itive on line 18 of Figure 3.9. This primitive atomically
adds the value of its second argument to the value refer-
enced by its first argument, returning the old value (which
was ignored in this case). If a pair of threads concur-
rently execute ___sync_fetch_and_add () on the
same variable, the resulting value of the variable will
include the result of both additions.

The gcc compiler offers a number of additional atomic
operations, including __sync_fetch_and_sub (),
__sync_fetch_and_or (), __sync_fetch_
and_and (), __ sync_fetch_and_xor (), and
__sync_fetch_and_nand (), all of which return
the old value. If you instead need the new value, you
can instead use the _ sync_add_and_fetch(),
__sync_sub_and_fetch(), __sync_or_
and_fetch (), __sync_and_and_fetch(),
_ _sync_xor_and_fetch(),and _ _sync_nand_
and_fetch () primitives.

Quick Quiz 3.19: Is it really necessary to have both
sets of primitives? H

The classic compare-and-swap operation is provided
by a pair of primitives, __sync_bool_compare_
and_swap () and __ sync_val_compare_and_
swap (). Both of these primitive atomically update a
location to a new value, but only if its prior value was
equal to the specified old value. The first variant returns 1
if the operation succeeded and O if it failed, for example,
if the prior value was not equal to the specified old value.
The second variant returns the prior value of the location,
which, if equal to the specified old value, indicates that
the operation succeeded. Either of the compare-and-swap
operation is “universal” in the sense that any atomic op-
eration on a single location can be implemented in terms
of compare-and-swap, though the earlier operations are
often more efficient where they apply. The compare-and-
swap operation is also capable of serving as the basis for
a wider set of atomic operations, though the more elabo-
rate of these often suffer from complexity, scalability, and
performance problems [Her90].

The ___sync_synchronize () primitive issues a
13 : 99 : : : b
memory barrier”, which constrains both the compiler’s
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and the CPU’s ability to reorder operations, as discussed
in Section 12.2. In some cases, it is sufficient to constrain
the compiler’s ability to reorder operations, while allow-
ing the CPU free rein, in which case the barrier ()
primitive may be used, as it in fact was on line 28 of
Figure 3.9. In some cases, it is only necessary to ensure
that the compiler avoids optimizing away a given memory
access, in which case the ACCESS_ONCE () primitive
may be used, as it was on line 17 of Figure 3.6. These last
two primitives are not provided directly by gcc, but may
be implemented straightforwardly as follows:

#define ACCESS_ONCE (x) (*(volatile typeof (x) =*)&(x))
#define barrier() __asm__ _ _volatile_ ("": : :"memory")

Quick Quiz 3.20: Given that these atomic operations
will often be able to generate single atomic instructions
that are directly supported by the underlying instruction
set, shouldn’t they be the fastest possible way to get things
done? M

3.4 Linux-Kernel Equivalents to
POSIX Operations

Unfortunately, threading operations, locking primitives,
and atomic operations were in reasonably wide use long
before the various standards committees got around to
them. As a result, there is considerable variation in how
these operations are supported. It is still quite common to
find these operations implemented in assembly language,
either for historical reasons or to obtain better perfor-
mance in specialized circumstances. For example, the
gcc ___sync_ family of primitives all provide memory-
ordering semantics, motivating many developers to create
their own implementations for situations where the mem-
ory ordering semantics are not required.

Therefore, Table 3.1 on page 27 provides a rough map-
ping between the POSIX and gcc primitives to those used
in the Linux kernel. Exact mappings are not always avail-
able, for example, the Linux kernel has a wide variety of
locking primitives, while gcc has a number of atomic op-
erations that are not directly available in the Linux kernel.
Of course, on the one hand, user-level code does not need
the Linux kernel’s wide array of locking primitives, while
on the other hand, gcc’s atomic operations can be emu-
lated reasonably straightforwardly using cmpxchg () .

Quick Quiz 3.21: What happened to the Linux-kernel
equivalents to fork () and join () ? H
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3.5 The Right Tool for the Job:
How to Choose?

As a rough rule of thumb, use the simplest tool that will
get the job done. If you can, simply program sequentially.
If that is insufficient, try using a shell script to mediate par-
allelism. If the resulting shell-script fork () /exec ()
overhead (about 480 microseconds for a minimal C pro-
gram on an Intel Core Duo laptop) is too large, try using
the C-language fork () and wait () primitives. If the
overhead of these primitives (about 80 microseconds for
a minimal child process) is still too large, then you might
need to use the POSIX threading primitives, choosing the
appropriate locking and/or atomic-operation primitives. If
the overhead of the POSIX threading primitives (typically
sub-microsecond) is too great, then the primitives intro-
duced in Chapter 8 may be required. Always remember
that inter-process communication and message-passing
can be good alternatives to shared-memory multithreaded
execution.

Of course, the actual overheads will depend not only
on your hardware, but most critically on the manner in
which you use the primitives. Therefore, it is necessary
to make the right design choices as well as the correct
choice of individual primitives, as is discussed at length
in subsequent chapters.
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Category

| POSIX

Linux Kernel

Thread Management

pthread_t

struct task_struct

pthread_create ()

kthread_create

pthread_exit ()

kthread_should_stop () (rough)

pthread_join ()

kthread_stop () (rough)

poll (NULL, 0, 5)

schedule_timeout_interruptible ()

POSIX Locking pthread_mutex_t spinlock_t (rough)
struct mutex
PTHREAD_MUTEX_INITIALIZER DEFINE_SPINLOCK ()
DEFINE_MUTEX ()
pthread_mutex_lock () spin_lock () (and friends)
mutex_lock () (and friends)
pthread_mutex_unlock () spin_unlock () (and friends)
mutex_unlock ()
POSIX Reader-Writer pthread_rwlock_t rwlock_t (rough)
Locking struct rw_semaphore

PTHREAD_RWLOCK_INITIALIZER

DEF INE_RWLOCK ()
DECLARE_RWSEM ()

pthread_rwlock_rdlock ()

read_lock () (and friends)
down_read () (and friends)

pthread_rwlock_unlock ()

read_unlock () (and friends)
up_read ()

pthread_rwlock_wrlock ()

write_lock () (and friends)
down_write () (and friends)

pthread_rwlock_unlock ()

write_unlock () (and friends)
up_write ()

Atomic Operations

C Scalar Types

atomic_t
atomic64_t

_ _sync_fetch_and_add ()

atomic_add_return ()
atomic64_add_return ()

__sync_fetch_and_sub ()

atomic_sub_return ()
atomic64_sub_return ()

__sync_val_compare_and_swap ()| cmpxchg()
__sync_lock_test_and_set () xchg () (rough)
__sync_synchronize () smp_mb ()

Table 3.1: Mapping from POSIX to Linux-Kernel Primitives
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Chapter 4

Counting

Counting is perhaps the simplest and most natural for
a computer to do. However, counting efficiently and scal-
ably on a large shared-memory multiprocessor can be
quite challenging. Furthermore, the simplicity of the un-
derlying concept of counting allows us to explore the
fundamental issues of concurrency without the distrac-
tions of elaborate data structures or complex synchroniza-
tion primitives. Counting therefore provides an excellent
introduction to parallel programming.

This chapter covers a number of special cases for which
there are simple, fast, and scalable counting algorithms.
But first, let us find out how much you already know about
concurrent counting.

Quick Quiz 4.1: Why on earth should efficient and
scalable counting be hard? After all, computers have
special hardware for the sole purpose of doing counting,
addition, subtraction, and lots more besides, don’t they???
]

Quick Quiz 4.2: Network-packet counting prob-
lem. Suppose that you need to collect statistics on the
number of networking packets (or total number of bytes)
transmitted and/or received. Packets might be transmitted
or received by any CPU on the system. Suppose further
that this large machine is capable of handling a million
packets per second, and that there is a systems-monitoring
package that reads out the count every five seconds. How
would you implement this statistical counter? ll

Quick Quiz 4.3: Approximate structure-allocation
limit problem. Suppose that you need to maintain a
count of the number of structures allocated in order to
fail any allocations once the number of structures in use
exceeds a limit (say, 10,000). Suppose further that these
structures are short-lived, that the limit is rarely exceeded,
and that a “sloppy” approximate limit is acceptable. l

Quick Quiz 4.4: Exact structure-allocation limit
problem. Suppose that you need to maintain a count
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of the number of structures allocated in order to fail any
allocations once the number of structures in use exceeds
an exact limit (say, 10,000). Suppose further that these
structures are short-lived, and that the limit is rarely ex-
ceeded, that there is almost always at least one structure in
use, and suppose further still that it is necessary to know
exactly when this counter reaches zero, for example, in
order to free up some memory that is not required unless
there is at least one structure in use. ll

Quick Quiz 4.5: Removable I/O device access-
count problem. Suppose that you need to maintain a
reference count on a heavily used removable mass-storage
device, so that you can tell the user when it is safe to re-
moved the device. This device follows the usual removal
procedure where the user indicates a desire to remove the
device, and the system tells the user when it is safe to do
so. H

The remainder of this chapter will develop answers to
these questions.

long counter = 0;

1

2

3 void inc_count (void)
4 {

5 counter++;
6 }

7

8

long read_count (void)
9 {
return counter;
11 3}

Figure 4.1: Just Count!



atomic_t counter = ATOMIC_INIT (0);

1
2
3 void inc_count (void)

4 {

5 atomic_inc (&counter);
6

7

8

}

long read_count (void)
9 {
10 return atomic_read (&counter) ;
11 }

Figure 4.2: Just Count Atomically!

4.1 Why Isn’t Concurrent Count-
ing Trivial?

Let’s start with something simple, for example, the
straightforward use of arithmetic shown in Figure 4.1
(count_nonatomic.c). Here, we have a counter on
line 1, we increment it on line 5, and we read out its value
on line 10. What could be simpler?

This approach has the additional advantage of being
blazingly fast if you are doing lots of reading and almost
no incrementing, and on small systems, the performance
is excellent.

There is just one large fly in the ointment: this approach
can lose counts. On my dual-core laptop, a short run in-
voked inc_count () 100,014,000 times, but the final
value of the counter was only 52,909,118. Although it
is true that approximate values have their place in com-
puting, it is almost always necessary to do better than
this.

Quick Quiz 4.6: But doesn’t the ++ operator produce
an x86 add-to-memory instruction? And won’t the CPU
cache cause this to be atomic?

Quick Quiz 4.7: The 8-figure accuracy on the number
of failures indicates that you really did test this. Why
would it be necessary to test such a trivial program, espe-
cially when the bug is easily seen by inspection? H

The straightforward way to count accurately is to use
atomic operations, as shown in Figure 4.2 (count_
atomic.c). Line 1 defines an atomic variable, line 5
atomically increments it, and line 10 reads it out. Be-
cause this is atomic, it keeps perfect count. However, it is
slower: on a Intel Core Duo laptop, it is about six times
slower than non-atomic increment when a single thread
is incrementing, and more than fen times slower if two
threads are incrementing.

This poor performance should not be a surprise, given
the discussion in Chapter 2, nor should it be a surprise
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that the performance of atomic increment gets slower as
the number of CPUs and threads increase, as shown in
Figure 4.3. In this figure, the horizontal dashed line rest-
ing on the x axis is the ideal performance that would be
achieved by a perfectly scalable algorithm: with such an
algorithm, a given increment would incur the same over-
head that it would in a single-threaded program. Atomic
increment of a single global variable is clearly decidedly
non-ideal, and gets worse as you add CPUs.

Quick Quiz 4.8: Why doesn’t the dashed line on the
x axis meet the diagonal line aty =1? H

Quick Quiz 4.9: But atomic increment is still pretty
fast. And incrementing a single variable in a tight loop
sounds pretty unrealistic to me, after all, most of the
program’s execution should be devoted to actually doing
work, not accounting for the work it has done! Why
should I care about making this go faster? l

For another perspective on global atomic increment,
consider Figure 4.4. In order for each CPU to get a chance
to increment a given global variable, the cache line con-
taining that variable must circulate among all the CPUs,
as shown by the red arrows. Such circulation will take
significant time, resulting in the poor performance seen
in Figure 4.3.

The following sections discuss high-performance
counting, which avoids the delays inherent in such circu-
lation.

Quick Quiz 4.10: But why can’t CPU designers sim-
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Figure 4.4: Data Flow For Global Atomic Increment

ply ship the operation to the data, avoiding the need to
circulate the cache line containing the global variable
being incremented? M

4.2 Statistical Counters

This section covers the common special case of statistical
counters, where the count is updated extremely frequently
and the value is read out rarely, if ever. These will be used
to solve the network-packet counting problem from the
Quick Quiz on page 29.

4.2.1 Design

Statistical counting is typically handled by providing a
counter per thread (or CPU, when running in the kernel),
so that each thread updates its own counter. The aggregate
value of the counters is read out by simply summing up
all of the threads’ counters, relying on the commutative
and associative properties of addition. This is an example
of the Data Ownership pattern that will be introduced in
Section 5.3.4.

Quick Quiz 4.11: But doesn’t the fact that C’s “inte-
gers” are limited in size complicate things? H

4.2.2 Array-Based Implementation

One way to provide per-thread variables is to allocate
an array with one element per thread (presumably cache
aligned and padded to avoid false sharing).

Quick Quiz 4.12: An array??? But doesn’t that limit
the number of threads? l
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DEFINE_PER_THREAD (long, counter);

1
2
3 void inc_count (void)

4 {

5 __get_thread_var (counter) ++;
6}

7

8

long read_count (void)
9 {
10 int t;
11 long sum = 0;

13 for_each_thread(t)

14 sum += per_thread(counter, t);
15 return sum;

16 }

Figure 4.5: Array-Based Per-Thread Statistical Counters

Such an array can be wrapped into per-thread primi-
tives, as shown in Figure 4.5 (count_stat.c). Line 1
defines an array containing a set of per-thread counters of
type long named, creatively enough, counter.

Lines 3-6 show a function that increments the counters,
using the __get_thread_var () primitive to locate
the currently running thread’s element of the counter
array. Because this element is modified only by the corre-
sponding thread, non-atomic increment suffices.

Lines 8-16 show a function that reads out the aggregate
value of the counter, using the for_each_thread ()
primitive to iterate over the list of currently running
threads, and using the per_thread () primitive to
fetch the specified thread’s counter. Because the hard-
ware can fetch and store a properly aligned 1ong atomi-
cally, and because gcc is kind enough to make use of this
capability, normal loads suffice, and no special atomic
instructions are required.

Quick Quiz 4.13: What other choice does gcc have,
anyway??? ll

Quick Quiz 4.14: How does the per-thread counter
variable in Figure 4.5 get initialized? H

Quick Quiz 4.15: How is the code in Figure 4.5 sup-
posed to permit more than one counter? ll

This approach scales linearly with increasing number
of updater threads invoking inc_count (). Asis shown
by the green arrows in Figure 4.6, the reason for this is
that each CPU can make rapid progress incrementing
its thread’s variable, with no expensive communication
required crossing the full diameter of the computer system.
However, this excellent update-side scalability comes at
great read-side expense for large numbers of threads. The
next section shows one way to reduce read-side expense
while still retaining the update-side scalability.
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4.2.3 Eventually Consistent Implementa-
tion

One way to retain update-side scalability while greatly
improving read-side performance is to weaken consis-
tency requirements. While the counting algorithm in
the previous section is guaranteed to return a value be-
tween the value that an ideal counter would have taken on
near the beginning of read_count () ’s execution and
that near the end of read_count () ’s execution. Even-
tual consistency [Vog09] provides a weaker guarantee:
in absence of calls to inc_count (), calls to read_
count () will eventually return the correct answer.

We exploit eventual consistency by maintaining a
global counter. However, updaters only manipulate their
per-thread counters. A separate thread is provided to
transfer counts from the per-thread counters to the global
counter. Readers simply access the value of the global
counter. If updaters are active, the value used by the read-
ers will be out of date, however, once updates cease, the
global counter will eventually converge on the true value—
hence this approach qualifies as eventually consistent.

The implementation is shown in Figure 4.7 (count_
stat_eventual.c). Lines 1-2 show the per-thread
variable and the global variable that track the counter’s
value, and line three shows stopflag which is used to
coordinate termination (for the case where we want to ter-
minate the program with an accurate counter value). The
inc_count () function shown on lines 5-8 is identical
to its counterpart in Figure 4.5. The read_count ()
function shown on lines 10-13 simply returns the value of
the global_count variable.

However, the count_init () function on lines 34-
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DEFINE_PER_THREAD (atomic_t, counter);
atomic_t global_count;
int stopflag;

void inc_count (void)
{

atomic_inc (&__get_thread_var (counter));
}

oUW N

10 unsigned long read_count (void)

11 |

12 return atomic_read(&global_count);
13}

14

15 void xeventual (void *arg)

16 {

17 int t;

18 int sum;

19

20 while (stopflag < 3) {

21 sum = 0;

22 for_each_thread(t)

23 sum += atomic_xchg (&per_thread(counter, t), 0);
24 atomic_add (sum, &global_count);
25 poll (NULL, 0, 1);

26 if (stopflag) {

27 smp_mb () ;

28 stopflag++;

29 }

30 }

31 return NULL;

32}

33

34 void count_init (void)

35 {

36 thread_id_t tid;

37

38 if (pthread_create(&tid, NULL, eventual, NULL) != 0)
39 perror ("count_init:pthread_create");
40 exit (-1);

41 }

42 3}

43

44 void count_cleanup (void)

45 {

46 stopflag = 1;
47 while (stopflag < 3)

48 poll (NULL, 0, 1);
49 smp_mb () ;
50 }

Figure 4.7: Array-Based Per-Thread Eventually Consis-
tent Counters
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42 creates the eventual () thread shown on lines 15-
32, which cycles through all the threads, using the
atomic_xchg () function to remove count from each
thread’s local counter, adding the sum to the global_
count variable. The eventual () thread waits an ar-
bitrarily chosen one millisecond between passes. The
count_cleanup () function on lines 44-50 coordi-
nates termination.

This approach gives extremely fast counter read-out
while still supporting linear counter-update performance.
However, this excellent read-side performance and update-
side scalability comes at the cost of high update-side over-
head, due to both the atomic operations and the array
indexing hidden in the __get_thread_var () prim-
itive, which can be quite expensive on some CPUs with
deep pipelines.

Quick Quiz 4.16: Why does inc_count () in Fig-
ure 4.7 need to use atomic instructions? Hl

Quick Quiz 4.17: Won’t the single global thread in the
function eventual () of Figure 4.7 be just as severe a
bottleneck as a global lock would be? B

Quick Quiz 4.18: Won’t the estimate returned by
read_count () in Figure 4.7 become increasingly in-
accurate as the number of threads rises? ll

4.2.4 Per-Thread-Variable-Based
mentation

Imple-

Fortunately, gcc provides an ___thread storage class
that provides per-thread storage. This can be used as
shown in Figure 4.8 (count_end. c) to implement a
statistical counter that not only scales, but that also incurs
little or no performance penalty to incrementers compared
to simple non-atomic increment.

Lines 1-4 define needed variables: counter is the per-
thread counter variable, the counterp [ ] array allows
threads to access each others’ counters, finalcount accu-
mulates the total as individual threads exit, and final_
mutex coordinates between threads accumulating the
total value of the counter and exiting threads.

Quick Quiz 4.19: Why do we need an explicit array
to find the other threads’ counters? Why doesn’t gcc pro-
vide a per_thread () interface, similar to the Linux
kernel’s per_cpu () primitive, to allow threads to more
easily access each others’ per-thread variables? ll

The inc_count () function used by updaters is quite
simple, as can be seen on lines 6-9.

The read_count () function used by readers is a
bit more complex. Line 16 acquires a lock to exclude
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long __thread counter = 0;
long *counterp[NR_THREADS] = { NULL
long finalcount = 0;

DEFINE_SPINLOCK (final_mutex) ;

void inc_count (void)
{
counter++;

}

long read_count (void)
{

int t;

long sum;

spin_lock (&final_mutex) ;
sum = finalcount;
for_each_thread (t)
if (counterp[t] != NULL)
sum += xcounterp(t];
spin_unlock (&final_mutex) ;
return sum;

}

void count_register_thread(void)
{
int idx = smp_thread_id();

spin_lock (&final_mutex) ;
counterp[idx] = &counter;
spin_unlock (&final_mutex) ;

}

}i
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void count_unregister_thread(int nthreadsexpected)

int idx = smp_thread_id();

spin_lock (&final_mutex);
finalcount += counter;
counterp[idx] = NULL;
spin_unlock (&final_mutex) ;

Figure 4.8: Per-Thread Statistical Counters
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exiting threads, and line 21 releases it. Line 17 initializes
the sum to the count accumulated by those threads that
have already exited, and lines 18-20 sum the counts being
accumulated by threads currently running. Finally, line 22
returns the sum.

Quick Quiz 4.20: Why on earth do we need something
as heavyweight as a lock guarding the summation in the
function read_count () in Figure 4.87

Lines 25-32 show the
thread() function, which must be called by
each thread before its first use of this counter. This
function simply sets up this thread’s element of the
counterp [] array to point to its per-thread counter
variable.

count_register_

Quick Quiz 4.21: Why on earth do we need to ac-
quire the lock in count_register_thread() in
Figure 4.8? It is a single properly aligned machine-word
store to a location that no other thread is modifying, so it
should be atomic anyway, right? B

Lines 34-42 show the count_unregister_
thread () function, which must be called prior to
exit by each thread that previously called count_
register_thread (). Line 38 acquires the lock,
and line 41 releases it, thus excluding any calls to
read_count () as well as other calls to count_
unregister_thread (). Line 39 adds this thread’s
counter to the global finalcount, and then NULLs
out its counterp [] array entry. A subsequent call to
read_count () will see the exiting thread’s count in
the global finalcount, and will skip the exiting thread
when sequencing through the counterp[] array, thus
obtaining the correct total.

This approach gives updaters almost exactly the same
performance as a non-atomic add, and also scales linearly.
On the other hand, concurrent reads contend for a sin-
gle global lock, and therefore perform poorly and scale
abysmally. However, this is not a problem for statistical
counters, where incrementing happens often and readout
happens almost never. In addition, this approach is con-
siderably more complex than the array-based scheme, due
to the fact that a given thread’s per-thread variables vanish
when that thread exits.

Quick Quiz 4.22: Fine, but the Linux kernel doesn’t
have to acquire a lock when reading out the aggregate
value of per-CPU counters. So why should user-space
code need to do this???
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4.2.5 Discussion

These two implementations show that it is possible to
obtain uniprocessor performance for statistical counters,
despite running on a parallel machine.

Quick Quiz 4.23: What fundamental difference is
there between counting packets and counting the total
number of bytes in the packets, given that the packets
vary in size? l

Quick Quiz 4.24: Given that the reader must sum all
the threads’ counters, this could take a long time given
large numbers of threads. Is there any way that the in-
crement operation can remain fast and scalable while
allowing readers to also enjoy reasonable performance
and scalability? H

Given what has been presented in this section, you
should now be able to answer the Quick Quiz about sta-
tistical counters for networking near the beginning of this
chapter.

4.3 Approximate Limit Counters

Another special case of counting involves limit-checking.
For example, as noted in the approximate structure-
allocation limit problem in the Quick Quiz on page 29,
suppose that you need to maintain a count of the number
of structures allocated in order to fail any allocations once
the number of structures in use exceeds a limit, in this
case, 10,000. Suppose further that these structures are
short-lived, and that this limit is rarely exceeded.

4.3.1 Design

One possible design for limit counters is to divide the
limit of 10,000 by the number of threads, and give each
thread a fixed pool of structures. For example, given 100
threads, each thread would manage its own pool of 100
structures. This approach is simple, and in some cases
works well, but it does not handle the common case where
a given structure is allocated by one thread and freed by
another [MS93]. On the one hand, if a given thread takes
credit for any structures it frees, then the thread doing
most of the allocating runs out of structures, while the
threads doing most of the freeing have lots of credits
that they cannot use. On the other hand, if freed struc-
tures are credited to the CPU that allocated them, it will
be necessary for CPUs to manipulate each others’ coun-
ters, which will require lots of expensive atomic instruc-
tions. Furthermore, because structures come in different
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sizes, rather than supporting inc_count () and dec_
count () interfaces, we implement add_count () and
sub_count () to allow variable-sized structures to be
properly accounted for.

In short, for many important workloads, we cannot
fully partition the counter. However, we can partially
partition the counter, so that in the common case, each
thread need only manipulate its own private state, while
still allowing counts to flow between threads as needed.
The statistical counting scheme discussed in Section 4.2.4
provides an interesting starting point, in that it maintains
a global counter as well as per-thread counters, with the
aggregate value being the sum of all of these counters,
global along with per-thread. The key change is to pull
each thread’s counter into the global sum while that thread
is still running, rather than waiting for thread exit. Clearly,
we want threads to pull in their own counts, as cross-
thread accesses are expensive and scale poorly.

This leaves open the question of exactly when a given
thread’s counter should be pulled into the global counter.
In the initial implementation, we will start by maintaining
a limit on the value of the per-thread counter. When this
limit would be exceeded, the thread pulls its counter into
the global counter. Of course, we cannot simply add
to the counter when a structure is allocated: we must
also subtract from the counter when a structure is freed.
We must therefore make use of the global counter when
a subtraction would otherwise reduce the value of the
per-thread counter below zero. However, if the limit is
reasonably large, almost all of the addition and subtraction
operations should be handled by the per-thread counter,
which should give us good performance and scalability.

This design is an example of “parallel fastpath”, which
is an important design pattern in which the common case
executes with no expensive instructions and no interac-
tions between threads, but where occasional use is also
made of a more conservatively designed global algorithm.

4.3.2 Simple Limit Counter Implementa-
tion

Figure 4.9 shows both the per-thread and global vari-
ables used by this implementation. The per-thread
counter and countermax variables are the corre-
sponding thread’s local counter and the upper bound on
that counter, respectively. The globalcountmax vari-
able on line 3 contains the upper bound for the aggregate
counter, and the globalcount variable on line 4 is the
global counter. The sum of globalcount and each

35

unsigned long __thread counter = 0;

unsigned long __thread countermax = 0;
unsigned long globalcountmax = 10000;

unsigned long globalcount = 0;

unsigned long globalreserve = 0;

unsigned long xcounterp[NR_THREADS] = { NULL };
DEFINE_SPINLOCK (gblcnt_mutex) ;
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Figure 4.9: Simple Limit Counter Variables

Figure 4.10: Simple Limit Counter Variable Relationships

thread’s counter gives the aggregate value of the over-
all counter. The globalreserve variable on line 5
is the sum of all of the per-thread countermax vari-
ables. The relationship among these variables is shown
by Figure 4.10:

1. The sum of globalcount and
globalreserve must be less than or equal
to globalcountmax.

2. The sum of all threads’ countermax values must
be less than or equal to globalreserve.

3. Each thread’s counter must be less than or equal
to that thread’s countermax.

Each element of the counterp[] array references
the corresponding thread’s counter variable, and, fi-
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1 int add_count (unsigned long delta)

2 {

3 if (countermax - counter >= delta) {
4 counter += delta;

5 return 1;

6 }

7 spin_lock (&gblcnt_mutex) ;

8 globalize_count () ;

9 if (globalcountmax -
10 globalcount - globalreserve < delta) {
11 spin_unlock (&gblcnt_mutex) ;
12 return 0;
13 }

14 globalcount += delta;
15 balance_count () ;
16 spin_unlock (&gblcnt_mutex) ;

17 return 1;

18 }

19

20 int sub_count (unsigned long delta)
21 |

22 if (counter >= delta) {

23 counter -= delta;

24 return 1;

25 }

26 spin_lock (&gblcnt_mutex) ;
27 globalize_count () ;
28 if (globalcount < delta) {

29 spin_unlock (&gblcnt_mutex) ;
30 return 0;
31 }

32 globalcount -= delta;
33 balance_count () ;
34 spin_unlock (&gblcnt_mutex) ;

35 return 1;

36 }

37

38 unsigned long read_count (void)
39 {

40 int t;

41 unsigned long sum;

42

43 spin_lock (&gblcnt_mutex) ;
44 sum = globalcount;

45 for_each_thread (t)

46 if (counterp(t] != NULL)
47 sum += xcounterp[t];

48 spin_unlock (&gblcnt_mutex) ;
49 return sum;

50 }

Figure 4.11: Simple Limit Counter Add, Subtract, and
Read

nally, the gblcnt_mutex spinlock guards all of the
global variables, in other words, no thread is permitted to
access or modify any of the global variables unless it has
acquired gblcnt_mutex.

Figure 4.11 shows the add_count (), sub_
count (), and read_count () functions (count_
lim.c).

Lines 1-18 show add_count (), which adds the spec-
ified value delta to the counter. Line 3 checks to see if
there is room for delta on this thread’s counter, and,
if so, line 4 adds it and line 6 returns success. This is the
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add_counter () fastpath, and it does no atomic oper-
ations, references only per-thread variables, and should
not incur any cache misses.

Quick Quiz 4.25: What is with the strange form of the
condition on line 3 of Figure 4.11? Why not the following
more intuitive form of the fastpath?

3 1f (counter + delta <= countermax) {
4 counter += delta;

5 return 1;
6

If the test on line 3 fails, we must access global vari-
ables, and thus must acquire gblcnt_mutex on line 7,
which we release on line 11 in the failure case or on
line 16 in the success case. Line 8 invokes globalize_
count (), shown in Figure 4.12, which clears the thread-
local variables, adjusting the global variables as needed,
thus simplifying global processing. (But don’t take my
word for it, try coding it yourself!) Lines 9 and 10 check
to see if addition of delta can be accommodated, with
the meaning of the expression preceding the less-than
sign shown in Figure 4.10 as the difference in height of
the two red bars. If the addition of delta cannot be
accommodated, then line 11 (as noted earlier) releases
gblcnt_mutex and line 12 returns indicating failure.

Otherwise, line 14 subtracts delta from
globalcount, line 15 invokes balance_count ()
(shown in Figure 4.12) in order to update both the
global and the per-thread variables (hopefully setting
this thread’s countermax to re-enable the fastpath),
if appropriate, to re-enable fastpath processing, line 16
release gblcnt_mutex (again, as noted earlier), and,
finally, line 17 returns indicating success.

Quick Quiz 4.26: Why does globalize_count ()
zero the per-thread variables, only to later call balance_
count () to refill them in Figure 4.11?7 Why not just
leave the per-thread variables non-zero? l

Lines 20-36 show sub_count (), which subtracts
the specified delta from the counter. Line 22 checks to
see if the per-thread counter can accommodate this sub-
traction, and, if so, line 23 does the subtraction and line 24
returns success. These lines form sub__count () ’s fast-
path, and, as with add_count (), this fastpath executes
no costly operations.

If the fastpath cannot accommodate subtraction of
delta, execution proceeds to the slowpath on lines 26-
35. Because the slowpath must access global state, line 26
acquires gblcnt_mutex, which is release either by
line 29 (in case of failure) or by line 34 (in case of suc-
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cess). Line 27 invokes globalize_count (), shown
in Figure 4.12, which again clears the thread-local vari-
ables, adjusting the global variables as needed. Line 28
checks to see if the counter can accommodate subtracting
delta, and, if not, line 29 releases gblcnt_mutex
(as noted earlier) and line 30 returns failure.

Quick Quiz 4.27: Given that globalreserve
counted against us in add_count (), why doesn’t it
count for us in sub_count () in Figure 4.117

If, on the other hand, line 28 finds that the counter
can accommodate subtracting de 1t a, then line 32 does
the subtraction, line 33 invokes balance_count ()
(shown in Figure 4.12) in order to update both global and
per-thread variables (hopefully re-enabling the fastpath),
line 34 releases gblcnt_mutex, and line 35 returns
success.

Quick Quiz 4.28: Why have both add_count ()
and sub_count () in Figure 4.11? Why not simply
pass a negative number to add_count () ? l

Lines 38-50 show read_count (), which returns the
aggregate value of the counter. It acquires gblcnt_
mutex on line 43 and releases it on line 48, exclud-
ing global operations from add_count () and sub_
count (), and, as we will see, also excluding thread
creation and exit. Line 44 initializes local variable sum
to the value of globalcount, and then the loop span-
ning lines 45-47 sums the per-thread counter variables.
Line 49 then returns the sum.

Figure 4.12 shows a number of utility functions
that support the add_count () sub_count (), and
read_count () primitives shown in Figure 4.11.

Lines 1-7 show globalize_count (), which ze-
ros the current thread’s per-thread counters, adjusting
the global variables appropriately. It is important to
note that this function does not change the aggregate
value of the counter, but instead changes how the
counter’s current value is represented. Line 3 adds
the thread’s counter variable to globalcount, and
line 4 zeroes counter. Similarly, line 5 subtracts the
per-thread countermax from globalreserve, and
line 6 zeroes countermax. It is helpful to refer to Fig-
ure 4.10 when reading both this function and balance_
count (), which is next.

Lines 9-19 show balance_count (), which is,
roughly speaking the inverse of globalize_count ().
This function sets the current thread’s counter and
countermax variables (with corresponding adjust-
ments to globalcount and globalreserve) in
an attempt to promote use of add_count ()’s and

static void globalize_count (void)
{

globalcount += counter;
counter = 0;

globalreserve —-= countermax;
countermax = 0;

}

static void balance_count (void)
{
countermax = globalcountmax -
globalcount - globalreserve;
countermax /= num_online_threads();
globalreserve += countermax;
counter = countermax / 2;
if (counter > globalcount)
counter = globalcount;
globalcount —-= counter;

}

void count_register_thread(void)

{
int idx = smp_thread_id();

spin_lock (&gblcnt_mutex) ;
counterp([idx] = &counter;
spin_unlock (&gblcnt_mutex) ;

}

{
int idx = smp_thread_id();

spin_lock (&gblcnt_mutex) ;
globalize_count ();
counterp[idx] = NULL;
spin_unlock (&gblcnt_mutex) ;

37

void count_unregister_thread(int nthreadsexpected)

Figure 4.12: Simple Limit Counter Utility Functions



38

sub_count ()’s fastpaths. As with globalize_
count (), balance_count () does not change the
aggregate value of the counter. Lines 11-13 compute
this thread’s share of that portion of globalcountmax
that is not already covered by either globalcount or
globalreserve, and assign the computed quantity to
this thread’s countermax. Line 14 makes the corre-
sponding adjustment to globalreserve. Line 15 sets
this thread’s counter to the middle of the range from
zero to countermax. Line 16 checks to see whether
globalcount can in fact accommodate this value of
counter, and, if not, line 17 decreases counter ac-
cordingly. Finally, in either case, line 18 makes the corre-
sponding adjustment to globalcount.

Lines 21-28 show count_register_thread(),
which sets up state for newly created threads. This func-
tion simply installs a pointer to the newly created thread’s
counter variable into the corresponding entry of the
counterp[] array under the protection of gblcnt_
mutex.

Finally, lines 30-38 show count_unregister_
thread (), which tears down state for a soon-to-be-
exiting thread. Line 34 acquires gblcnt_mutex and
line 37 releases it. Line 35 invokes globalize_
count () to clear out this thread’s counter state, and
line 36 clears this thread’s entry in the counterp (]
array.

4.3.3 Simple Limit Counter Discussion

This type of counter is quite fast when aggregate val-
ues are near zero, with some overhead due to the com-
parison and branch in both add_count () ’s and sub_
count () ’s fastpaths. However, the use of a per-thread
countermax reserve means that add_count () can
fail even when the aggregate value of the counter is
nowhere near globalcountmax. Similarly, sub_
count () can fail even when the aggregate value of the
counter is nowhere near zero.

In many cases, this is unacceptable. Even if the
globalcountmax is intended to be an approximate
limit, there is usually a limit to exactly how much approx-
imation can be tolerated. One way to limit the degree of
approximation is to impose an upper limit on the value
of the per-thread countermax instances. This task is
undertaken in the next section.
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unsigned long ___thread counter = 0;

unsigned long __thread countermax = 0;

unsigned long globalcountmax = 10000;

unsigned long globalcount = 0;

unsigned long globalreserve = 0;

unsigned long *counterp[NR_THREADS] = { NULL };
DEFINE_SPINLOCK (gblcnt_mutex) ;

#define MAX_COUNTERMAX 100

oUW N

Figure 4.13: Approximate Limit Counter Variables

1 static void balance_count (void)

2 A

3 countermax = globalcountmax -

4 globalcount - globalreserve;
5 countermax /= num_online_threads();
6 if (countermax > MAX_COUNTERMAX)

7 countermax = MAX_COUNTERMAX;

8 globalreserve += countermax;

9 counter = countermax / 2;

10 if (counter > globalcount)
11 counter = globalcount;
12 globalcount -= counter;

Figure 4.14: Approximate Limit Counter Balancing

4.3.4 Approximate Limit Counter Imple-
mentation

Because this implementation (count_lim_app.c)is
quite similar to that in the previous section (Figures 4.9,
4.11, and 4.12), only the changes are shown here. Fig-
ure 4.13 is identical to Figure 4.9, with the addition of
MAX_COUNTERMAX, which sets the maximum permissi-
ble value of the per-thread countermax variable.

Similarly, Figure 4.14 is identical to the balance_
count () function in Figure 4.12), with the addition
of lines 6 and 7, which enforce the MAX_COUNTERMAX
limit on the per-thread countermax variable.

4.3.5 Approximate Limit Counter Discus-
sion

These changes greatly reduce the limit inaccuracy seen
in the previous version, but present another problem:
any given value of MAX_ COUNTERMAX will cause a
workload-dependent fraction of accesses to fall off the
fastpath. As the number of threads increase, non-fastpath
execution will become both a performance and a scala-
bility problem. However, we will defer this problem and
turn instead to counters with exact limits.
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1 atomic_t __thread ctrandmax = ATOMIC_INIT (0);
2 unsigned long globalcountmax = 10000;

3 unsigned long globalcount = 0;

4 unsigned long globalreserve = 0;

5 atomic_t *counterp[NR_THREADS] = { NULL };

6 DEFINE_SPINLOCK (gblcnt_mutex);

7 #define CM_BITS (sizeof (atomic_t) * 4)

8 #define MAX_COUNTERMAX ((1 << CM_BITS) - 1)

10 static void

11 split_ctrandmax_int (int cami, int xc, int =xcm)
12 |

13 xc = (cami >> CM_BITS) & MAX_COUNTERMAX;

14 *cm = cami & MAX_COUNTERMAX;

15 }

17 static void

18 split_ctrandmax (atomic_t *cam, int =*old,
19 int *xc, int =cm)

20 {

21 unsigned int cami = atomic_read(cam);

23 «old = cami;
24 split_ctrandmax_int (cami, c, cm);
25 }

27 static int merge_ctrandmax (int c, int cm)
28 {
29 unsigned int cami;

30

31 cami = (c << CM_BITS) | cm;
32 return ((int)cami);

33 }

Figure 4.15: Atomic Limit Counter Variables and Access
Functions

4.4 Exact Limit Counters

To solve the exact structure-allocation limit problem noted
in the Quick Quiz on page 29, we need a limit counter that
can tell exactly when its limits are exceeded. One way
of implementing such a limit counter is to cause threads
that have reserved counts to give them up. One way to
do this is to use atomic instructions. Of course, atomic
instructions will slow down the fastpath, but on the other
hand, it would be silly not to at least give them a try.

4.4.1 Atomic Limit Counter Implementa-
tion

Unfortunately, when causing a given thread to give up its
count, it is necessary to atomically manipulate both that
thread’s counter and countermax variables. The
usual way to do this is to combine these two variables
into a single variable, for example, given a 32-bit variable,
using the high-order 16 bits to represent counter and
the low-order 16 bits to represent countermax.

The variables and access functions for a simple atomic
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limit counter are shown in Figure 4.15 (count_1lim_
atomic.c). The counter and countermax vari-
ables in earlier algorithms are combined into the single
variable ct randmax shown on line 1, with counter in
the upper half and countermax in the lower half. This
variable is of type at omic_t, which has an underlying
representation of int.

Lines 2-6 show the definitions for
globalcountmax, globalcount,
globalreserve, counterp, and gblcnt_mutex,
all of which take on roles similar to their counterparts in
Figure 4.13. Line 7 defines CM_BITS, which gives the
number of bits in each half of ct randmax, and line 8
defines MAX_COUNTERMAX, which gives the maximum
value that may be held in either half of ct randmax.

Quick Quiz 4.29: In what way does line 7 of Fig-
ure 4.15 violate the C standard? B

Lines 10-15 show the split_ctrandmax_int ()
function, which, when given the underlying int from
the atomic_t ctrandmax variable. Line 13 isolates
the most-significant half of this int, placing the result
as specified by argument c, and line 14 isolates the least-
significant half of this int, placing the result as specified
by argument cm.

Lines 17-25 show the split_ctrandmax () func-
tion, which picks up the underlying int from the spec-
ified variable on line 21, stores it as specified by the
old argument on line 23, and then invokes split_
ctrandmax_int () to split it on line 24.

Quick Quiz 4.30: Given that there is only one
ctrandmax variable, why bother passing in a pointer to
it on line 18 of Figure 4.157

Lines 27-33 show the merge_ctrandmax () func-
tion, which can be thought of as the inverse of split_
ctrandmax (). Line 31 merges the counter and
countermax values passed in ¢ and cm, respectively,
and returns the result.

Quick Quiz 4.31: Why does merge_ctrandmax ()
in Figure 4.15 return an int rather than storing directly
intoan atomic_t? M

Figure 4.16 shows the add_count (), sub_
count (), and read_count () functions.

Lines 1-32 show add_count (), whose fastpath
spans lines 8-15, with the remainder of the function being
the slowpath. Lines 8-14 of the fastpath form a compare-
and-swap (CAS) loop, with the at omic_cmpxchg ()
primitives on lines 13-14 performing the actual CAS.
Line 9 splits the current thread’s ct randmax variable
into its counter (in ¢) and countermax (in cm) com-
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{

int add_count (unsigned long delta)

int c;
int cm;
int old;
int new;

do {

split_ctrandmax (&ctrandmax, &old, &c, &cm);

if (delta > MAX_COUNTERMAX || c + delta > cm)

goto slowpath;

new = merge_ctrandmax(c + delta, cm);

} while (atomic_cmpxchg (&ctrandmax,
old, new) != old);

return 1;

16 slowpath:

32}

spin_lock (&gblcnt_mutex) ;
globalize_count () ;
if (globalcountmax - globalcount -
globalreserve < delta) {
flush_local_count ();
if (globalcountmax - globalcount -
globalreserve < delta) {
spin_unlock (&gblcnt_mutex) ;
return 0;
}
}
globalcount += delta;
balance_count () ;
spin_unlock (&gblcnt_mutex) ;
return 1;

34 int sub_count (unsigned long delta)

35 {

int c;
int cm;
int old;
int new;

do {

split_ctrandmax (&ctrandmax, &old, &c, &cm);

if (delta > c¢)

goto slowpath;

new = merge_ctrandmax(c - delta, cm);

} while (atomic_cmpxchg (&ctrandmax,
old, new) != o0ld);

return 1;

49 slowpath:

spin_lock (&gblcnt_mutex) ;
globalize_count () ;
if (globalcount < delta) {
flush_local_count ();
if (globalcount < delta) {
spin_unlock (&gblcnt_mutex) ;
return 0;
}
}
globalcount -= delta;
balance_count () ;
spin_unlock (&gblcnt_mutex) ;
return 1;

Figure 4.16: Atomic Limit Counter Add and Subtract
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ponents, while placing the underlying int into old.
Line 10 checks whether the amount de 1t a can be accom-
modated locally (taking care to avoid integer overflow),
and if not, line 11 transfers to the slowpath. Otherwise,
line 11 combines an updated counter value with the
original countermax value into new. The atomic_
cmpxchg () primitive on lines 13-14 then atomically
compares this thread’s ct randmax variable to o1d, up-
dating its value to new if the comparison succeeds. If the
comparison succeeds, line 15 returns success, otherwise,
execution continues in the loop at line 9.

Quick Quiz 4.32: Yecch! Why the ugly goto on
line 11 of Figure 4.16? Haven’t you heard of the break
statement???

Quick Quiz 4.33: Why would the atomic_
cmpxchg () primitive at lines 13-14 of Figure 4.16 ever
fail? After all, we picked up its old value on line 9 and
have not changed it! l

Lines 16-32 of Figure 4.16 show add_count ()’s
slowpath, which is protected by gb1cnt_mutex, which
is acquired on line 17 and released on lines 24 and 30.
Line 18 invokes globalize_count (), which moves
this thread’s state to the global counters. Lines 19-20
check whether the delta value can be accommodated
by the current global state, and, if not, line 21 invokes
flush_local_count () to flush all threads’ local
state to the global counters, and then lines 22-23 recheck
whether delta can be accommodated. If, after all that,
the addition of delta still cannot be accommodated,
then line 24 releases gblcnt_mutex (as noted earlier),
and then line 25 returns failure.

Otherwise, line 28 adds delta to the global counter,
line 29 spreads counts to the local state if appropriate,
line 30 releases gblcnt_mutex (again, as noted ear-
lier), and finally, line 31 returns success.

Lines 34-63 of Figure 4.16 show sub_count (),
which is structured similarly to add_count (), having
a fastpath on lines 41-48 and a slowpath on lines 49-62. A
line-by-line analysis of this function is left as an exercise
to the reader.

Figure 4.17 shows read_count (). Line 9 acquires
gblcnt_mutex and line 16 releases it. Line 10 initial-
izes local variable sum to the value of globalcount,
and the loop spanning lines 11-15 adds the per-thread
counters to this sum, isolating each per-thread counter
using split_ctrandmax on line 13. Finally, line 17
returns the sum.

Figure 4.18 shows the utility functions globalize_
count (), flush_local_count (), balance_
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unsigned long read_count (void)
{

1

2

3 int c;

4 int cm;

5 int old;

6 int t;

7 unsigned long sum;
8

9 spin_lock (&gblcnt_mutex) ;
10 sum = globalcount;
11 for_each_thread(t)

12 if (counterp[t] != NULL) {

13 split_ctrandmax (counterp(t], &old, &c, &cm);
14 sum += c;

15 }

16 spin_unlock (&gblcnt_mutex) ;

17 return sum;

18 }

Figure 4.17: Atomic Limit Counter Read

count (), count_register_thread(), and
count_unregister_thread (). The code for
globalize_count () is shown on lines 1-12, and it
is similar to that of previous algorithms, with the addition
of line 7, which is now required to split out counter
and countermax from ctrandmax.

The code for flush_local_count (), which
moves all threads’ local counter state to the global counter,
is shown on lines 14-32. Line 22 checks to see if the value
of globalreserve permits any per-thread counts, and,
if not, line 23 returns. Otherwise, line 24 initializes lo-
cal variable zero to a combined zeroed counter and
countermax. The loop spanning lines 25-31 sequences
through each thread. Line 26 checks to see if the current
thread has counter state, and, if so, lines 27-30 move that
state to the global counters. Line 27 atomically fetches the
current thread’s state while replacing it with zero. Line 28
splits this state into its counter (in local variable c)
and countermax (in local variable cm) components.
Line 29 adds this thread’s counter to globalcount,
while line 30 subtracts this thread’s countermax from
globalreserve.

Quick Quiz 4.34: What stops a thread from sim-
ply refilling its ct randmax variable immediately after
flush_local_count () on line 14 of Figure 4.18
empties it? ll

Quick Quiz 4.35: What prevents concurrent execution
of the fastpath of either atomic_add () or atomic_
sub () from interfering with the ct randmax variable
while flush_local_count () is accessing it on line
27 of Figure 4.18 empties it? W

Lines 34-54 show the code for balance_count (),
which refills the calling thread’s local ct randmax vari-
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1 static void globalize_count (void)
2 {
3 int c;
4 int cm;
5 int old;
6
7 split_ctrandmax (&ctrandmax, &old, &c, &cm);
8 globalcount += c;
9 globalreserve -= cm;
10 old = merge_ctrandmax (0, 0);
11 atomic_set (&ctrandmax, old);
12}
13
14 static void flush_local_count (void)
15 {
16 int c;
17 int cm;
18 int old;
19 int t;
20 int zero;
21
22 if (globalreserve == 0)
23 return;
24 zero = merge_ctrandmax (0, 0);
25 for_each_thread(t)
26 if (counterp[t] != NULL) {
27 old = atomic_xchg(counterp[t], =zero);
28 split_ctrandmax_int (old, &c, &cm);
29 globalcount += c;
30 globalreserve -= cm;
31 }
32}
33
34 static void balance_count (void)
35 {
36 int c;
37 int cm;
38 int old;
39 unsigned long limit;
40
41 limit = globalcountmax - globalcount - globalreserve;
42 limit /= num_online_threads();
43 if (limit > MAX_COUNTERMAX)
44 cm = MAX_COUNTERMAX;
45 else
46 cm = limit;
47 globalreserve += cm;
48 c=ocm / 2;
49 if (c > globalcount)
50 c = globalcount;
51 globalcount -= c;
52 old = merge_ctrandmax(c, cm);
53 atomic_set (&ctrandmax, old);
54 }
55

56 void count_register_thread(void)
57 {
58 int idx = smp_thread_id();

59

60 spin_lock (&gblcnt_mutex);

61 counterp[idx] = &ctrandmax;

62 spin_unlock (&gblcnt_mutex) ;

63 }

64

65 void count_unregister_thread(int nthreadsexpected)
66 {

67 int idx = smp_thread_id();

68

69 spin_lock (&gblcnt_mutex) ;
70 globalize_count () ;

71 counterp[idx] = NULL;

72 spin_unlock (&gblcnt_mutex) ;

Figure 4.18: Atomic Limit Counter Utility Functions
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able. This function is quite similar to that of the preceding
algorithms, with changes required to handle the merged
ctrandmax variable. Detailed analysis of the code is
left as an exercise for the reader, as it is with the count__
register_thread() function starting on line 56 and
the count_unregister_thread () function start-
ing on line 65.

Quick Quiz 4.36: Given that the atomic_set ()
primitive does a simple store to the specified atomic_t,
how can line 53 of balance_count () in Figure 4.18
work correctly in face of concurrent flush_local_
count () updates to this variable? ll

4.4.2 Atomic Limit Counter Discussion

This is the first implementation that actually allows the
counter to be run all the way to either of its limits, but
it does so at the expense of adding atomic operations to
the fastpaths, which slow down the fastpaths significantly.
Although some workloads might tolerate this slowdown, it
is worthwhile looking for algorithms with better read-side
performance. One such algorithm uses a signal handler to
steal counts from other threads. Because signal handlers
run in the context of the signaled thread, atomic operations
are not necessary, as shown in the next section.

Quick Quiz 4.37: But signal handlers can be migrated
to some other CPU while running. Doesn’t this possibility
require that atomic instructions and memory barriers are
required to reliably communicate between a thread and a
signal handler that interrupts that thread? ll

4.4.3 Signal-Theft Limit Counter Design

Figure 4.19 shows the state diagram. The state machine
starts out in the IDLE state, and when add_ count ()
or sub_count () find that the combination of the local
thread’s count and the global count cannot accommodate
the request, the corresponding slowpath sets each thread’s
theft state to REQ (unless that thread has no count, in
which case it transitions directly to READY). Only the
slowpath, which holds the gblcnt_mutex lock, is per-
mitted to transition from the IDLE state, as indicated by
the green color. The slowpath then sends a signal to each
thread, and the corresponding signal handler checks the
corresponding thread’s the ft and count ing variables.
If the theft state is not REQ, then the signal handler is
not permitted to change the state, and therefore simply
returns. Otherwise, if the count ing variable is set, indi-
cating that the current thread’s fastpath is in progress, the
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Figure 4.19: Signal-Theft State Machine

signal handler sets the theft state to ACK, otherwise to
READY.

If the the ft state is ACK, only the fastpath is permit-
ted to change the theft state, as indicated by the blue
color. When the fastpath completes, it sets the theft
state to READY.

Once the slowpath sees a thread’s theft state is
READY, the slowpath is permitted to steal that thread’s
count. The slowpath then sets that thread’s the ft state
to IDLE.

Quick Quiz 4.38: In Figure 4.19, why is the REQ
theft state colored blue?

Quick Quiz 4.39: In Figure 4.19, what is the point
of having separate REQ and ACK theft states? Why
not simplify the state machine by collapsing them into a
single state? Then whichever of the signal handler or the
fastpath gets there first could set the state to READY. l

4.4.4 Signal-Theft Limit Counter Imple-
mentation

Figure 4.20 (count_1im_sig. c) shows the data struc-
tures used by the signal-theft based counter implemen-
tation. Lines 1-7 define the states and values for the
per-thread theft state machine described in the preceding
section. Lines 8-17 are similar to earlier implementations,
with the addition of lines 14 and 15 to allow remote ac-
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1 #define THEFT_IDLE 0

2 #define THEFT_REQ 1

3 #define THEFT_ACK 2

4 #define THEFT_READY 3

5

6 int __thread theft = THEFT_IDLE;

7 int __thread counting = 0;

8 unsigned long __thread counter = 0;

9 unsigned long __thread countermax = 0;

10 unsigned long globalcountmax = 10000;
11 unsigned long globalcount = 0;
12 unsigned long globalreserve = 0;

13 unsigned long *counterp[NR_THREADS] = { NULL };
14 unsigned long *countermaxp[NR_THREADS] = { NULL };
15 int *theftp[NR_THREADS] = { NULL };

16 DEFINE_SPINLOCK (gblcnt_mutex);
17 #define MAX_COUNTERMAX 100

Figure 4.20: Signal-Theft Limit Counter Data

cess to a thread’s countermax and theft variables,
respectively.

Figure 4.21 shows the functions responsible for migrat-
ing counts between per-thread variables and the global
variables. Lines 1-7 shows global_count (), which
is identical to earlier implementations. Lines 9-19 shows
flush_local_count_sig(), which is the signal
handler used in the theft process. Lines 11 and 12 check
to see if the theft state is REQ, and, if not returns with-
out change. Line 13 executes a memory barrier to ensure
that the sampling of the theft variable happens before any
change to that variable. Line 14 sets the theft state to
ACK, and, if line 15 sees that this thread’s fastpaths are
not running, line 16 sets the theft state to READY.

Quick Quiz 4.40: In Figure 4.21 function flush_
local_count_sig(), why are there ACCESS_
ONCE () wrappers around the uses of the theft per-
thread variable? B

Lines 21-49 shows flush_local_ count (),
which is called from the slowpath to flush all threads’
local counts. The loop spanning lines 26-34 advances the
theft state for each thread that has local count, and also
sends that thread a signal. Line 27 skips any non-existent
threads. Otherwise, line 28 checks to see if the current
thread holds any local count, and, if not, line 29 sets the
thread’s the ft state to READY and line 28 skips to the
next thread. Otherwise, line 32 sets the thread’s theft
state to REQ and line 29 sends the thread a signal.

Quick Quiz 4.41: In Figure 4.21, why is it safe for
line 28 to directly access the other thread’s countermax
variable? H

Quick Quiz 4.42: In Figure 4.21, why doesn’t line 33
check for the current thread sending itself a signal? ll

Quick Quiz 4.43: The code in Figure 4.21, works with
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1 static void globalize_count (void)
2 {
3 globalcount += counter;
4 counter = 0;
5 globalreserve —-= countermax;
6 countermax = 0;
7}
8
9 static void flush_local_count_sig(int unused)
10 {
11 if (ACCESS_ONCE (theft) != THEFT_REQ)
12 return;
13 smp_mb () ;
14 ACCESS_ONCE (theft) = THEFT_ACK;
15 if (!counting) {
16 ACCESS_ONCE (theft) = THEFT_READY;
17 }
18 smp_mb () ;
19 }
20
21 static void flush_local_count (void)
22 |
23 int t;
24 thread_id_t tid;
25
26 for_each_tid(t, tid)
27 if (theftp[t] != NULL) {
28 if (xcountermaxp([t] == 0) {
29 ACCESS_ONCE («theftp[t]) = THEFT_READY;
30 continue;
31 }
32 ACCESS_ONCE (+theftp[t]) = THEFT_REQ;
33 pthread_kill (tid, SIGUSRI1);
34 }
35 for_each_tid(t, tid) {
36 if (theftp[t] == NULL)
37 continue;
38 while (ACCESS_ONCE (xtheftp([t]) != THEFT_READY)
39 poll (NULL, 0, 1);
40 if (ACCESS_ONCE (#theftp[t]) == THEFT_REQ)
41 pthread_kill (tid, SIGUSR1);
42 }
43 globalcount += xcounterp(t];
44 xcounterp(t] = 0;
45 globalreserve -= xcountermaxp[t];
46 «countermaxp[t] = 0;
47 ACCESS_ONCE (»theftp[t]) = THEFT_IDLE;
48 }
49 }
50
51 static void balance_count (void)
52 {
53 countermax = globalcountmax -
54 globalcount - globalreserve;
55 countermax /= num_online_threads();
56 if (countermax > MAX_COUNTERMAX)
57 countermax = MAX_COUNTERMAX;
58 globalreserve += countermax;
59 counter = countermax / 2;
60 if (counter > globalcount)
61 counter = globalcount;
62 globalcount —= counter;
63 }

Figure 4.21: Signal-Theft Limit Counter Value-Migration
Functions
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gcc and POSIX. What would be required to make it also
conform to the ISO C standard? B

The loop spanning lines 35-48 waits until each thread
reaches READY state, then steals that thread’s count.
Lines 36-37 skip any non-existent threads, and the loop
spanning lines 38-42 wait until the current thread’s
theft state becomes READY. Line 39 blocks for a
millisecond to avoid priority-inversion problems, and if
line 40 determines that the thread’s signal has not yet
arrived, line 41 resends the signal. Execution reaches
line 43 when the thread’s the ft state becomes READY,
so lines 43-46 do the thieving. Line 47 then sets the
thread’s the ft state back to IDLE.

Quick Quiz 4.44: In Figure 4.21, why does line 41
resend the signal? B

Lines 51-63 show balance_count (), which is sim-
ilar to that of earlier examples.

Lines 1-36 of Figure 4.22 shows the add_count ()
function. The fastpath spans lines 5-20, and the slow-
path lines 21-35. Line 5 sets the per-thread counting
variable to 1 so that any subsequent signal handlers inter-
rupting this thread will set the t he £t state to ACK rather
than READY, allowing this fastpath to complete prop-
erly. Line 6 prevents the compiler from reordering any
of the fastpath body to precede the setting of counting.
Lines 7 and 8 check to see if the per-thread data can
accommodate the add_count () and if there is no on-
going theft in progress, and if so line 9 does the fastpath
addition and line 10 notes that the fastpath was taken.

In either case, line 12 prevents the compiler from re-
ordering the fastpath body to follow line 13, which per-
mits any subsequent signal handlers to undertake theft.
Line 14 again disables compiler reordering, and then
line 15 checks to see if the signal handler deferred the
theft state-change to READY, and, if so, line 16 exe-
cutes a memory barrier to ensure that any CPU that sees
line 17 setting state to READY also sees the effects of
line 9. If the fastpath addition at line 9 was executed, then
line 20 returns success.

Otherwise, we fall through to the slowpath starting at
line 21. The structure of the slowpath is similar to those
of earlier examples, so its analysis is left as an exercise
to the reader. Similarly, the structure of sub_count ()
on lines 38-71 is the same as that of add_count (), so
the analysis of sub_count () is also left as an exercise
for the reader, as is the analysis of read_count () in
Figure 4.23.

Lines 1-12 of Figure 4.24 show count_init (),
which set up flush_local_count_sig() as the
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1 int add_count (unsigned long delta)
2 {
3 int fastpath = 0;
4
5 counting = 1;
6 barrier();
7 if (countermax - counter >= delta &&
8 ACCESS_ONCE (theft) <= THEFT_REQ) {
9 counter += delta;
10 fastpath = 1;
11 }
12 barrier();
13 counting = 0;
14 barrier();
15 if (ACCESS_ONCE (theft) == THEFT_ACK) {
16 smp_mb () ;
17 ACCESS_ONCE (theft) = THEFT_READY;
18 }
19 if (fastpath)
20 return 1;

21 spin_lock (&gblcnt_mutex) ;
22 globalize_count () ;
23 if (globalcountmax - globalcount -

24 globalreserve < delta) {

25 flush_local_count ();

26 if (globalcountmax - globalcount -
27 globalreserve < delta) {

28 spin_unlock (&gblcnt_mutex) ;

29 return 0;

30 }

31 }

32 globalcount += delta;
33 balance_count () ;
34 spin_unlock (&gblcnt_mutex) ;

35 return 1;

36 }

37

38 int sub_count (unsigned long delta)
39 {

40 int fastpath = 0;

41

42 counting = 1;

43 barrier();
44 if (counter >= delta &&

45 ACCESS_ONCE (theft) <= THEFT_REQ) {
46 counter -= delta;

47 fastpath = 1;

48 }

49 barrier();

50 counting = 0;

51 barrier();

52 if (ACCESS_ONCE (theft) == THEFT_ACK) {
53 smp_mb () ;

54 ACCESS_ONCE (theft) = THEFT_READY;

55 }

56 if (fastpath)

57 return 1;

58 spin_lock (&gblcnt_mutex) ;
59 globalize_count () ;
60 if (globalcount < delta) {

61 flush_local_count () ;

62 if (globalcount < delta) {

63 spin_unlock (&§gblcnt_mutex) ;
64 return 0;

65 }

66 }

67 globalcount —-= delta;

68 balance_count () ;
69 spin_unlock (&gblcnt_mutex) ;
70 return 1;

Figure 4.22: Signal-Theft Limit Counter Add and Sub-
tract Functions
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1 unsigned long read_count (void)
2

3 int t;

4 unsigned long sum;

5

6 spin_lock (&gblcnt_mutex) ;

7 sum = globalcount;

8 for_each_thread (t)

9 if (counterp([t] != NULL)
10 sum += xcounterpl[t];
11 spin_unlock (&gblcnt_mutex) ;
12 return sum;
13 }

Figure 4.23: Signal-Theft Limit Counter Read Function

1 void count_init (void)

2 {

3 struct sigaction saj;

4

5 sa.sa_handler = flush_local_count_sig;
6 sigemptyset (&sa.sa_mask);

7 sa.sa_flags = 0;

8 if (sigaction(SIGUSR1, &sa, NULL) != 0) {
9 perror ("sigaction");
10 exit (-1);
11 }
12 }
13
14 void count_register_thread(void)
15 {

16 int idx = smp_thread_id();

18 spin_lock (&gblcnt_mutex) ;

19 counterp[idx] = &counter;

20 countermaxp[idx] = &countermax;
21 theftp[idx] = &theft;

22 spin_unlock (&gblcnt_mutex) ;
23}

24

25 void count_unregister_thread(int nthreadsexpected)
26 {
27 int idx = smp_thread_id();

29 spin_lock (&gblcnt_mutex) ;
30 globalize_count () ;

31 counterp[idx] = NULL;

32 countermaxp[idx] = NULL;

33 theftp[idx] = NULL;

34 spin_unlock (&gblcnt_mutex) ;

Figure 4.24: Signal-Theft Limit Counter Initialization
Functions
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signal handler for SIGUSR1, enabling the pthread_
kill () callsin £flush_local_count () to invoke
flush_local_count_sig (). The code for thread
registry and unregistry is similar to that of earlier exam-
ples, so its analysis is left as an exercise for the reader.

4.4.5 Signal-Theft Limit Counter Discus-
sion

The signal-theft implementation runs more than twice as
fast as the atomic implementation on my Intel Core Duo
laptop. Is it always preferable?

The signal-theft implementation would be vastly prefer-
able on Pentium-4 systems, given their slow atomic in-
structions, but the old 80386-based Sequent Symmetry
systems would do much better with the shorter path length
of the atomic implementation. If ultimate performance is
of the essence, you will need to measure them both on the
system that your application is to be deployed on.

This is but one reason why high-quality APIs are so
important: they permit implementations to be changed as
required by ever-changing hardware performance charac-
teristics.

Quick Quiz 4.45: What if you want an exact limit
counter to be exact only for its lower limit? l

4.5 Applying Specialized Parallel
Counters

Although the exact limit counter implementations in Sec-
tion 4.4 can be very useful, they are not much help if the
counter’s value remains near zero at all times, as it might
when counting the number of outstanding accesses to an
I/O device. The high overhead of such near-zero counting
is especially painful given that we normally don’t care
how many references there are. As noted in the removable
I/0 device access-count problem on page 29, the number
of accesses is irrelevant except in those rare cases when
someone is actually trying to remove the device.

One simple solution to this problem is to add a large
“bias” (for example, one billion) to the counter in order
to ensure that the value is far enough from zero that the
counter can operate efficiently. When someone wants
to remove the device, this bias is subtracted from the
counter value. Counting the last few accesses will be
quite inefficient, but the important point is that the many
prior accesses will have been counted at full speed.

Quick Quiz 4.46: What else had you better have done
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when using a biased counter? ll

Although a biased counter can be quite helpful and
useful, it is only a partial solution to the removable I/O
device access-count problem called out on page 29. When
attempting to remove a device, we must not only know
the precise number of current I/O accesses, we also need
to prevent any future accesses from starting. One way
to accomplish this is to read-acquire a reader-writer lock
when updating the counter, and to write-acquire that same
reader-writer lock when checking the counter. Code for
doing I/0 might be as follows:

1 read_lock (&mylock);

2 1f (removing) {

3 read_unlock (&mylock) ;
cancel_io();

} else {
add_count (1) ;
read_unlock (&mylock) ;
do_1io();
sub_count (1) ;

}
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1

Line 1 read-acquires the lock, and either line 3 or 7
releases it. Line 2 checks to see if the device is being
removed, and, if so, line 3 releases the lock and line 4
cancels the I/O, or takes whatever action is appropriate
given that the device is to be removed. Otherwise, line 6
increments the access count, line 7 releases the lock, line 8
performs the I/0, and line 9 decrements the access count.

Quick Quiz 4.47: This is ridiculous! We are read-
acquiring a reader-writer lock to update the counter?
What are you playing at??? B

The code to remove the device might be as follows:

write_lock (&mylock) ;

removing = 1;

sub_count (mybias) ;

write_unlock (&mylock) ;

while (read_count () !'= 0) {
poll (NULL, 0, 1);

}

remove_device () ;

O J oy U b W N

Line 1 write-acquires the lock and line 4 releases it.
Line 2 notes that the device is being removed, and the
loop spanning lines 5-7 wait for any I/O operations to
complete. Finally, line 8 does any additional processing
needed to prepare for device removal.

Quick Quiz 4.48: What other issues would need to be
accounted for in a real system? W
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4.6 Parallel Counting Discussion

This chapter has presented the reliability, performance,
and scalability problems with traditional counting primi-
tives. The C-language ++ operator is not guaranteed to
function reliably in multithreaded code, and atomic oper-
ations to a single variable neither perform nor scale well.
This chapter has also presented a number of counting al-
gorithms that perform and scale extremely well in certain
special cases.

Table 4.1 shows the performance of the three parallel
statistical counting algorithms. All three algorithms pro-
vide perfect linear scalability for updates. The per-thread-
variable implementation is significantly faster on updates
than the array-based implementation, but is slower at
reads, and suffers severe lock contention when there are
many parallel readers. This contention can be addressed
using techniques introduced in Chapter 8, as shown on
the last row of Table 4.1.

Quick Quiz 4.49: On the count_stat.c row of
Table 4.1, we see that the update side scales linearly with
the number of threads. How is that possible given that the
more threads there are, the more per-thread counters must
be summed up? M

Quick Quiz 4.50: Even on the last row of Table 4.1,
the read-side performance of these statistical counter im-
plementations is pretty horrible. So why bother with
them? W

Figure 4.2 shows the performance of the parallel limit-
counting algorithms. Exact enforcement of the limits
incurs a substantial performance penalty, although on the
Power-5 system this penalty can be reduced by substitut-
ing read-side signals for update-side atomic operations.
All of these implementations suffer from read-side lock
contention in the face of concurrent readers.

Quick Quiz 4.51: Given the performance data shown
in Table 4.2, we should always prefer update-side signals
over read-side atomic operations, right? l

Quick Quiz 4.52: Can advanced techniques be ap-
plied to address the lock contention for readers seen in
Table 4.27

The fact that these algorithms only work well in their
respective special cases might be considered a major prob-
lem with parallel programming in general. After all, the
C-language ++ operator works just fine in single-threaded
code, and not just for special cases, but in general, right?

This line of reasoning does contain a grain of truth, but
is in essence misguided. The problem is not parallelism
as such, but rather scalability. To understand this, first


count_stat.c
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Reads
Algorithm Section | Updates | 1 Core \ 64 Cores
count_stat.c 422 | 40.4ns | 220 ns 220 ns
count_end.c 424 6.7ns | 521 ns | 205,000 ns
count_end_rcu.c 9.1 6.7ns | 481 ns 3,700 ns

Table 4.1: Statistical Counter Performance on Power-5

Reads
Algorithm Section | Exact? | Updates | 1 Core \ 64 Cores
count_lim.c 4.9 N 9.7ns | 517 ns | 202,000 ns
count_lim_app.c 434 N 6.6ns | 520 ns | 205,000 ns
count_lim_atomic.c 441 Y 56.1ns | 606 ns | 166,000 ns
count_lim_sig.c 4.4.4 Y 17.5ns | 520ns | 205,000 ns

Table 4.2: Limit Counter Performance on Power-5

consider the C-language ++ operator. The fact is that it
does not work in general, only for a restricted range of
numbers. If you need to deal with 1,000-digit decimal
numbers, the C-language ++ operator will not work for
you.

Quick Quiz 4.53: The ++ operator works just fine
for 1,000-digit numbers! Haven’t you heard of operator
overloading???

This problem is not specific to arithmetic. Suppose you
need to store and query data. Should you use an ASCII
file, XML, a relational database, a linked list, a dense
array, a B-tree, a radix tree, or any of the plethora of other
data structures and environments that permit data to be
stored and queried? It depends on what you need to do,
how fast you need it done, and how large your data set is.

Similarly, if you need to count, your solution will de-
pend on how large of numbers you need to work with,
how many CPUs need to be manipulating a given number
concurrently, how the number is to be used, and what
level of performance and scalability you will need.

Nor is this problem specific to software. The design
for a bridge meant to allow people to walk across a small
brook might be a simple as a plank thrown across the
brook. But this solution of using a plank does not scale.
You would probably not use a plank to span the kilometers-
wide mouth of the Columbia River, nor would such a
design be advisable for bridges carrying concrete trucks.
In short, just as bridge design must change with increasing
span and load, so must software design change as the
number of CPUs increases.

The examples in this chapter have shown that an impor-

tant tool permitting large numbers of CPUs to be brought
to bear is partitioning. Whether fully partitioned, as in
the statistical counters discussed in Section 4.2, or par-
tially partitioned as in the limit counters discussed in
Sections 4.3 and 4.4. Partitioning will be considered in
far greater depth in the next chapter.

Quick Quiz 4.54: But if we are going to have to parti-
tion everything, why bother with shared-memory multi-
threading? Why not just partition the problem completely
and run as multiple processes, each in its own address
space? l


count_stat.c
count_end.c
count_end_rcu.c
count_lim.c
count_lim_app.c
count_lim_atomic.c
count_lim_sig.c
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Chapter 5

Partitioning and Synchronization Design

This chapter describes how to design software to take
advantage of the multiple CPUs that are increasingly ap-
pearing in commodity systems. It does this by presenting
a number of idioms, or “design patterns” that can help
you balance performance, scalability, and response time.
As noted in earlier chapters, the most important decision
you will make when creating parallel software is how to
carry out the partitioning. Correctly partitioned problems
lead to simple, scalable, and high-performance solutions,
while poorly partitioned problems result in slow and com-
plex solutions.

@ @@ roadmap @@ @

5.1 Partitioning Exercises

This section uses a pair of exercises (the classic Din-
ing Philosophers problem and a double-ended queue) to
demonstrate the value of partitioning.

5.1.1 Dining Philosophers Problem

Figure 5.1 shows a diagram of the classic Dining Philoso-
phers problem [Dij71]. This problem features five philoso-
phers who do nothing but think and eat a “very difficult
kind of spaghetti” which requires two forks to eat. A
given philosopher is permitted to use only the forks to his
or her immediate right and left, and once a philosopher
picks up a fork, he or she will not put it down until sated.

The object is to construct an algorithm that, quite liter-
ally, prevents starvation. One starvation scenario would
be if all of the philosophers picked up their leftmost forks
simultaneously. Because none of them would put down
their fork until after they ate, and because none of them

! Readers who have difficulty imagining a food that requires two
forks are invited to instead think in terms of chopsticks.
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Figure 5.1: Dining Philosophers Problem

may pick up their second fork until at least one has fin-
ished eating, they all starve.

Dijkstra’s solution used a global semaphore, which
works fine assuming negligible communications delays,
an assumption that has become invalid in the ensuing
decades. Therefore, recent solutions number the forks
as shown in Figure 5.2. Each philosopher picks up the
lowest-numbered fork next to his or her plate, then picks
up the highest-numbered fork. The philosopher sitting
in the uppermost position in the diagram thus picks up
the leftmost fork first, then the rightmost fork, while the
rest of the philosophers instead pick up their rightmost
fork first. Because two of the philosophers will attempt
to pick up fork 1 first, and because only one of those
two philosophers will succeed, there will be five forks
available to four philosophers. At least one of these four
will be guaranteed to have two forks, and thus be able to
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Figure 5.2: Dining Philosophers Problem, Textbook Solu-
tion

proceed eating.

This general technique of numbering resources and
acquiring them in numerical order is heavily used as a
deadlock-prevention technique. However, it is easy to
imagine a sequence of events that will result in only one
philosopher eating at a time even though all are hungry:

1. P2 picks up fork 1, preventing P1 from taking a fork.
2. P3 picks up fork 2.

3. P4 picks up fork 3.

4. PS5 picks up fork 4.

5. P5 picks up fork 5 and eats.

6. P5 puts down forks 4 and 5.

7. P4 picks up fork 4 and eats.

Please think about ways of partitioning the Dining
Philosophers Problem before reading further.
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Figure 5.3: Dining Philosophers Problem, Partitioned

One approach is shown in Figure 5.3, which includes
four philosophers rather than five to better illustrate the
partition technique. Here the upper and rightmost philoso-
phers share a pair of forks, while the lower and leftmost
philosophers share another pair of forks. If all philoso-
phers are simultaneously hungry, at least two will be able
to eat concurrently. In addition, as shown in the figure, the
forks can now be bundled so that the pair are picked up
and put down simultaneously, simplifying the acquisition
and release algorithms.

Quick Quiz 5.1: Is there a better solution to the Dining
Philosophers Problem? H

This is an example of “horizontal parallelism” [Inm85]
or “data parallelism”, so named because there is no de-
pendency among the philosophers. In a data-processing
system, a given item of data would pass through only one
of a replicated set of software components.

Quick Quiz 5.2: And in just what sense can this “hori-
zontal parallelism” be said to be “horizontal”? ll

5.1.2 Double-Ended Queue

A double-ended queue is a data structure containing a
list of elements that may be inserted or removed from
either end [Knu73]. It has been claimed that a lock-based
implementation permitting concurrent operations on both
ends of the double-ended queue is difficult [GroO7]. This
section shows how a partitioning design strategy can result
in a reasonably simple implementation, looking at three
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Lock L Lock R
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Lock R
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Figure 5.4: Double-Ended Queue With Left- and Right-
Hand Locks

general approaches in the following sections.

5.1.2.1 Left- and Right-Hand Locks

One seemingly straightforward approach would be to have
a left-hand lock for left-hand-end enqueue and dequeue
operations along with a right-hand lock for right-hand-
end operations, as shown in Figure 5.4. However, the
problem with this approach is that the two locks’ domains
must overlap when there are fewer than four elements
on the list. This overlap is due to the fact that removing
any given element affects not only that element, but also
its left- and right-hand neighbors. These domains are
indicated by color in the figure, with blue indicating the
domain of the left-hand lock, red indicating the domain
of the right-hand lock, and purple indicating overlapping
domains. Although it is possible to create an algorithm
that works this way, the fact that it has no fewer than five
special cases should raise a big red flag, especially given
that concurrent activity at the other end of the list can
shift the queue from one special case to another at any
time. It is far better to consider other designs.
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Lock L
DEQL

Lock R
DEQR

Figure 5.5: Compound Double-Ended Queue

5.1.2.2 Compound Double-Ended Queue

One way of forcing non-overlapping lock domains is
shown in Figure 5.5. Two separate double-ended queues
are run in tandem, each protected by its own lock. This
means that elements must occasionally be shuttled from
one of the double-ended queues to the other, in which case
both locks must be held. A simple lock hierarchy may
be used to avoid deadlock, for example, always acquiring
the left-hand lock before acquiring the right-hand lock.
This will be much simpler than applying two locks to
the same double-ended queue, as we can unconditionally
left-enqueue elements to the left-hand queue and right-
enqueue elements to the right-hand queue. The main com-
plication arises when dequeuing from an empty queue, in
which case it is necessary to:

1. If holding the right-hand lock, release it and acquire
the left-hand lock.

Acquire the right-hand lock.

Rebalance the elements across the two queues.

oo

Remove the required element if there is one.

5. Release both locks.

Quick Quiz 5.3: In this compound double-ended
queue implementation, what should be done if the queue
has become non-empty while releasing and reacquiring
the lock? l

The rebalancing operation might well shuttle a given
element back and forth between the two queues, wasting
time and possibly requiring workload-dependent heuris-
tics to obtain optimal performance. Although this might
well be the best approach in some cases, it is interesting
to try for an algorithm with greater determinism.

5.1.2.3 Hashed Double-Ended Queue

One of the simplest and most effective ways to deter-
ministically partition a data structure is to hash it. It is
possible to trivially hash a double-ended queue by assign-
ing each element a sequence number based on its position

DEQO
Lock 0

DEQ 2
Lock 2

DEQ 3
Lock 3

Index L
Lock L

Index R
Lock R

Figure 5.6: Hashed Double-Ended Queue

in the list, so that the first element left-enqueued into
an empty queue is numbered zero and the first element
right-enqueued into an empty queue is numbered one. A
series of elements left-enqueued into an otherwise-idle
queue would be assigned decreasing numbers (-1, -2, -
3, ...), while a series of elements right-enqueued into an
otherwise-idle queue would be assigned increasing num-
bers (2, 3, 4, ...). A key point is that it is not necessary
to actually represent a given element’s number, as this
number will be implied by its position in the queue.

Given this approach, we assign one lock to guard the
left-hand index, one to guard the right-hand index, and
one lock for each hash chain. Figure 5.6 shows the result-
ing data structure given four hash chains. Note that the
lock domains do not overlap, and that deadlock is avoided
by acquiring the index locks before the chain locks, and
by never acquiring more than one lock of each type (index
or chain) at a time.

Each hash chain is itself a double-ended queue, and
in this example, each holds every fourth element. The
uppermost portion of Figure 5.7 shows the state after a
single element (“R1”) has been right-enqueued, with the
right-hand index having been incremented to reference
hash chain 2. The middle portion of this same figure
shows the state after three more elements have been right-
enqueued. As you can see, the indexes are back to their
initial states, however, each hash chain is now non-empty.
The lower portion of this figure shows the state after
three additional elements have been left-enqueued and an
additional element has been right-enqueued.

From the last state shown in Figure 5.7, a left-dequeue
operation would return element “L-2" and left the left-
hand index referencing hash chain 2, which would then
contain only a single element (“R2”). In this state, a
left-enqueue running concurrently with a right-enqueue
would result in lock contention, but the probability of such
contention can be arbitrarily reduced by using a larger
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R1
DEQO |DEQ1 | DEQ2 | DEQ3
Index L Index R
R4 R1 R2 R3
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Figure 5.7: Hashed Double-Ended Queue After Insertions

hash table.

Figure 5.8 shows how 12 elements would be organized
in a four-hash-bucket parallel double-ended queue. Each
underlying single-lock double-ended queue holds a one-
quarter slice of the full parallel double-ended queue.

Figure 5.9 shows the corresponding C-language data
structure, assuming an existing struct degq that pro-
vides a trivially locked double-ended-queue implementa-
tion. This data structure contains the left-hand lock on
line 2, the left-hand index on line 3, the right-hand lock
on line 4, the right-hand index on line 5, and, finally, the
hashed array of simple lock-based double-ended queues
on line 6. A high-performance implementation would
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R7 | R6 | R5 | R4
Lo | R1 | R2 | R3
L-4 | L-3 | L-2 | L1

L-8 | L-7 | L-6 | L-5

Figure 5.8: Hashed Double-Ended Queue With 12 Ele-
ments

1 struct pdeqg {

2 spinlock_t llock;

3 int 1lidx;

4 spinlock_t rlock;

5 int ridx;

6 struct deq bkt [DEQ_N_BKTS];
T}

Figure 5.9: Lock-Based Parallel Double-Ended Queue
Data Structure

of course use padding or special alignment directives to
avoid false sharing.

Figure 5.10 shows the implementation of the enqueue
and dequeue functions.> Discussion will focus on the left-
hand operations, as the right-hand operations are trivially
derived from them.

Lines 1-13 show pdeq_dequeue_1 (), which left-
dequeues and returns an element if possible, returning
NULL otherwise. Line 6 acquires the left-hand spinlock,
and line 7 computes the index to be dequeued from. Line 8
dequeues the element, and, if line 9 finds the result to be
non-NULL, line 10 records the new left-hand index. Either
way, line 11 releases the lock, and, finally, line 12 returns
the element if there was one, or NULL otherwise.

Lines 15-24 shows pdeq_enqueue_1 (), which left-
enqueues the specified element. Line 19 acquires the
left-hand lock, and line 20 picks up the left-hand in-
dex. Line 21 left-enqueues the specified element onto
the double-ended queue indexed by the left-hand index.
Line 22 updates the left-hand index, and finally line 23
releases the lock.

As noted earlier, the right-hand operations are com-
pletely analogous to their left-handed counterparts.

Quick Quiz 5.4: Is the hashed double-ended queue a
good solution? Why or why not? ll

2 One could easily create a polymorphic implementation in any
number of languages, but doing so is left as an exercise for the reader.
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struct element xpdeqg_dequeue_l (struct pdeqg =d)
{

}

struct element =xe;
int 1i;

spin_lock (&d->1lock);
i = moveright (d->1idx) ;
e = deqg_dequeue_1 (&d->bkt[i]);
if (e != NULL)
d->1lidx = 1i;
spin_unlock (&d->1lock) ;
return e;

void pdeqg_enqueue_l (struct element xe, struct pdeqg xd)

{

}

int 1i;

spin_lock (&d->1lock) ;

i = d->1idx;

deq_enqueue_1 (e, &d->bkt[i]);
d->1idx = moveleft (d->1idx);
spin_unlock (&d->1lock) ;

struct element xpdeg_dequeue_r (struct pdeq =xd)

{

}

struct element =xe;
int 1i;

spin_lock (&d->rlock) ;
i = moveleft (d->ridx);
e = deqg_dequeue_r (&d->bkt[i]);
if (e != NULL)
d->ridx = 1i;
spin_unlock (&d->rlock);
return e;

void pdeqg_enqueue_r (struct element xe, struct pdeq *d)

{

int 1i;

spin_lock (&d->rlock) ;

i = d->ridx;

deq_enqueue_r (e, &d->bkt[i]);
d->ridx = moveright (d->1idx);
spin_unlock (&d->rlock) ;

Figure 5.10: Lock-Based Parallel Double-Ended Queue Implementation
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5.1.2.4 Compound Double-Ended Queue Revisited

This section revisits the compound double-ended queue,
using a trivial rebalancing scheme that moves all the ele-
ments from the non-empty queue to the now-empty queue.

Quick Quiz 5.5: Move all the elements to the queue
that became empty? In what possible universe is this
braindead solution in any way optimal??? Hl

In contrast to the hashed implementation presented in
the previous section, the compound implementation will
build on a sequential implementation of a double-ended
queue that uses neither locks nor atomic operations.

Figure 5.11 shows the implementation. Unlike the
hashed implementation, this compound implementation
is asymmetric, so that we must consider the pdeq_
dequeue_1 () and pdeq_dequeue_r () implemen-
tations separately.

Quick Quiz 5.6: Why can’t the compound parallel
double-ended queue implementation be symmetric? ll

The pdeqg_dequeue_1 () implementation is shown
on lines 1-16 of the figure. Line 6 acquires the left-hand
lock, which line 14 releases. Line 7 attempts to left-
dequeue an element from the left-hand underlying double-
ended queue, and, if successful, skips lines 8-13 to simply
return this element. Otherwise, line 9 acquires the right-
hand lock, line 10 left-dequeues an element from the right-
hand queue, and line 11 moves any remaining elements on
the right-hand queue to the left-hand queue, and line 12
releases the right-hand lock. The element, if any, that was
dequeued on line 10 will be returned.

The pdeqg_dequeue_r () implementation is shown
on lines 18-38 of the figure. As before, line 23 acquires
the right-hand lock (and line 36 releases it), and line 24
attempts to right-dequeue an element from the right-hand
queue, and, if successful, skips lines 24-35 to simply
return this element. However, if line 25 determines that
there was no element to dequeue, line 26 releases the
right-hand lock and lines 27-28 acquire both locks in
the proper order. Line 29 then attempts to right-dequeue
an element from the right-hand list again, and if line 30
determines that this second attempt has failed, line 31
right-dequeues an element from the left-hand queue (if
there is one available) and line 32 moves any remaining
elements from the left-hand queue to the right-hand queue.
Either way, line 34 releases the left-hand lock.

Quick Quiz 5.7: Why is it necessary to retry the right-
dequeue operation on line 29 of Figure 5.11?

Quick Quiz 5.8: Surely the left-hand lock must some-
times be available!!! So why is it necessary that line 26 of
Figure 5.11 unconditionally release the right-hand lock?
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The pdeq_enqueue_1 () implementation is shown
on lines 40-47 of Figure 5.11. Line 44 acquires the left-
hand spinlock, line 45 left-enqueues the element onto
the left-hand queue, and finally line 46 releases the lock.
The pdeqg_enqueue_r () implementation (shown on
lines 49-56) is quite similar.

5.1.2.5 Double-Ended Queue Discussion

The compound implementation is somewhat more com-
plex than the hashed variant presented in Section 5.1.2.3,
but is still reasonably simple. Of course, a more intel-
ligent rebalancing scheme could be arbitrarily complex,
but the simple scheme shown here has been shown to per-
form well compared to software alternatives [DCW™'11]
and even compared to algorithms using hardware as-
sist [DLM*10]. Nevertheless, the best we can hope for
from such a scheme is 2x scalability, as at most two
threads can be holding the dequeue’s locks concurrently.

The key point is that there can be significant overhead
enqueuing to or dequeuing from a shared queue.

5.1.3 Partitioning Example Discussion

The optimal solution to the dining philosophers problem
given in the answer to the Quick Quiz in Section 5.1.1 is
an excellent example of “horizontal parallelism” or “data
parallelism”. The synchronization overhead in this case
is nearly (or even exactly) zero. In contrast, the double-
ended queue implementations are examples of “vertical
parallelism” or “pipelining”, given that data moves from
one thread to another. The tighter coordination required
for pipelining in turn requires larger units of work to
obtain a given level of efficiency.

Quick Quiz 5.9: The tandem double-ended queue runs
about twice as fast as the hashed double-ended queue,
even when I increase the size of the hash table to an
insanely large number. Why is that? ll

Quick Quiz 5.10: Is there a significantly better way of
handling concurrency for double-ended queues? H

These two examples show just how powerful partition-
ing can be in devising parallel algorithms. However, these
example beg for more and better design criteria for paral-
lel programs, a topic taken up in the next section.
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struct list_head xpdeqg _dequeue_l (struct pdeqg xd)
{

struct list_head =xe;

int 1i;

spin_lock (&d->1lock) ;
e = deg_dequeue_l (&d->1deq) ;
if (e == NULL) {
spin_lock (&d->rlock) ;
e = deg_dequeue_l1 (&d->rdeq) ;
list_splice_init (&d->rdeg.chain, &d->ldeg.chain);
spin_unlock (&d->rlock) ;
}
spin_unlock (&d->1lock) ;
return e;

}

struct list_head *pdeq_dequeue_r (struct pdeqg =*d)
{

struct list_head =xe;

int i;

spin_lock (&d->rlock);
e = deg_dequeue_r (&d->rdeq) ;
if (e == NULL) {
spin_unlock (&d->rlock);
spin_lock (&d->1lock) ;
spin_lock (&d->rlock) ;
e = deg_dequeue_r (&d->rdeq) ;
if (e == NULL) {
e = deqg_dequeue_r (&d->1deq) ;
list_splice_init (&d->1ldeqg.chain, &d->rdeq.chain);
}
spin_unlock (&d->1lock) ;
}
spin_unlock (&d->rlock);
return e;

}

void pdeqg_enqueue_l (struct list_head xe, struct pdeg xd)
{

int 1i;

spin_lock (&d->1lock) ;
deqg_enqueue_1 (e, &d->1deq);
spin_unlock (&d->1lock);

}

void pdeqg_enqueue_r (struct list_head xe, struct pdeg xd)
{

int i;

spin_lock (&d->rlock);
deqg_enqueue_r (e, &d->rdeq);
spin_unlock (&d->rlock);

Figure 5.11: Compound Parallel Double-Ended Queue Implementation
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5.2 Design Criteria

Section 1.2 called out the three parallel-programming
goals of performance, productivity, and generality. How-
ever, more detailed design criteria are required to actually
produce a real-world design, a task taken up in this sec-
tion. This being the real world, these criteria often conflict
to a greater or lesser degree, requiring that the designer
carefully balance the resulting tradeoffs.

As such, these criteria may be thought of as the
“forces” acting on the design, with particularly good
tradeoffs between these forces being called “design pat-
terns” [Ale79, GHIV95].

The design criteria for attaining the three parallel-
programming goals are speedup, contention, overhead,
read-to-write ratio, and complexity:

Speedup: As noted in Section 1.2, increased perfor-
mance is the major reason to go to all of the time and
trouble required to parallelize it. Speedup is defined
to be the ratio of the time required to run a sequential
version of the program to the time required to run a
parallel version.

Contention: If more CPUs are applied to a parallel pro-
gram than can be kept busy by that program, the
excess CPUs are prevented from doing useful work
by contention. This may be lock contention, memory
contention, or a host of other performance killers.

Work-to-Synchronization Ratio: A uniprocessor,
single-threaded, non-preemptible, and non-
interruptible’ version of a given parallel program
would not need any synchronization primitives.
Therefore, any time consumed by these primitives
(including communication cache misses as well
as message latency, locking primitives, atomic
instructions, and memory barriers) is overhead that
does not contribute directly to the useful work that
the program is intended to accomplish. Note that
the important measure is the relationship between
the synchronization overhead and the overhead of
the code in the critical section, with larger critical
sections able to tolerate greater synchronization
overhead. The work-to-synchronization ratio is
related to the notion of synchronization efficiency.

Read-to-Write Ratio: A data structure that is rarely up-
dated may often be replicated rather than partitioned,

3 Either by masking interrupts or by being oblivious to them.
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and furthermore may be protected with asymmet-
ric synchronization primitives that reduce readers’
synchronization overhead at the expense of that of
writers, thereby reducing overall synchronization
overhead. Corresponding optimizations are possible
for frequently updated data structures, as discussed
in Chapter 4.

Complexity: A parallel program is more complex than
an equivalent sequential program because the paral-
lel program has a much larger state space than does
the sequential program, although these larger state
spaces can in some cases be easily understood given
sufficient regularity and structure. A parallel pro-
grammer must consider synchronization primitives,
messaging, locking design, critical-section identifi-
cation, and deadlock in the context of this larger state
space.

This greater complexity often translates to higher
development and maintenance costs. Therefore, bud-
getary constraints can limit the number and types
of modifications made to an existing program, since
a given degree of speedup is worth only so much
time and trouble. Furthermore, there may be poten-
tial sequential optimizations that are cheaper and
more effective than parallelization. As noted in Sec-
tion 1.2.1, parallelization is but one performance
optimization of many, and is furthermore an opti-
mization that applies most readily to CPU-based
bottlenecks.

These criteria will act together to enforce a maximum
speedup. The first three criteria are deeply interrelated, so
the remainder of this section analyzes these interrelation-
ships.*

Note that these criteria may also appear as part of the
requirements specification. For example, speedup may act
as a desideratum (“the faster, the better”) or as an absolute
requirement of the workload, or “context” (“the system
must support at least 1,000,000 web hits per second”).

An understanding of the relationships between these
design criteria can be very helpful when identifying ap-
propriate design tradeoffs for a parallel program.

1. The less time a program spends in critical sections,
the greater the potential speedup. This is a conse-
quence of Amdahl’s Law [Amd67] and of the fact

4 A real-world parallel system will be subject to many additional
design criteria, such as data-structure layout, memory size, memory-
hierarchy latencies, and bandwidth limitations.
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that only one CPU may execute within a given criti-
cal section at a given time.

2. The fraction of time that the program spends in a
given exclusive critical section must be much less
than the reciprocal of the number of CPUs for the
actual speedup to approach the number of CPUs.
For example, a program running on 10 CPUs must
spend much less than one tenth of its time in the
most-restrictive critical section if it is to scale at all
well.

3. Contention effects will consume the excess CPU
and/or wallclock time should the actual speedup be
less than the number of available CPUs. The larger
the gap between the number of CPUs and the ac-
tual speedup, the less efficiently the CPUs will be
used. Similarly, the greater the desired efficiency,
the smaller the achievable speedup.

4. If the available synchronization primitives have high
overhead compared to the critical sections that they
guard, the best way to improve speedup is to reduce
the number of times that the primitives are invoked
(perhaps by batching critical sections, using data
ownership, using RCU, or by moving toward a more
coarse-grained design such as code locking).

5. If the critical sections have high overhead compared
to the primitives guarding them, the best way to im-
prove speedup is to increase parallelism by moving
to reader/writer locking, data locking, RCU, or data
ownership.

6. If the critical sections have high overhead compared
to the primitives guarding them and the data struc-
ture being guarded is read much more often than
modified, the best way to increase parallelism is to
move to reader/writer locking or RCU.

7. Many changes that improve SMP performance, for
example, reducing lock contention, also improve
response times.

5.3 Synchronization Granularity

Figure 5.12 gives a pictorial view of different levels of
synchronization granularity, each of which is described
in one of the following sections. These sections focus
primarily on locking, but similar granularity issues arise
with all forms of synchronization.

Sequential
Program |
Partition Batch
> Code
Locking |
Partition Batch
> Data
Locking |
Own Disown

Data
Ownership

Figure 5.12: Design Patterns and Lock Granularity

5.3.1 Sequential Program

If the program runs fast enough on a single processor, and
has no interactions with other processes, threads, or in-
terrupt handlers, you should remove the synchronization
primitives and spare yourself their overhead and complex-
ity. Some years back, there were those who would argue
that Moore’s Law would eventually force all programs
into this category. However, given the cessation in rate
of CPU MIPS and clock-frequency growth in Intel CPUs
since the year 2003, as can be seen in Figure 5.13 increas-
ing performance will increasingly require parallelism.’
The debate as to whether this new trend will result in
single chips with thousands of CPUs will not be settled
soon, but given that Paul is typing this sentence on a dual-
core laptop, the age of SMP does seem to be upon us.
It is also important to note that Ethernet bandwidth is
continuing to grow, as shown in Figure 5.14. This growth
will motivate multithreaded servers in order to handle the
communications load.

Please note that this does not mean that you should
code each and every program in a multi-threaded manner.
Again, if a program runs quickly enough on a single

5 This plot shows clock frequencies for newer CPUs theoretically
capable of retiring one or more instructions per clock, and MIPS for
older CPUs requiring multiple clocks to execute even the simplest
instruction. The reason for taking this approach is that the newer CPUs’
ability to retire multiple instructions per clock is typically limited by
memory-system performance.
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Figure 5.13: MIPS/Clock-Frequency Trend for Intel
CPUs

processor, spare yourself the overhead and complexity of
SMP synchronization primitives. The simplicity of the
hash-table lookup code in Figure 5.15 underscores this
point.®

On the other hand, if you are not in this happy situation,
read on!

5.3.2 Code Locking

Code locking is the simplest locking design, using only
global locks.” 1t is especially easy to retrofit an exist-
ing program to use code locking in order to run it on a
multiprocessor. If the program has only a single shared re-
source, code locking will even give optimal performance.
However, many of the larger and more complex programs
require much of the execution to occur in critical sections,
which in turn causes code locking to sharply limits their
scalability.

Therefore, you should use code locking on programs
that spend only a small fraction of their execution time
in critical sections or from which only modest scaling
is required. In these cases, code locking will provide
a relatively simple program that is very similar to its

6 The examples in this section are taken from Hart et al. [HMBO6],
adapted for clarity by gathering code related code from multiple files.

7 If your program instead has locks in data structures, or, in the case
of Java, uses classes with synchronized instances, you are instead using
“data locking”, described in Section 5.3.3.
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Figure 5.14: Ethernet Bandwidth vs. Intel x86 CPU
Performance

sequential counterpart, as can be seen in Figure 5.16.
However, not that the simple return of the comparison
in hash_search () in Figure 5.15 has now become
three statements due to the need to release the lock before
returning.

However, code locking is particularly prone to “lock
contention”, where multiple CPUs need to acquire the
lock concurrently. SMP programmers who have taken
care of groups of small children (or of older people who
are acting like children) will immediately recognize the
danger of having only one of something, as illustrated in
Figure 5.17.

One solution to this problem, named “data locking”, is
described in the next section.

5.3.3 Data Locking

Many data structures may be partitioned, with each par-
tition of the data structure having its own lock. Then
the critical sections for each part of the data structure
can execute in parallel, although only one instance of the
critical section for a given part could be executing at a
given time. Use data locking when contention must be
reduced, and where synchronization overhead is not lim-
iting speedups. Data locking reduces contention by dis-
tributing the instances of the overly-large critical section
into multiple critical sections, for example, maintaining
per-hash-bucket critical sections in a hash table, as shown
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1 struct hash_table

2 {

3 long nbuckets;

4 struct node xxbuckets;
5 };

6

7

8

typedef struct node {
unsigned long key;

9 struct node xnext;
10 } node_t;
11
12 int hash_search (struct hash_table =*h,
13 {
14 struct node xcur;
15
16 cur = h->bucketsl[key % h->nbuckets];
17 while (cur != NULL) {
18 if (cur->key >= key) {
19 return (cur->key == key);
20 }
21 cur = cur->next;
22 }
23 return 0;
24 '}

CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DESIGN

long key)

Figure 5.15: Sequential-Program Hash Table Search

spinlock_t hash_lock;

struct hash_table
{
long nbuckets;
struct node =xxbuckets;

}i

W J oUW N

9 typedef struct node {
10 unsigned long key;

11 struct node =*next;
12 } node_t;
13

14 int hash_search(struct hash_table xh,
15 {

16 struct node =cur;
17 int retval;
18

19 spin_lock (&hash_lock) ;
20 cur = h->buckets[key % h->nbuckets];

21 while (cur != NULL) {

22 if (cur->key >= key) {

23 retval = (cur->key == key);
24 spin_unlock (&¢hash_lock) ;
25 return retval;

26 }

27 cur = cur->next;

28 }

29 spin_unlock (&hash_lock) ;

30 return 0;

31 }

long key)

Figure 5.16: Code-Locking Hash Table Search

Figure 5.17: Lock Contention

in Figure 5.18. The increased scalability again results in
increased complexity in the form of an additional data
structure, the struct bucket.

In contrast with the contentious situation shown in
Figure 5.17, data locking helps promote harmony, as il-
lustrated by Figure 5.19 — and in parallel programs, this
almost always translates into increased performance and
scalability. For this reason, data locking was heavily used
by Sequent in both its DYNIX and DYNIX/ptx operating
systems [BK85, Inm85, Gar90, Dov90, MD92, MG92,
MS93].

However, as those how have taken care of small chil-
dren can again attest, even providing enough to go around
is no guarantee of tranquillity. The analogous situation
can arise in SMP programs. For example, the Linux
kernel maintains a cache of files and directories (called
“dcache”). Each entry in this cache has its own lock, but
the entries corresponding to the root directory and its di-
rect descendants are much more likely to be traversed than
are more obscure entries. This can result in many CPUs
contending for the locks of these popular entries, resulting
in a situation not unlike that shown in Figure 5.20.

In many cases, algorithms can be designed to reduce
the instance of data skew, and in some cases eliminate it
entirely (as appears to be possible with the Linux kernel’s
dcache [MSS04]). Data locking is often used for parti-
tionable data structures such as hash tables, as well as
in situations where multiple entities are each represented
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struct hash_table

{

Vi

long nbuckets;
struct bucket *xbuckets;

7

struct bucket {

}

spinlock_t bucket_lock;
node_t =*list_head;

;

typedef struct node {

}

int hash_search (struct hash_table xh,

{

unsigned long key;
struct node *next;
node_t;

long key)

struct bucket xbp;
struct node =xcur;
int retval;

bp = h->buckets[key % h—->nbuckets];
spin_lock (&§bp->bucket_lock) ;
cur = bp->list_head;

while (cur != NULL) {
if (cur->key >= key) {
retval = (cur->key == key);

spin_unlock (&bp->hash_lock) ;
return retval;
}
cur = cur—>next;
}
spin_unlock (&bp->hash_lock) ;
return 0;

Figure 5.18: Data-Locking Hash Table Search
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Figure 5.19: Data Locking

by an instance of a given data structure. The task list in
version 2.6.17 of the Linux kernel is an example of the
latter, each task structure having its own proc_1lock.

A key challenge with data locking on dynamically allo-
cated structures is ensuring that the structure remains in
existence while the lock is being acquired. The code in
Figure 5.18 finesses this challenge by placing the locks
in the statically allocated hash buckets, which are never
freed. However, this trick would not work if the hash
table were resizeable, so that the locks were now dynami-
cally allocated. In this case, there would need to be some
means to prevent the hash bucket from being freed during
the time that its lock was being acquired.

Quick Quiz 5.11: What are some ways of prevent-
ing a structure from being freed while its lock is being
acquired?

5.3.4 Data Ownership

Data ownership partitions a given data structure over the
threads or CPUs, so that each thread/CPU accesses its
subset of the data structure without any synchronization
overhead whatsoever. However, if one thread wishes to
access some other thread’s data, the first thread is unable
to do so directly. Instead, the first thread must commu-
nicate with the second thread, so that the second thread
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Figure 5.20: Data Locking and Skew

performs the operation on behalf of the first, or, alterna-
tively, migrates the data to the first thread.

Data ownership might seem arcane, but it is used very
frequently:

1. Any variables accessible by only one CPU or thread
(such as auto variables in C and C++) are owned
by that CPU or process.

2. An instance of a user interface owns the correspond-
ing user’s context. It is very common for applica-
tions interacting with parallel database engines to be
written as if they were entirely sequential programs.
Such applications own the user interface and his cur-
rent action. Explicit parallelism is thus confined to
the database engine itself.

3. Parametric simulations are often trivially parallelized
by granting each thread ownership of a particular
region of the parameter space.

If there is significant sharing, communication between
the threads or CPUs can result in significant complexity
and overhead. Furthermore, if the most-heavily used data
happens to be that owned by a single CPU, that CPU will
be a “hot spot”, sometimes with results resembling that
shown in Figure 5.20. However, in situations where no
sharing is required, data ownership achieves ideal per-
formance, and with code that can be as simple as the

sequential-program case shown in Figure 5.15. Such situ-
ations are often referred to as “embarrassingly parallel”,
and, in the best case, resemble the situation previously
shown in Figure 5.19.

Another important instance of data ownership occurs
when the data is read-only, in which case, all threads can
“own” it via replication.

Data ownership will be presented in more detail in
Chapter 7.

5.3.5 Locking Granularity and Perfor-
mance

This section looks at locking granularity and performance
from a mathematical synchronization-efficiency view-
point. Readers who are uninspired by mathematics might
choose to skip this section.

The approach is to use a crude queueing model for the
efficiency of synchronization mechanism that operate on
a single shared global variable, based on an M/M/1 queue.
M/M/1 queuing models are based on an exponentially
distributed “inter-arrival rate” A and an exponentially
distributed “service rate” u. The inter-arrival rate A can
be thought of as the average number of synchronization
operations per second that the system would process if the
synchronization were free, in other words, A is an inverse
measure of the overhead of each non-synchronization
unit of work. For example, if each unit of work was a
transaction, if each transaction took one millisecond to
process, not counting synchronization overhead, then A
would be 1,000 transactions per second.

The service rate u is defined similarly, but for the aver-
age number of synchronization operations per second that
the system would process if the overhead of each transac-
tion was zero, and ignoring the fact that CPUs must wait
on each other to complete their increment operations, in
other words, u can be roughly thought of as the synchro-
nization overhead in absence of contention. For example,
some recent computer systems are able to do an atomic
increment every 25 nanoseconds or so if all CPUs are
doing atomic increments in a tight loop.® The value of
u is therefore about 40,000,000 atomic increments per
second.

Of course, the value of A increases with increasing
numbers of CPUs, as each CPU is capable of processing

8 Of course, if there are 8 CPUs, each CPU must wait 175 nanosec-
onds for each of the other CPUs to do its increment before consuming
an additional 25 nanoseconds doing its own increment.
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transactions independently (again, ignoring synchroniza-
tion):

A =nA (5.1)

where n is the number of CPUs and Ay is the
transaction-processing capability of a single CPU. Note
that the expected time for a single CPU to execute a single
transaction is 1/2g.

Because the CPUs have to “wait in line” behind each
other to get their chance to increment the single shared
variable, we can use the M/M/1 queueing-model expres-
sion for the expected total waiting time:

1
T=—— 5.2
) (5.2)
Substituting the above value of A:
T = ! (5.3)
p—nko '

Now, the efficiency is just the ratio of the time required
to process a transaction in absence of synchronization to
the time required including synchronization:

6271/%
T+1/%

Substituting the above value for T and simplifying:
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—n

(1)

But the value of /A is just the ratio of the time re-
quired to process the transaction (absent synchronization
overhead) to that of the synchronization overhead itself
(absent contention). If we call this ratio f, we have:

f—n
f—(n-1)

Figure 5.21 plots the synchronization efficiency e as
a function of the number of CPUs/threads n for a few
values of the overhead ratio f. For example, again using
the 25-nanosecond atomic increment, the f = 10 line cor-
responds to each CPU attempting an atomic increment
every 250 nanoseconds, and the f = 100 line corresponds
to each CPU attempting an atomic increment every 2.5
microseconds, which in turn corresponds to several thou-
sand instructions. Given that each trace drops off sharply
with increasing numbers of CPUs or threads, we can con-
clude that synchronization mechanisms based on atomic
manipulation of a single global shared variable will not

e =

&=

(5.5)

e =

(5.6)
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Figure 5.21: Synchronization Efficiency

scale well if used heavily on current commodity hardware.
This is a mathematical depiction of the forces leading to
the parallel counting algorithms that were discussed in
Chapter 4.

The concept of efficiency is useful even in cases having
little or no formal synchronization. Consider for example
a matrix multiply, in which the columns of one matrix
are multiplied (via “dot product”) by the rows of another,
resulting in an entry in a third matrix. Because none of
these operations conflict, it is possible to partition the
columns of the first matrix among a group of threads,
with each thread computing the corresponding columns
of the result matrix. The threads can therefore operate
entirely independently, with no synchronization overhead
whatsoever, as is done in matmul . c. One might there-
fore expect a parallel matrix multiply to have a perfect
efficiency of 1.0.

However, Figure 5.22 tells a different story, especially
for a 64-by-64 matrix multiply, which never gets above
an efficiency of about 0.7, even when running single-
threaded. The 512-by-512 matrix multiply’s efficiency is
measurably less than 1.0 on as few as 10 threads, and even
the 1024-by-1024 matrix multiply deviates noticeably
from perfection at a few tens of threads.

Quick Quiz 5.12: How can a single-threaded 64-by-
64 matrix multiple possibly have an efficiency of less
than 1.0? Shouldn’t all of the traces in Figure 5.22 have
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Figure 5.22: Matrix Multiply Efficiency

efficiency of exactly 1.0 when running on only one thread?
]

Given these inefficiencies, it is worthwhile to look into
more-scalable approaches such as the data locking de-
scribed in Section 5.3.3 or the parallel-fastpath approach
discussed in the next section.

Quick Quiz 5.13: How are data-parallel techniques
going to help with matrix multiply? It is already data
parallel!!! l

5.4 Parallel Fastpath

Fine-grained (and therefore usually higher-performance)
designs are typically more complex than are coarser-
grained designs. In many cases, most of the overhead
is incurred by a small fraction of the code [Knu73]. So
why not focus effort on that small fraction?

This is the idea behind the parallel-fastpath design pat-
tern, to aggressively parallelize the common-case code
path without incurring the complexity that would be re-
quired to aggressively parallelize the entire algorithm.
You must understand not only the specific algorithm you
wish to parallelize, but also the workload that the algo-
rithm will be subjected to. Great creativity and design
effort is often required to construct a parallel fastpath.

Parallel fastpath combines different patterns (one for
the fastpath, one elsewhere) and is therefore a template
pattern. The following instances of parallel fastpath occur
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often enough to warrant their own patterns, as depicted in
Figure 5.23:

eader/Write
Locking

Y

RCU

Parallel

Fastpath

_ | Hierarchical
| Locking

_ Allocator
> Caches

Figure 5.23: Parallel-Fastpath Design Patterns

1. Reader/Writer Locking (described below in Sec-
tion 5.4.1).

2. Read-copy update (RCU), which may be used as
a high-performance replacement for reader/writer
locking, is introduced in Section 8.3, and will not be
discussed further in this chapter.

3. Hierarchical Locking ([McK96a]), which is touched
upon in Section 5.4.2.

4. Resource Allocator Caches ([McK96a, MS93]). See
Section 5.4.3 for more detail.

5.4.1 Reader/Writer Locking

If synchronization overhead is negligible (for example,
if the program uses coarse-grained parallelism), and if
only a small fraction of the critical sections modify data,
then allowing multiple readers to proceed in parallel can
greatly increase scalability. Writers exclude both readers
and each other. Figure 5.24 shows how the hash search
might be implemented using reader-writer locking.
Reader/writer locking is a simple instance of asymmet-
ric locking. Snaman [ST87] describes a more ornate six-
mode asymmetric locking design used in several clustered
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rwlock_t hash_lock;

struct hash_table
{
long nbuckets;
struct node *x*buckets;

}i

@ J o0 WN

9 typedef struct node {
10 unsigned long key;

11 struct node *next;

12 } node_t;

13

14 int hash_search(struct hash_table xh, long key)
15 {

16 struct node =*cur;

17 int retval;

18

19 read_lock (&hash_lock) ;
h->buckets[key %

20 cur = h->nbuckets];
21 while (cur != NULL) {

22 if (cur->key >= key) {

23 retval = (cur->key == key);
24 read_unlock (&hash_lock);

25 return retval;

26 }

27 cur = cur->next;

28 }

29 read_unlock (&hash_lock);

30 return 0;

31 }

Figure 5.24: Reader-Writer-Locking Hash Table Search

systems. Locking in general and reader-writer locking in
particular is described extensively in Chapter 6.

5.4.2 Hierarchical Locking

The idea behind hierarchical locking is to have a coarse-
grained lock that is held only long enough to work out
which fine-grained lock to acquire. Figure 5.25 shows
how our hash-table search might be adapted to do hier-
archical locking, but also shows the great weakness of
this approach: we have paid the overhead of acquiring a
second lock, but we only hold it for a short time. In this
case, the simpler data-locking approach would be simpler
and likely perform better.

Quick Quiz 5.14: In what situation would hierarchical
locking work well?

5.4.3 Resource Allocator Caches

This section presents a simplified schematic of a parallel
fixed-block-size memory allocator. More detailed descrip-
tions may be found in the literature [MG92, MS93, BAO1,
MSKO1] or in the Linux kernel [Tor03c].
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struct hash_table
{

long nbuckets;

struct bucket =xxbuckets;
bi

struct bucket {
spinlock_t bucket_lock;
node_t xlist_head;

}i

typedef struct node {
spinlock_t node_lock;
unsigned long key;
struct node *next;

} node_t;

int hash_search(struct hash_table xh,
{

struct bucket xbp;

struct node =*cur;

int retval;

bp = h->buckets[key % h->nbuckets];
spin_lock (¢bp->bucket_lock) ;
cur = bp->list_head;
while (cur != NULL) {
if (cur->key >= key) {
spin_lock (&cur->node_lock) ;
spin_unlock (&bp->bucket_lock);
retval = (cur->key == key);
spin_unlock (&cur->node_lock) ;
return retval;
}
cur =
}
spin_unlock (&bp->bucket_lock);
return 0;

cur->next;

long

key)
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Figure 5.25: Hierarchical-Locking Hash Table Search
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5.4.3.1 Parallel Resource Allocation Problem

The basic problem facing a parallel memory allocator is
the tension between the need to provide extremely fast
memory allocation and freeing in the common case and
the need to efficiently distribute memory in face of unfa-
vorable allocation and freeing patterns.

To see this tension, consider a straightforward applica-
tion of data ownership to this problem — simply carve up
memory so that each CPU owns its share. For example,
suppose that a system with two CPUs has two gigabytes
of memory (such as the one that I am typing on right
now). We could simply assign each CPU one gigabyte of
memory, and allow each CPU to access its own private
chunk of memory, without the need for locking and its
complexities and overheads. Unfortunately, this simple
scheme breaks down if an algorithm happens to have CPU
0 allocate all of the memory and CPU 1 the free it, as
would happen in a simple producer-consumer workload.

The other extreme, code locking, suffers from excessive
lock contention and overhead [MS93].

5.4.3.2 Parallel Fastpath for Resource Allocation

The commonly used solution uses parallel fastpath with
each CPU owning a modest cache of blocks, and with a
large code-locked shared pool for additional blocks. To
prevent any given CPU from monopolizing the memory
blocks, we place a limit on the number of blocks that can
be in each CPU’s cache. In a two-CPU system, the flow
of memory blocks will be as shown in Figure 5.26: when
a given CPU is trying to free a block when its pool is full,
it sends blocks to the global pool, and, similarly, when
that CPU is trying to allocate a block when its pool is
empty, it retrieves blocks from the global pool.

5.4.3.3 Data Structures

The actual data structures for a “toy” implementa-
tion of allocator caches are shown in Figure 5.27.
The “Global Pool” of Figure 5.26 is implemented by
globalmem of type struct globalmempool, and
the two CPU pools by the per-CPU variable pe rcpumem
of type percpumempool. Both of these data struc-
tures have arrays of pointers to blocks in their pool
fields, which are filled from index zero upwards. Thus,
if globalmem.pool [3] is NULL, then the remainder
of the array from index 4 up must also be NULL. The
cur fields contain the index of the highest-numbered full
element of the pool array, or -1 if all elements are empty.

Global Pool

-

|

i

-

! i
S ! i =
L2 ! (Code Locked) i L2
5] ‘ i o
> >
] o

R T

Allocate/Free

Figure 5.26: Allocator Cache Schematic

All elements from globalmem.pool[0] through
globalmem.pool [globalmem. cur] must be full,
and all the rest must be empty.?

#define TARGET_POOL_SIZE 3
#define GLOBAL_POOL_SIZE 40

struct globalmempool {

spinlock_t mutex;

int cur;

struct memblock xpool [GLOBAL_POOL_SIZE];
} globalmem;

0 J oUW N

10 struct percpumempool {

11 int cur;

12 struct memblock xpool[2 x TARGET_POOL_SIZE];
13 };

15 DEFINE_PER_THREAD (struct percpumempool, percpumem) ;

Figure 5.27: Allocator-Cache Data Structures

The operation of the pool data structures is illustrated
by Figure 5.28, with the six boxes representing the array
of pointers making up the pool field, and the number pre-
ceding them representing the cur field. The shaded boxes
represent non-NULL pointers, while the empty boxes rep-
resent NULL pointers. An important, though potentially
confusing, invariant of this data structure is that the cur
field is always one smaller than the number of non-NULL

9 Both pool sizes (TARGET_POOL_SIZE and GLOBAL_POOL_
SIZE) are unrealistically small, but this small size makes it easier to
single-step the program in order to get a feel for its operation.
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pointers.

(Empty) -1

Figure 5.28: Allocator Pool Schematic

5.4.3.4 Allocation Function

The allocation function memblock_alloc () may be
seen in Figure 5.29. Line 7 picks up the current thread’s
per-thread pool, and line 8 check to see if it is empty.

If so, lines 9-16 attempt to refill it from the global pool
under the spinlock acquired on line 9 and released on
line 16. Lines 10-14 move blocks from the global to the
per-thread pool until either the local pool reaches its target
size (half full) or the global pool is exhausted, and line 15
sets the per-thread pool’s count to the proper value.

In either case, line 18 checks for the per-thread pool
still being empty, and if not, lines 19-21 remove a block
and return it. Otherwise, line 23 tells the sad tale of
memory exhaustion.

5.4.3.5 Free Function

Figure 5.30 shows the memory-block free function.
Line 6 gets a pointer to this thread’s pool, and line 7
checks to see if this per-thread pool is full.

If so, lines 8-15 empty half of the per-thread pool into
the global pool, with lines 8 and 14 acquiring and releas-
ing the spinlock. Lines 9-12 implement the loop moving
blocks from the local to the global pool, and line 13 sets
the per-thread pool’s count to the proper value.

In either case, line 16 then places the newly freed block
into the per-thread pool.
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1 struct memblock xmemblock_alloc (void)
2 {
3 int 1i;
4 struct memblock x*p;
5 struct percpumempool *pcpp;
6
7 pcpp = &__get_thread_var (percpumem) ;
8 if (pcpp->cur < 0) {
9 spin_lock (&globalmem.mutex) ;
10 for (i = 0; 1 < TARGET_POOL_SIZE &&
11 globalmem.cur >= 0; i++) {
12 pcpp->pool[i] = globalmem.pool [globalmem.cur];
13 globalmem.pool [globalmem.cur—--] = NULL;
14 }
15 pcpp->cur = i - 1;
16 spin_unlock (&globalmem.mutex) ;
17 }
18 if (pcpp->cur >= 0) {
19 p = pcpp->pool [pcpp->cur];
20 pcpp->pool [pcpp->cur--] = NULL;
21 return p;
22 }
23 return NULL;
24 '}

Figure 5.29: Allocator-Cache Allocator Function
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void memblock_free (struct memblock =p)
{

int 1i;
struct percpumempool xpcpp;

pcpp = &__get_thread_var (percpumem) ;
if (pcpp->cur >= 2 % TARGET_POOL_SIZE - 1) {
spin_lock (&globalmem.mutex) ;
for (i = pcpp->cur; i >= TARGET_POOL_SIZE; i--) {
globalmem.pool [++globalmem.cur] = pcpp->pool[i];
pcpp->pool[i] = NULL;
}
pcpp->cur = ij;
spin_unlock (&globalmem.mutex) ;
}
pcpp->pool [++pcpp->cur] = p;

Figure 5.30: Allocator-Cache Free Function
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5.4.3.6 Performance

Rough performance results'® are shown in Figure 5.31,
running on a dual-core Intel x86 running at 1GHz (4300
bogomips per CPU) with at most six blocks allowed in
each CPU’s cache. In this micro-benchmark, each thread
repeatedly allocates a group of blocks and then frees it,
with the size of the group being the “allocation run length”
displayed on the x-axis. The y-axis shows the number of
successful allocation/free pairs per microsecond — failed
allocations are not counted. The “X”’s are from a two-
thread run, while the “+”’s are from a single-threaded run.
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Figure 5.31: Allocator Cache Performance

Note that run lengths up to six scale linearly and
give excellent performance, while run lengths greater
than six show poor performance and almost always also
show negative scaling. It is therefore quite important
to size TARGET_POOL_SIZE sufficiently large, which
fortunately is usually quite easy to do in actual prac-
tice [MSKO1], especially given today’s large memories.
For example, in most systems, it is quite reasonable to
set TARGET_POOL_SIZE to 100, in which case alloca-
tions and frees are guaranteed to be confined to per-thread
pools at least 99% of the time.

10 This data was not collected in a statistically meaningful way, and
therefore should be viewed with great skepticism and suspicion. Good
data-collection and -reduction practice is discussed in Chapter @ @ @.
That said, repeated runs gave similar results, and these results match
more careful evaluations of similar algorithms.

As can be seen from the figure, the situations where the
common-case data-ownership applies (run lengths up to
six) provide greatly improved performance compared to
the cases where locks must be acquired. Avoiding locking
in the common case will be a recurring theme through
this book.

Quick Quiz 5.15: In Figure 5.31, there is a pattern of
performance rising with increasing run length in groups
of three samples, for example, for run lengths 10, 11, and
12. Why? l

Quick Quiz 5.16: Allocation failures were observed
in the two-thread tests at run lengths of 19 and greater.
Given the global-pool size of 40 and the per-CPU target
pool size of three, what is the smallest allocation run
length at which failures can occur? il

5.4.3.7 Real-World Design

The toy parallel resource allocator was quite simple, but
real-world designs expand on this approach in a number
of ways.

First, real-world allocators are required to handle a
wide range of allocation sizes, as opposed to the single
size shown in this toy example. One popular way to do
this is to offer a fixed set of sizes, spaced so as to balance
external and internal fragmentation, such as in the late-
1980s BSD memory allocator [MK88]. Doing this would
mean that the “globalmem” variable would need to be
replicated on a per-size basis, and that the associated lock
would similarly be replicated, resulting in data locking
rather than the toy program’s code locking.

Second, production-quality systems must be able to
repurpose memory, meaning that they must be able to coa-
lesce blocks into larger structures, such as pages [MS93].
This coalescing will also need to be protected by a lock,
which again could be replicated on a per-size basis.

Third, coalesced memory must be returned to the un-
derlying memory system, and pages of memory must also
be allocated from the underlying memory system. The
locking required at this level will depend on that of the un-
derlying memory system, but could well be code locking.
Code locking can often be tolerated at this level, because
this level is so infrequently reached in well-designed sys-
tems [MSKO1].

Despite this real-world design’s greater complexity, the
underlying idea is the same — repeated application of
parallel fastpath, as shown in Table 5.1.
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Level | Locking | Purpose

Per-thread pool Data ownership | High-speed allocation

Global block pool | Data locking Distributing blocks
among threads

Coalescing Data locking Combining blocks into
pages

System memory Code locking Memory from/to system

Table 5.1: Schematic of Real-World Parallel Allocator

5.5 Performance Summary

@@ @ summarize performance of the various options.
Forward-reference to the RCU/NBS section.
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Chapter 6

Locking

The role of villain in much of the past few decades’ con-
currency research literature is played by locking, which
stands accused of promoting deadlocks, convoying, star-
vation, unfairness, data races, and all manner of other con-
currency sins. Interestingly enough, the role of workhorse
in shared-memory parallel software is played by, you
guessed it, locking.

There are a number of reasons behind this dichotomy:

1. Many of locking’s sins have pragmatic design solu-
tions that work well in most cases, for example:

(a) Lock hierarchies to avoid deadlock.

(b) Deadlock-detection tools, for example, the
Linux kernel’s lockdep facility [Cor06a].

(c) Locking-friendly data structures, such as ar-
rays, hash tables, and radix trees, which will
be covered in Chapter 11.

. Some of locking’s sins are problems only at high
levels of contention, levels reached only by poorly
designed programs.

3. Some of locking’s sins are avoided by using other
synchronization mechanisms in concert with locking.
These other mechanisms include reference counters,
statistical counters, simple non-blocking data struc-
tures, and RCU.

. Until quite recently, almost all large shared-memory
parallel programs were developed in secret, so that
it was difficult for most researchers to learn of these
pragmatic solutions.

. All good stories need a villain, and locking has a long
and honorable history serving as a research-paper
whipping boy.
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Figure 6.1: Locking: Villain or Slob?

This chapter will give an overview of a number of ways
to avoid locking’s more serious sins.

6.1 Staying Alive

Given that locking stands accused of deadlock and starva-
tion, one important concern for shared-memory parallel
developers is simply staying alive. The following sections
therefore cover deadlock, livelock, starvation, unfairness,
and inefficiency.

6.1.1 Deadlock

Deadlock occurs when each of a group of threads is hold-
ing at least one lock while at the same time waiting on a
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Figure 6.2: Locking: Workhorse or Hero?

lock held by a member of the same group.

Without some sort of external intervention, deadlock
is forever. No thread can acquire the lock it is waiting on
until that lock is released by the thread holding it, but the
thread holding it cannot release it until the holding thread
acquires the lock that it is waiting on.

We can create a directed-graph representation of a dead-
lock scenario with nodes for threads and locks, as shown
in Figure 6.3. An arrow from a lock to a thread indicates
that the thread holds the lock, for example, Thread B
holds Locks 2 and 4. An arrow from a thread to a lock in-
dicates that the thread is waiting on the lock, for example,
Thread B is waiting on Lock 3.

A deadlock scenario will always contain at least one
deadlock cycle. In Figure 6.3, this cycle is Thread B,
Lock 3, Thread C, Lock 4, and back to Thread B.

Quick Quiz 6.1: But the definition of deadlock only
said that each thread was holding at least one lock and
waiting on another lock that was held by some thread.
How do you know that there is a cycle? B

Although there are some software environments such
as database systems that can repair an existing deadlock,
this approach requires either that one of the threads be
killed or that a lock be forcibly stolen from one of the
threads. This killing and forcible stealing can be appro-
priate for transactions, but is often problematic for kernel
and application-level use of locking: dealing with the
resulting partially updated structures can be extremely
complex, hazardous, and error-prone.

CHAPTER 6. LOCKING

Lock 1

Thread A Lock 2

Lock 3 Thread B

Thread C Lock 4

Figure 6.3: Deadlock Cycle

Kernels and applications therefore work to avoid dead-
locks rather than to recover from them. There are
a number of deadlock-avoidance strategies, including
locking hierarchies (Section 6.1.1.1), local locking hi-
erarchies (Section 6.1.1.2), layered locking hierarchies
(Section 6.1.1.3), strategies for dealing with APIs con-
taining pointers to locks (Section 6.1.1.4), conditional
locking (Section 6.1.1.5), acquiring all needed locks
first (Section 6.1.1.6), single-lock-at-a-time designs (Sec-
tion 6.1.1.7), and strategies for signal/interrupt han-
dlers (Section 6.1.1.8). Although there is no deadlock-
avoidance strategy that works perfectly for all situations,
there is a good selection of deadlock-avoidance tools to
choose from.

6.1.1.1 Locking Hierarchies

Locking hierarchies order the locks and prohibit acquiring
locks out of order. In Figure 6.3, we might order the
locks numerically, so that a thread was forbidden from
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spin_lock (&lock?2);
layer_2_processing (pkt);
nextlayer = layer_1 (pkt);
spin_lock (&nextlayer->lockl) ;
layer_1_processing (pkt);
spin_unlock (&lock?2);
spin_unlock (&nextlayer->lockl) ;
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Figure 6.4: Protocol Layering and Deadlock

acquiring a given lock if it already held a lock with the
same or a higher number. Thread B has violated this
hierarchy because it is attempting to acquire Lock 3 while
holding Lock 4, which permitted the deadlock to occur.

Again, to apply a locking hierarchy, order the locks
and prohibit out-of-order lock acquisition. In large pro-
gram, it is wise to use tools to enforce your locking hier-
archy [Cor0O6a].

6.1.1.2 Local Locking Hierarchies

However, the global nature of locking hierarchies make
them difficult to apply to library functions. After all,
the program using a given library function has not even
been written yet, so how can the poor library-function
implementor possibly hope to adhere to the yet-to-be-
written program’s locking hierarchy?

One special case that is fortunately the common case
is when the library function does not invoke any of the
caller’s code. In this case, the caller’s locks will never be
acquired while holding any of the library’s locks, so that
there cannot be a deadlock cycle containing locks from
both the library and the caller.

Quick Quiz 6.2: Are there any exceptions to this rule,
so that there really could be a deadlock cycle containing
locks from both the library and the caller, even given
that the library code never invokes any of the caller’s
functions? B

But suppose that a library function does invoke the
caller’s code. For example, the gsort () function in-
vokes a caller-provided comparison function. A concur-
rent implementation of gsort () likely uses locking,
which might result in deadlock in the perhaps-unlikely
case where the comparison function is a complicated func-
tion involving locking. How can the library function avoid
deadlock?

The golden rule in this case is “release all locks be-
fore invoking unknown code.” To follow this rule, the
gsort () function must release all locks before invoking
the comparison function.

Quick Quiz 6.3: Butif gsort () releases all its locks
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Figure 6.5: Without Local Locking Hierarchy for gsort()

Figure 6.6: Local Locking Hierarchy for gsort()

before invoking the comparison function, how can it pro-
tect against races with other gsort () threads? l

To see the benefits of local locking hierarchies, com-
pare Figures 6.5 and 6.6. In both figures, application func-
tions foo () and bar () invoke gsort () while hold-
ing locks A and B, respectively. Because this is a parallel
implementation of gsort (), it acquires lock C. Func-
tion foo () passes function cmp () to gsort (), and
cmp () acquires lock B. Function bar () passes a simple
integer-comparison function (not shown) to gsort (),
and this simple function does not acquire any locks.

Now, if gsort () holds Lock C while calling cmp ()
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Figure 6.7: Layered Locking Hierarchy for gsort()

in violation of the golden release-all-locks rule above, as
shown in Figure 6.5, deadlock can occur. To see this,
suppose that one thread invokes foo () while a second
thread concurrently invokes bar (). The first thread will
acquire lock A and the second thread will acquire lock B.
If the first thread’s call to gsort () acquires lock C, then
it will be unable to acquire lock B when it calls cmp () .
But the first thread holds lock C, so the second thread’s
call to gsort () will be unable to acquire it, and thus
unable to release lock B, resulting in deadlock.

In contrast, if gsort () releases lock C before invok-
ing the comparison function (which is unknown code
from gsort () ’s perspective, then deadlock is avoided
as shown in Figure 6.6.

If each module releases all locks before invoking un-
known code, then deadlock is avoided if each module
separately avoids deadlock. This rule therefore greatly
simplifies deadlock analysis and greatly improves modu-
larity.

6.1.1.3 Layered Locking Hierarchies

Unfortunately, it might not be possible for gsort () to
release all of its locks before invoking the comparison
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struct locked_list {
spinlock_t s;
struct list_head h;
}i

struct list_head xlist_start (struct locked_list =x1lp)
{

spin_lock (&1lp->s);

9 return list_next (1lp, &lp->h);
10 }
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12 struct list_head xlist_next (struct locked_list «lp,
13 struct list_head *np)
14 {

15 struct list_head =*ret;

17 ret = np->next;

18 if (ret == &lp->h) {
19 spin_unlock (&1lp->s);
20 ret = NULL;

21 }
22 return ret;

Figure 6.8: Concurrent List Iterator

function. In this case, we cannot construct a local locking
hierarchy by releasing all locks before invoking unknown
code. However, we can instead construct a layered lock-
ing hierarchy, as shown in Figure 6.7. Here, the cmp ()
function uses a new lock D that is acquired after all of
locks A, B, and C, avoiding deadlock. We therefore have
three layers to the global deadlock hierarchy, the first con-
taining locks A and B, the second containing lock C, and
the third containing lock D.

For another example where releasing all locks before
invoking unknown code is impractical, imagine an iterator
over a linked list, as shown in Figure 6.8 (locked_
list.c). The list_start () function acquires a
lock on the list and returns the first element (if there is
one), and 1ist_next () either returns a pointer to the
next element in the list or releases the lock and returns
NULL if the end of the list has been reached.

Figure 6.9 shows how this list iterator may be used.
Lines 1-4 define the 1ist_ints element containing a
single integer, and lines 6-17 show how to iterate over
the list. Line 11 locks the list and fetches a pointer to the
first element, line 13 provides a pointer to our enclosing
list_ints structure, line 14 prints the corresponding
integer, and line 15 moves to the next element. This is
quite simple, and hides all of the locking.

That is, the locking remains hidden as long as the code
processing each list element does not itself acquire a lock
that is held across some other call to 1ist_start ()
or list_next (), which results in deadlock. We can
avoid the deadlock by layering the locking hierarchy to
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1 struct list_ints {

2 struct list_head nj;

3 int a;

4 };

5

6 void list_print (struct locked_list xlp)
7

8 struct list_head xnp;

9 struct list_ints xip;

11 np = list_start (1lp);

12 while (np != NULL) {

13 ip = list_entry(np, struct list_ints, n);
14 printf ("\t%d\n", ip->a);

15 np = list_next (lp, np);

16 }

Figure 6.9: Concurrent List Iterator Usage

take the list-iterator locking into account.

This layered approach can be extended to an arbitrarily
large number of layers, but each added layer increases
the complexity of the locking design. Such increases in
complexity are particularly inconvenient for some types of
object-oriented designs, in which control passes back and
forth among a large group of objects in an undisciplined
manner. This mismatch between the habits of object-
oriented design and the need to avoid deadlock is an
important reason why parallel programming is perceived
by some to be so difficult.

Some alternatives to highly layered locking hierarchies
are covered in Chapter 8.

6.1.1.4 Locking Hierarchies and Pointers to Locks

Althought there are some exceptions, an external API
containing a pointer to a lock is very often a misdesigned
API. Handing an internal lock to some other software
component is after all the antithesis of information hiding,
which is in turn a key design principle.

Quick Quiz 6.4: Name one common exception where
it is perfectly reasonable to pass a pointer to a lock into a
function. l

One exception is functions that hand off some entity,
where the caller’s lock must be held until the handoff
is complete, but where the lock must be released before
the function returns. One example of such a function is
the POSIX pthread_cond_wait () function, where
passing an pointer to a pthread_mutex_t prevents
hangs due to lost wakeups.

Quick Quiz 6.5: Doesn’t the fact that pthread_
cond_wait () first releases the mutex and then re-
acquires it eliminate the possibility of deadlock?
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1 retry:

2 spin_lock (&lock?2);

3 layer_2_processing (pkt) ;

4 nextlayer = layer_1 (pkt);

5 if (!spin_trylock (&nextlayer->lockl)) {
6 spin_unlock (&lock2) ;

7 spin_lock (&nextlayer->lockl);

8 spin_lock ((&lock2);

9 if (layer_1(pkt) != nextlayer) {
10 spin_unlock (&nextlayer—>lockl);
11 spin_unlock ((&lock2);

12 goto retry;
13 }

14 }
15 layer_1_processing (pkt) ;

16 spin_unlock (&lock2);

17 spin_unlock (&nextlayer—->lockl);

Figure 6.10: Avoiding Deadlock Via Conditional Locking

In short, if you find yourself exporting an API with a
pointer to a lock as an argument or the return value, do
youself a favor and carefully reconsider your API design.
It might well be the right thing to do, but experience
indicates that this is unlikely.

6.1.1.5 Conditional Locking

But suppose that there is no reasonable locking hierar-
chy. This can happen in real life, for example, in layered
network protocol stacks where packets flow in both di-
rections. In the networking case, it might be necessary
to hold the locks from both layers when passing a packet
from one layer to another. Given that packets travel both
up and down the protocol stack, this is an excellent recipe
for deadlock, as illustrated in Figure 6.4. Here, a packet
moving down the stack towards the wire must acquire the
next layer’s lock out of order. Given that packets moving
up the stack away from the wire are acquiring the locks
in order, the lock acquisition in line 4 of the figure can
result in deadlock.

One way to avoid deadlocks in this case is to impose
a locking hierarchy, but when it is necessary to acquire a
lock out of order, acquire it conditionally, as shown in Fig-
ure 6.10. Instead of unconditionally acquiring the layer-
1 lock, line 5 conditionally acquires the lock using the
spin_trylock () primitive. This primitive acquires
the lock immediately if the lock is available (returning
non-zero), and otherwise returns zero without acquiring
the lock.

If spin_trylock () was successful, line 15 does
the needed layer-1 processing. Otherwise, line 6 releases
the lock, and lines 7 and 8 acquire them in the correct
order. Unfortunately, there might be multiple networking
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devices on the system (e.g., Ethernet and WiFi), so that
the layer_1 () function must make a routing decision.
This decision might change at any time, especially if the
system is mobile.! Therefore, line 9 must recheck the
decision, and if it has changed, must release the locks and
start over.

Quick Quiz 6.6: Can the transformation from Fig-
ure 6.4 to Figure 6.10 be applied universally? l

Quick Quiz 6.7: But the complexity in Figure 6.10 is
well worthwhile given that it avoids deadlock, right? ll

6.1.1.6 Acquire Needed Locks First

In an important special case of conditional locking all
needed locks are acquired before any processing is carried
out. In this case, processing need not be idempotent: if it
turns out to be impossible to acquire a given lock without
first releasing one that was already acquired, just release
all the locks and try again. Only once all needed locks are
held will any processing be carried out.

However, this procedure can result in livelock, which
will be discussed in Section 6.1.2.

6.1.1.7 Single-Lock-at-a-Time Designs

In some cases, it is possible to avoid nesting locks, thus
avoiding deadlock. For example, if a problem is perfectly
partitionable, a single lock may be assigned to each par-
tition. Then a thread working on a given partition need
only acquire the one corresponding lock. Because no
thread ever holds more than one lock at a time, deadlock
is impossible.

However, there must be some mechanism to ensure that
the needed data structures remain in existence during the
time that neither lock is held. One such mechanism is
discussed in Section 6.4 and several others are presented
in Chapter 8.

6.1.1.8 Signal/Interrupt Handlers

Deadlocks involving signal handlers are often quickly dis-
missed by noting that it is not legal to invoke pthread_
mutex_lock () from within a signal handler [Ope97].
However, it is possible (though almost always unwise) to
hand-craft locking primitives that can be invoked from sig-
nal handlers. Besides which, almost all operating-system
kernels permit locks to be acquired from within interrupt
handlers, which are the kernel analog to signal handlers.

1 And, in contrast to the 1900s, mobility is the common case.
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The trick is to block signals (or disable interrupts, as
the case may be) when acquiring any lock that might
be acquired within an interrupt handler. Furthermore, if
holding such a lock, it is illegal to attempt to acquire
any lock that is ever acquired outside of a signal handler
without blocking signals.

Quick Quiz 6.8: Why is it illegal to acquire a Lock A
that is acquired outside of a signal handler without block-
ing signals while holding a Lock B that is acquired within
a signal handler? l

If a lock is acquired by the handlers for several signals,
then each and every one of these signals must be blocked
whenever that lock is acquired, even when that lock is
acquired within a signal handler.

Quick Quiz 6.9: How can you legally block signals
within a signal handler? ll

Unfortunately, blocking and unblocking signals can be
expensive in some operating systems, notably including
Linux, so performance concerns often mean that locks
acquired in signal handlers are only acquired in signal
handlers, and that lockless synchronization mechanisms
are used to communicate between application code and
signal handlers.

Or that signal handlers are avoided completely except
for handling fatal errors.

6.1.1.9 Discussion

There are a large number of deadlock-avoidance strategies
available to the shared-memory parallel programmer, but
there are sequential programs for which none of them is a
good fit. This is one of the reasons that expert program-
mers have more than one tool in their toolbox: locking
is a powerful concurrency tool, but there are jobs better
addressed with other tools.

Quick Quiz 6.10: Given an object-oriented application
that passes control freely among a group of objects such
that there is no reasonable locking hierarchy, layered or
otherwise, how can this application be parallelized? H

Nevertheless, the strategies described in this section
have proven quite useful in many settings.

6.1.2 Livelock and Starvation

Although conditional locking can be an effective
deadlock-avoidance mechanism, it can be abused. Con-
sider for example the beautifully symmetric example
shown in Figure 6.11. This example’s beauty hides an
ugly livelock. To see this, consider the following sequence
of events:
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1 void threadl (void)

2 {

3 retry:

4 spin_lock (&lockl) ;

5 do_one_thing () ;

6 if (!spin_trylock(&lock2)) {
7 spin_unlock (&lockl);
8 goto retry;

9 }
10 do_another_thing();
11 spin_unlock (&lock2);
12 spin_unlock (&lockl);
13 }

15 void thread2 (void)

16 {

17 retry:

18 spin_lock (&lock2) ;

19 do_a_third_thing();

20 if (!spin_trylock(&lockl)) {

21 spin_unlock (&lock2);
22 goto retry;
23 }

24 do_a_fourth_thing();
25 spin_unlock (&lockl);
26 spin_unlock (&lock2);

Figure 6.11: Abusing Conditional Locking

1. Thread 1 acquires 1ockl on line 4, then invokes
do_one_thing().

2. Thread 2 acquires 1ock?2 on line 18, then invokes
do_a_third_thing().

3. Thread 1 attempts to acquire 1ock?2, but fails be-
cause Thread 2 holds it.

4. Thread 2 attempts to acquire 1lock1l, but fails be-
cause Thread 1 holds it.

5. Thread 1 releases 1ock1, and jumps to retry.
6. Thread 2 releases 1ock2, and jumps to retry.
7. The livelock dance repeats from the beginning.

Quick Quiz 6.11: How can the livelock shown in Fig-
ure 6.11 be avoided? B

Starvation is very similar to livelock. Put another way,
livelock is an extreme form of starvation where a group
of threads starve, rather than just one of them.?

Livelock and starvation are serious issues in software
transactional memory implementations, and so the con-
cept of contention manager has been introduced to en-
capsulate these issues. In the case of locking, simple

2 Try not to get too hung up on the exact definitions of terms like
livelock, starvation, and unfairness. Anything that causes a group of
threads to fail to make good forward progress is a problem that needs to
be fixed, regardless of what name you choose for it.
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void threadl (void)
{

1

2

3 unsigned int wait = 1;

4 retry:

5 spin_lock (&lockl);

6 do_one_thing() ;

7 if (!spin_trylock(&lock2)) {
8 spin_unlock (&lockl) ;

9 sleep (wait);
10 wait = wait << 1;
11 goto retry;
12 }

13 do_another_thing () ;
14 spin_unlock (&lock2);
15 spin_unlock (&lockl) ;

18 void thread2 (void)

19 {

20 unsigned int wait = 1;

21 retry:

22 spin_lock (&lock2) ;

23 do_a_third_thing();

24 if (!spin_trylock(&lockl)) {

25 spin_unlock (&lock2) ;
26 sleep (wait);

27 wait = wait << 1;

28 goto retry;

29 }

30 do_a_fourth_thing()
31 spin_unlock (&lockl)
32 spin_unlock (&lock2) ;

7
7

Figure 6.12: Conditional Locking and Exponential Back-
off
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Figure 6.13: System Architecture and Lock Unfairness

exponential backoff can often address livelock and star-
vation. The idea is to introduce exponentially increasing
delays before each retry, as shown in Figure 6.12.

Quick Quiz 6.12: What problems can you spot in the
code in Figure 6.127 A

6.1.3 Unfairness

Unfairness can be thought of as a less-severe form of star-
vation, where a subset of threads contending for a given
lock are granted the lion’s share of the acquisitions. This
can happen on machines with shared caches or NUMA
characteristics, for example, as shown in Figure 6.13. If
CPU 0 releases a lock that all the other CPUs are attempt-
ing to acquire, the interconnect shared between CPUs 0
and 1 means that CPU 1 will have an advantage over
CPUs 2-7. Therefore CPU 1 will likely acquire the lock.
If CPU 1 hold the lock long enough for CPU 0 to be
requesting the lock by the time CPU 1 releases it and
vice versa, the lock can shuttle between CPUs 1 and 2,
bypassing CPUs 2-7.

Quick Quiz 6.13: Wouldn’t it be better just to use
a good parallel design so that lock contention was low
enough to avoid unfairness? ll

6.1.4 Inefficiency

Locks are implemented using atomic instructions and
memory barriers, and often involve cache misses. As we
saw in Chapter 2, these instructions are quite expensive,
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roughly two orders of magnitude greater overhead than
simple instructions. This can be a serious problem for
locking: If you protect a single instruction with a lock,
you will increase the overhead by a factor of one hundred.
Even assuming perfect scalability, one hundred CPUs
would be required to keep up with a single CPU executing
the same code without locking.

This situation underscores the synchronization-
granularity tradeoff discussed in Section 5.3, especially
Figure 5.21: Too coarse a granularity will limit scalabil-
ity, while too fine a granularity will result in excessive
synchronization overhead.

That said, once a lock is held, the data protected by that
lock can be accessed by the lock holder without interfer-
ence. Acquiring a lock might be expensive, but once held,
the CPU’s caches are an effective performance booster, at
least for large critical sections.

Quick Quiz 6.14: How might the lock holder be inter-
fered with?

6.2 Types of Locks

There are a surprising number of types of locks, more
than this short chapter can possibly do justice to. The
following sections discuss exclusive locks (Section 6.2.1),
reader-writer locks (Section 6.2.2), and multi-role locks
(Section 6.2.3).

6.2.1 Exclusive Locks

Exclusive locks are what they say they are: only one
thread may hold the lock at a time. The holder of such
a lock thus has exclusive access to all data protected by
that lock, hence the name.

Of course, this all assumes that this lock is held across
all accesses to data purportedly protected by the lock.
Although there are some tools that can help, the ultimate
responsibility for ensuring that the lock is acquired in all
necessary code paths rests with the developer.

6.2.2 Reader-Writer Locks

Reader-writer locks [CHP71] permit any number of read-
ers to hold the lock concurrently on the one hand or a
single writer to hold the lock on the other. In theory, then,
reader-writer locks should allow excellent scalability for
data that is read often and written rarely. In practice, the
scalability will depend on the reader-writer lock imple-
mentation.
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Table 6.1: VAX/VMS Distributed Lock Manager Policy

The classic reader-writer lock implementation involves
a set of counters and flags that are manipulated atomi-
cally. This type of implementation suffers from the same
problem as does exclusive locking for short critical sec-
tions: The overhead of acquiring and releasing the lock is
about two orders of magnitude greater than the overhead
of a simple instruction. Of course, if the critical section
is long enough, the overhead of acquiring and releasing
the lock becomes negligible. However, because only one
thread at a time can be manipulating the lock, the required
critical-section size increases with the number of CPUs.

It is possible to design a reader-writer lock that is
much more favorable to readers through use of per-
thread exclusive locks [HW92]. To read, a thread ac-
quires only its own lock. To write, a thread acquires all
locks. In the absence of writers, each reader incurs only
atomic-instruction and memory-barrier overhead, with no
cache misses, which is quite good for a locking primi-
tive. Unfortunately, writers must incur cache misses as
well as atomic-instruction and memory-barrier overhead—
multiplied by the number of threads.

In short, reader-writer locks can be quite useful in a
number of situations, but each type of implementation
does have its drawbacks.

6.2.3 Beyond Reader-Writer Locks

Reader-writer locks and exclusive locks differ in their ad-
mission policy: exclusive locks allow at most one holder,
while reader-writer locks permit an arbitrary number of
read-holders (but only one write-holder). There is a very
large number of possible admission policies, one of the
more elaborate being that of the VAX/VMS distributed
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lock manager (DLM) [ST87], which is shown in Table 6.1.
Blank cells indicate compatible modes, while cells con-
taining “X” indicate incompatible modes.

The VAX/VMS DLM uses six modes. For purposes
of comparison, exclusive locks use two modes (not held
and held), while reader-writer locks use three modes (not
held, read held, and write held).

The first mode is null, or not held. This mode is com-
patible with all other modes, which is to be expected: If
a thread is not holding a lock, it should not prevent any
other thread from acquiring that lock.

The second mode is concurrent read, which is com-
patible with every other mode except for exclusive. The
concurrent-read mode might be used to accumulate ap-
proximate statistics on a data structure, while permitting
updates to proceed concurrently.

The third mode is concurrent write, which is compati-
ble with null, concurrent read, and concurrent write. The
concurrent-write mode might be used to update approxi-
mate statistics, while still permitting reads and concurrent
updates to proceed concurrently.

The fourth mode is protected read, which is compati-
ble with null, concurrent read, and protected read. The
protected-read mode might be used to obtain a consistent
snapshot of the data structure, while permitting reads but
not updates to proceed concurrently.

The fifth mode is protected write, which is compatible
with null and protected read. The protected-write mode
might be used to carry out updates to a data structure that
could interfere with protected readers but which could be
tolerated by concurrent readers.

The sixth and final mode is exclusive, which is compat-
ible only with null. The exclusive mode is used when it is
necessary to exclude all other accesses.

It is interesting to note that exclusive locks and reader-
writer locks can be emulated by the VAX/VMS DLM. Ex-
clusive locks would use only the null and exclusive modes,
while reader-writer locks might use the null, protected-
read, and protected-write modes.

Quick Quiz 6.15: Is there any other way for the
VAX/VMS DLM to emulate a reader-writer lock? H

Although the VAX/VMS DLM policy has seen
widespread production use for distributed databases, it
does not appear to be used much in shared-memory ap-
plications. One possible reason for this is that the greater
communication overheads of distributed databases can
hide the greater overhead of the VAX/VMS DLM’s more-
complex admission policy.

Nevertheless, the VAX/VMS DLM is an interesting il-



typedef int xchglock_t;
#define DEFINE_XCHG_LOCK (n) xchglock_t n = 0

1
2
3
4 void xchg_lock (xchglock_t #*xp)
5 {
6 while (xchg(xp, 1) == 1) {
7 while (xxp == 1)
8 continue;
9 }
10 }

12 void xchg_unlock (xchglock_t =xxp)
13 {

14 (void) xchg (xp, 0);

15 }

Figure 6.14: Sample Lock Based on Atomic Exchange

lustration of just how flexible the concepts behind locking
can be.

6.3 Locking Implementation Issues

Developers are almost always best-served by using what-
ever locking primitives are provided by the system, for
example, the POSIX pthread mutex locks [Ope97, But97].
Nevertheless, studying sample implementations can be
helpful, as can considering the challenges posed by ex-
treme workloads and environments.

6.3.1 Sample Exclusive-Locking Imple-
mentation Based on Atomic Ex-
change

This section reviews the implementation shown in Fig-
ure 6.14. The data structure for this lock is just an int,
as shown on line 1, but could be any integral type. The
initial value of this lock is zero, meaning “unlocked”, as
shown on line 2.

Lock acquisition is carried out by the xchg_lock ()
function shown on lines 4-9. This function uses a nested
loop, with the outer loop repeatedly atomically exchang-
ing the value of the lock with the value one (meaning
I“locked”). If the old value was already the value one (in
other words, someone else already holds the lock), then
the inner loop (lines 7-8) spins until the lock is available,
at which point the outer loop makes another attempt to
acquire the lock.

Quick Quiz 6.16: Why bother with the inner loop on
lines 7-8 of Figure 6.14? Why not simply repeatedly do
the atomic exchange operation on line 6? l

Lock release is carried out by the xchg_unlock ()
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function shown on lines 12-15. Line 14 atomically ex-
changes the value zero (‘“unlocked”) into the lock, thus
marking it as having been released.

Quick Quiz 6.17: Why not simply store zero into the
lock word on line 14 of Figure 6.147 H

This lock is a simple example of a test-and-set
lock [SR84], but very similar mechanisms have been used
extensively as pure spinlocks in production.

6.3.2 Other Exclusive-Locking Implemen-
tations

There are a great many other possible implementations
of locking based on atomic instructions, many of which
are reviewed by Mellor-Crummey and Scott [MCS91].
These implementations represent different points in a
multi-dimensional design tradeoff [McK96b]. For ex-
ample, the atomic-exchange-based test-and-set lock pre-
sented in the previous section works well when contention
is low and has the advantage of small memory footprint.
It avoids giving the lock to threads that cannot use it, but
as a result can suffer from unfairness or even starvation at
high contention levels.

In contrast, ticket lock [MCS91], which is used in the
Linux kernel, avoids unfairness at high contention levels,
but as a consequence of its first-in-first-out discipline can
grant the lock to a thread that is currently unable to use
it, for example, due to being preempted, interrupted, or
otherwise out of action.

All locking implementations where waiters spin on a
single memory location, including both test-and-set locks
and ticket locks, suffer from performance problems at
high contention levels. The problem is that the thread
releasing the lock must update the value of the corre-
sponding memory location. At low contention, this is not
a problem: The corresponding cache line is very likely
still local to and writeable by the thread holding the lock.
In contrast, at high levels of contention, each thread at-
tempting to acquire the lock will have a read-only copy
of the cache line, and the lock holder will need to inval-
idate all such copies before it can carry out the update
that releases the lock. In general, the more CPUs and
threads there are, the greater the overhead incurred when
releasing the lock under conditions of high contention.

This negative scalability has motivated a number of
different queued-lock implementations [And90, GT90,
MCS91, WKS94, Cra94, MLH94, TS93], which assign
different queue elements to each of the threads attempting
to acquire the lock, thus reducing the lock’s memory
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contention.

More recent queued-lock implementations also take the
system’s architecture into account, preferentially grant-
ing locks locally, while also taking steps to avoid starva-
tion [SSVMO02, RHO3, RH02, JMRR02, MCMO02]. Many
of these can be thought of as analogous to the elevator
algorithms traditionally used in scheduling disk I/O.

Unfortunately, the same scheduling logic that improves
the efficiency of queued locks at high contention also in-
creases their overhead at low contention. Beng-hong Lim
and Anant Agarwal therefore combined a simple test-and-
set lock with a queued lock, using the test-and-set lock
at low levels of contention and switching to the queued
lock at high levels of contention [LA94], thus getting low
overhead at low levels of contention and getting fairness
and high throughput at high levels of contention. Brown-
ing et al. took a similar approach, but avoided the use of
a separate flag, so that the test-and-set fast path uses the
same sequence of instructions that would be used in a
simple test-and-set lock [BMMMOS5]. This approach as
been used in production.

Another issue that arises at high levels of contention
is when the lock holder is delayed, especially when the
delay is due to preemption, which can result in priority
inversion, where a low-priority thread holds a lock, but
is preempted by a medium priority CPU-bound thread,
which results in a high-priority process blocking while
attempting to acquire the lock. The result is that the CPU-
bound medium-priority process is preventing the high-
priority process from running. One solution is priority
inheritance [LR80], which has been widely used for real-
time computing [SRL90, Cor06b], despite some lingering
controversy over this practice [Yod04, Loc02].

Another way to avoid priority inversion is to pre-
vent preemption while a lock is held. Because pre-
venting preemption while locks are held also improves
throughput, most proprietary UNIX kernels offer some
form of scheduler-conscious synchronization mecha-
nism [KWS97], largely due to the efforts of a large
database vendor. These mechanisms usually take the
form of a hint that preemption would be imappropri-
ate. These hints frequently take the form of a bit
set in a particular machine register, which enables ex-
tremely low per-lock-acquisition overhead for these mech-
anisms. In contrast, Linux avoids these hints, instead
getting similar results from a mechanism called fu-
texes [FRK02, Mol06, Ros06].

Interestingly enough, atomic instructions are not
strictly needed to implement locks [Dij65, Lam74]. An
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1 int delete (int key)

2 {

3 int b;

4 struct element =*p;

5

6 b = hashfunction (key);

7 p = hashtable[b];

8 if (p == NULL || p->key != key)
9 return 0;
10 spin_lock (&p—>lock) ;
11 hashtable[b] = NULL;

12 spin_unlock (&p—->lock);
13 kfree(p);
14 return 1;

Figure 6.15: Per-Element Locking Without Existence
Guarantees

excellent exposition of the issues surrounding locking
implementations based on simple loads and stores may
be found in Herlihy’s and Shavit’s textbook [HS08]. The
main point echoed here is that such implementations cur-
rently have little practical application, although a careful
study of them can be both entertaining and enlightening.
Nevertheless, such study is left as an exercise for the
reader.

6.4 Lock-Based Existence Guaran-
tees

A key challenge in parallel programming is to provide ex-
istence guarantees [GKAS99], so that attempts to access
a given object can rely on that object being in existence
throughout throughout a given access attempt. In some
cases, existence guarantees are implicit:

1. Global variables and static local variables in the base
module will exist as long as the application is run-
ning.

2. Global variables and static local variables in a loaded
module will exist as long as that module remains
loaded.

3. A module will remain loaded as long as at least one
of its functions has an active instance.

4. A given function instance’s on-stack variables will
exist until that instance returns.

5. If you are executing within a given function or have
been called from that function, then the given func-
tion has an active instance.



int delete (int key)
{

1

2

3 int b;

4 struct element x*p;
5 spinlock_t «sp;
6

7

8

b = hashfunction (key);
sp = &locktablel[b];
9 spin_lock (sp);
10 p = hashtable([b];

11 if (p == NULL || p->key != key) {
12 spin_unlock (sp);
13 return 0;

14 }
15 hashtable[b] = NULL;
16 spin_unlock (sp);

17 kfree (p);

18 return 1;

Figure 6.16: Per-Element Locking With Lock-Based Ex-
istence Guarantees

These implicit existence guarantees are straightforward,
though bugs involving implicit existence guarantees really
can happen.

Quick Quiz 6.18: How can relying on implicit exis-
tence guarantees result in a bug? A

But the more interesting—and troublesome—guarantee
involves heap memory: A dynamically allocated data
structure will exist until it is freed. The problem to be
solved is to synchronize the freeing of the structure with
concurrent accesses to that same structure. One way to
do this is with explicit guarantees, such as locking. If a
given structure may only be freed while holding a given
lock, then holding that lock guarantees that structure’s
existence.

But this guarantee depends on the existence of the lock
itself. One straightforward way to guarantee the lock’s
existence is to place the lock in a global variable, but
global locking has the disadvantage of limiting scalability.
One way of providing scalability that improves as the size
of the data structure increases is to place a lock in each
element of the structure. Unfortunately, putting the lock
that is to protect a data element in the data element itself is
subject to subtle race conditions, as shown in Figure 6.15.

Quick Quiz 6.19: What if the element we need to
delete is not the first element of the list on line 8 of Fig-
ure 6.157 A

Quick Quiz 6.20: What race condition can occur in
Figure 6.157 W

One way to fix this example is to use a hashed set of
global locks, so that each hash bucket has its own lock,
as shown in Figure 6.16. This approach allows acquiring
the proper lock (on line 9) before gaining a pointer to
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the data element (on line 10). Although this approach
works quite well for elements contained in a single par-
titionable data structure such as the hash table shown in
the figure, it can be problematic if a given data element
can be a member of multiple hash tables or given more-
complex data structures such as trees or graphs. These
problems can be solved, in fact, such solutions form the
basis of lock-based software transactional memory im-
plementations [ST95, DSS06]. However, Chapter 8 de-
scribes simpler—and faster—ways of providing existence
guarantees.

6.5 Locking: Hero or Villain?

As is often the case in real life, locking can be either hero
or villain, depending on how it is used and on the problem
at hand. Locking is perhaps the most widely used and
most generally useful tool, but it should not be the only
tool in your parallel-programming toolbox.

The next few chapters will discuss other tools, and how
they can best be used in concert with locking and with
each other.



Chapter 7

Data Ownership

One of the simplest ways to avoid the synchronization
overhead that comes with locking is to parcel the data
out among the threads (or, in the case of kernels, CPUs)
so that a given piece of data is accessed and modified by
only one of the threads. This approach is used extremely
heavily, in fact, it is one usage pattern that even novices
use almost instinctively. In fact, it is used so heavily that
this chapter will not introduce any new examples, but will
instead recycle examples from previous chapters.

Quick Quiz 7.1: What form of data ownership that is
extremely difficult to avoid using when creating shared-
memory parallel programs (for example, using pthreads)
inCor C++?7H

There are a number of approaches to data ownership.
Section 7.1 presents the logical extreme in data ownership,
where each thread has its own private address space. Sec-
tion 7.2 looks at the opposite extreme, where the data is
shared, but different threads own different access rights to
the data. Section 7.3 describes function shipping, which is
a way of allowing other threads to have indirect access to
data owned by a particular thread. Section 7.4 describes
how designated threads can be assigned ownership of
a specified function and the related data. Section 7.5
discusses improving performance by transforming algo-
rithms with shared data to instead use data ownership.
Finally, Section 7.6 lists a few software environments that
feature data ownership as a first-class citizen.

7.1 Multiple Processes

Section 3.1 introduced the following example:

compute_it 1 > compute_it.l.out &
compute_it 2 > compute_it.2.out &
wait

cat compute_it.1l.out

cat compute_it.2.out

g W N
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This example runs two instances of the compute_it
program in parallel, as separate processes that do not share
memory. Therefore, all data in a given process is owned
by that process, so that almost the entirety of data in the
above example is owned. This approach almost entirely
eliminates synchronization overhead. The resulting com-
bination of extreme simplicity and optimal performance
is obviously quite attractive.

Quick Quiz 7.2: What synchronization remains in the
example shown in Section 7.1?

Quick Quiz 7.3: Is there any shared data in the exam-
ple shown in Section 7.1? B

This same pattern can be written in C as well as in sh,
as illustrated by Figures 3.2 and 3.3.

The next section discusses use of data ownership in
shared-memory parallel programs.

7.2 Partial Data Ownership and
pthreads

Chapter 4 makes heavy use of data ownership, but adds a
twist. Threads are not allowed to modify data owned by
other threads, but they are permitted to read it. In short,
the use of shared memory allows more nuanced notions
of ownership and access rights.

For example, consider the per-thread statistical counter
implementation shown in Figure 4.8 on page 33. Here,
inc_count () updates only the corresponding thread’s
instance of counter, while read_count () accesses,
but does not modify, all threads’ instances of counter.

Quick Quiz 7.4: Does it ever make sense to have
partial data ownership where each thread reads only its
own instance of a per-thread variable, but writes to other
threads’ instances? ll
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Pure data ownership is also both common and use-
ful, for example, the per-thread memory-allocator caches
discussed in Section 5.4.3 starting on page 65. In this
algorithm, each thread’s cache is completely private to
that thread.

7.3 Function Shipping

The previous section described a weak form of data own-
ership where threads reached out to other threads’ data.
This can be thought of as bringing the data to the func-
tions that need it. An alternative approach is to send the
functions to the data.

Such an approach is illustrated in Section 4.4.3 be-
ginning on page 42, in particular the f1lush_local__
count_sig () and flush_local_count () func-
tions in Figure 4.21 on page 43.

The flush_local_count_sig () function is
a signal handler that acts as the shipped function.
The pthread_kill () function in flush_local_
count () sends the signal—shipping the function—and
then waits until the shipped function executes. This
shipped function has the not-unusual added complication
of needing to interact with any concurrently executing
add_count () or sub_count () functions (see Fig-
ure 4.22 on page 44).

Quick Quiz 7.5: What mechanisms other than POSIX
signals may be used to ship functions? H

7.4 Designated Thread

The earlier sections describe ways of allowing each thread
to keep its own copy or its own portion of the data. In con-
trast, this section describes a functional-decomposition
approach, where a special designated thread that owns
the rights to the data that is required to do its job. The
eventually consistent counter implementation described
in Section 4.2.3. This implementation has a designated
thread that runs the eventual () function shown on
lines 15-32 of Figure 4.7. This eventual () thread
periodically pulls the per-thread counts into the global
counter, so that accesses to the global counter will, as the
name says, eventually converge on the actual value.

Quick Quiz 7.6: But none of the data in the
eventual () function shown on lines 15-32 of Fig-
ure 4.7 is actually owned by the eventual () thread!
In just what way is this data ownership??? ll
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7.5 Privatization

One way of improving the performance and scalability of
a shared-memory parallel program is to transform it so as
to convert shared data to private data that is owned by a
particular thread.

An excellent example of this is shown in the answer
to one of the Quick Quizzes in Section 5.1.1, which uses
privatization to produce a solution to the Dining Philoso-
phers problem with much better performance and scal-
ability than that of the standard textbook solution. The
original problem has five philosophers sitting around the
table with one fork between each adjacent pair of philoso-
phers, which permits at most two philosophers to each
concurrently.

We can trivially privatize this problem by providing an
additional five forks, so that each philosopher has his or
her own private pair of forks. This allows all five philoso-
phers to eat concurrently, and also offers a considerable
reduction in the spread of certain types of disease.

In other cases, privatization imposes costs. For exam-
ple, consider the simple limit counter shown in Figure 4.11
on page 4.11. This is an example of an algorithm were
threads can read each others’ data, but are only permitted
to update their own data. A quick review of the algo-
rithm shows that the only cross-thread accesses are in
the summation loop in read_count (). If this loop
is eliminated, we move to the more-efficient pure data
ownership, but at the cost of a less-accurate result from
read_count ().

Quick Quiz 7.7: Is it possible to obtain greater accu-
racy while still maintaining full privacy of the per-thread
data? @

In short, privatization is a powerful tool in the parallel
programmer’s toolbox, but it must nevertheless be used
with care. Just like every other synchronization prim-
itive, it has the potential to increase complexity while
decreasing performance and scalability.

7.6 Other Uses of Data Ownership

Data ownership works best when the data can be parti-
tioned so that there is little or no need for cross thread
access or update. Fortunately, this situation is reasonably
common, and in a wide variety of parallel-programming
environments.

Examples of data ownership include:

1. All message-passing environments, such as MPI,
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PVM, and BOINC.

2. Client-server systems, including RPC, web ser-
vices, and pretty much any system with a back-end
database server.

3. Shared-nothing database systems.

4. Fork-join systems with separate per-process address
spaces.

5. Process-based parallelism, such as the Erlang lan-
guage.

Data ownership is perhaps the most underappreciated
synchronization mechanism in existence. When used
properly, it delivers unrivaled simplicity, performance,
and scalability. Perhaps its simplicity costs it the respect
that it deserves. Hopefully a greater appreciation for the
subtlety and power of data ownership will lead to greater
level of respect.
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Chapter 8

Deferred Processing

The strategy of deferring work probably predates
mankind, but only in the last few decades have work-
ers recognized this strategy’s value in simplifying parallel
algorithms [KL80, Mas92]. General approaches to work
deferral in parallel programming include queuing, refer-
ence counting, and RCU.

8.1 Reference Counting

Reference counting tracks the number of references to a
given object in order to prevent that object from being
prematurely freed. Although this is a conceptually simple
technique, many devils hide in the details. After all, if
the object was not subject to being prematurely freed,
there would be no need for the reference counter. But
if the object is subject to being prematurely freed, what
prevents that object from being freed during the reference-
acquisition process itself?

There are a number of possible answers to this question,
including:

1. A lock residing outside of the object must be held
while manipulating the reference count. Note that
there are a wide variety of types of locks, however,
pretty much any type will suffice.

The object is created with a non-zero reference count,
and new references may be acquired only when the
current value of the reference counter is non-zero.
Once acquired, a reference may be handed off to
some other entity.

An existence guarantee is provided for the object,
so that it cannot be freed during any time interval
when some entity might be attempting to acquire a
reference. Existence guarantees are often provided
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Release Synchronization
Acquisition Reference
Synchronization || Locking | Counting | RCU
Locking - CAM CA
Reference A AM A
Counting
RCU CA MCA CA

Table 8.1: Reference Counting and Synchronization
Mechanisms

by automatic garbage collectors, and, as will be seen
in Section 8.3, they can also be provided by RCU.

. A type-safety guarantee is provided for the object,
and there is in addition some identity check that can
be performed once the reference is acquired. Type-
safety guarantees can be provided by special-purpose
memory allocators, and can also be provided by
the SLAB_DESTROY_BY_RCU feature within the
Linux kernel, again, as will be seen in Section 8.3.

Of course, any mechanism that provides existence guar-
antees by definition also provides type-safety guarantees.
This section will therefore group the last two answers to-
gether under the rubric of RCU, leaving us with three
general categories of reference-acquisition protection,
namely, locking, reference counting, and RCU.

Quick Quiz 8.1: Why not implement reference-
acquisition using a simple compare-and-swap operation
that only acquires a reference if the reference counter is
non-zero? M

Given that the key reference-counting issue is synchro-
nization between acquisition of a reference and freeing
of the object, we have nine possible combinations of
mechanisms, as shown in Table 8.1. This table divides
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reference-counting mechanisms into the following broad
categories:

1. Simple counting with neither atomic operations,
memory barriers, nor alignment constraints (“-”).

2. Atomic counting without memory barriers (“A”).

3. Atomic counting, with memory barriers required
only on release (“AM”).

4. Atomic counting with a check combined with the
atomic acquisition operation, and with memory bar-
riers required only on release (“CAM”).

5. Atomic counting with a check combined with the
atomic acquisition operation (“CA”).

6. Atomic counting with a check combined with the
atomic acquisition operation, and with memory bar-
riers also required on acquisition (“MCA”).

However, because all Linux-kernel atomic operations that
return a value are defined to contain memory barriers,
all release operations contain memory barriers, and all
checked acquisition operations also contain memory bar-
riers. Therefore, cases “CA” and “MCA” are equivalent
to “CAM?”, so that there are sections below for only the
first four cases: “-”, “A”, “AM”, and “CAM”. The Linux
primitives that support reference counting are presented
in Section 8.1.2. Later sections cite optimizations that can
improve performance if reference acquisition and release
is very frequent, and the reference count need be checked
for zero only very rarely.

8.1.1 Implementation of Reference-

Counting Categories

@ 9

Simple counting protected by locking (“-”) is described in
Section 8.1.1.1, atomic counting with no memory barriers
(“A”) is described in Section 8.1.1.2 atomic counting with
acquisition memory barrier (“AM”) is described in Sec-
tion 8.1.1.3, and atomic counting with check and release
memory barrier (“CAM”) is described in Section 8.1.1.4.

8.1.1.1 Simple Counting

Simple counting, with neither atomic operations nor mem-
ory barriers, can be used when the reference-counter ac-
quisition and release are both protected by the same lock.
In this case, it should be clear that the reference count
itself may be manipulated non-atomically, because the

CHAPTER 8. DEFERRED PROCESSING

lock provides any necessary exclusion, memory barriers,
atomic instructions, and disabling of compiler optimiza-
tions. This is the method of choice when the lock is
required to protect other operations in addition to the ref-
erence count, but where a reference to the object must be
held after the lock is released. Figure 8.1 shows a simple
API that might be used to implement simple non-atomic
reference counting — although simple reference counting
is almost always open-coded instead.

struct sref {
int refcount;

bi

void sref_init (struct sref xsref)

{
sref->refcount = 1;

}
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10 void sref_get (struct sref xsref
11 {

12 sref->refcount++;

13 }

15 int sref_put (struct sref xsref,

16 void (*release) (struct sref =xsref))
17 {

18 WARN_ON (release == NULL) ;

19 WARN_ON (release == (void (x) (struct sref *))kfree);
20

21 if (--sref->refcount == 0) {

22 release (sref);

23 return 1;

24 }

25 return 0;

26 }

Figure 8.1: Simple Reference-Count API

8.1.1.2 Atomic Counting

Simple atomic counting may be used in cases where any
CPU acquiring a reference must already hold a reference.
This style is used when a single CPU creates an object
for its own private use, but must allow other CPU, tasks,
timer handlers, or I/O completion handlers that it later
spawns to also access this object. Any CPU that hands
the object off must first acquire a new reference on behalf
of the recipient object. In the Linux kernel, the kref
primitives are used to implement this style of reference
counting, as shown in Figure 8.2.

Atomic counting is required because locking is not used
to protect all reference-count operations, which means
that it is possible for two different CPUs to concurrently
manipulate the reference count. If normal increment and
decrement were used, a pair of CPUs might both fetch
the reference count concurrently, perhaps both obtaining
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the value “3”. If both of them increment their value,
they will both obtain “4”, and both will store this value
back into the counter. Since the new value of the counter
should instead be “5”, one of the two increments has been
lost. Therefore, atomic operations must be used both for
counter increments and for counter decrements.

If releases are guarded by locking or RCU, memory
barriers are not required, but for different reasons. In the
case of locking, the locks provide any needed memory
barriers (and disabling of compiler optimizations), and
the locks also prevent a pair of releases from running con-
currently. In the case of RCU, cleanup must be deferred
until all currently executing RCU read-side critical sec-
tions have completed, and any needed memory barriers or
disabling of compiler optimizations will be provided by
the RCU infrastructure. Therefore, if two CPUs release
the final two references concurrently, the actual cleanup
will be deferred until both CPUs exit their RCU read-side
critical sections.

Quick Quiz 8.2: Why isn’t it necessary to guard
against cases where one CPU acquires a reference just
after another CPU releases the last reference? B

struct kref {
atomic_t refcount;

}i

void kref_init (struct kref xkref)
{
atomic_set (&kref->refcount, 1);

}

10 void kref_get (struct kref xkref)

11 |

12 WARN_ON (!atomic_read (&kref->refcount));
13 atomic_inc (¢kref->refcount);

14 }

15

16 int kref_ put (struct kref xkref,

17 void (*release) (struct kref xkref))
18 {

19 WARN_ON (release == NULL);

20 WARN_ON (release == (void (%) (struct kref x))kfree);
21

22 if ((atomic_read(&kref->refcount) == 1) ||

23 (atomic_dec_and_test (¢kref->refcount))) {
24 release (kref);

25 return 1;

26 }

27 return 0;

28 }

Figure 8.2: Linux Kernel kref API

The kref structure itself, consisting of a single atomic
data item, is shown in lines 1-3 of Figure 8.2. The kref__
init () function on lines 5-8 initializes the counter to
the value “1”. Note that the atomic_set () primitive
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is a simple assignment, the name stems from the data
type of atomic_t rather than from the operation. The
kref_init () function must be invoked during object
creation, before the object has been made available to any
other CPU.

The kref_get () function on lines 10-14 uncon-
ditionally atomically increments the counter. The
atomic_inc () primitive does not necessarily explic-
itly disable compiler optimizations on all platforms, but
the fact that the kre f primitives are in a separate module
and that the Linux kernel build process does no cross-
module optimizations has the same effect.

The kref_put () function on lines 16-28 checks for
the counter having the value “1” on line 22 (in which case
no concurrent kref_get () is permitted), or if atomi-
cally decrementing the counter results in zero on line 23.
In either of these two cases, kref_put () invokes the
specified release function and returns “17, telling the
caller that cleanup was performed. Otherwise, kref__
put () returns “0”.

Quick Quiz 8.3: If the check on line 22 of Figure 8.2
fails, how could the check on line 23 possibly succeed?

Quick Quiz 8.4: How can it possibly be safe to non-
atomically check for equality with “1”” on line 22 of Fig-
ure 8.27 A

8.1.1.3 Atomic Counting With Release Memory
Barrier

This style of reference is used in the Linux kernel’s net-
working layer to track the destination caches that are used
in packet routing. The actual implementation is quite
a bit more involved; this section focuses on the aspects
of struct dst_entry reference-count handling that
matches this use case, shown in Figure 8.3.

static inline
struct dst_entry * dst_clone(struct dst_entry x dst)
{
if (dst)
atomic_inc(&dst->__refcnt);
return dst;

}
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9 static inline
10 void dst_release (struct dst_entry = dst)
11 {
12 if (dst) {

13 WARN_ON (atomic_read (&dst->__refcnt) < 1);
14 smp_mb__before_atomic_dec();

15 atomic_dec (&dst->__refcnt);

16 }

17 }

Figure 8.3: Linux Kernel dst_clone API
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The dst_clone () primitive may be used if the caller
already has a reference to the specified dst_entry,
in which case it obtains another reference that may be
handed off to some other entity within the kernel. Because
a reference is already held by the caller, dst_clone ()
need not execute any memory barriers. The act of handing
the dst_entry to some other entity might or might not
require a memory barrier, but if such a memory barrier is
required, it will be embedded in the mechanism used to
hand the dst_entry off.

The dst_release () primitive may be invoked
from any environment, and the caller might well ref-

1 struct file xfget (unsigned int £fd)
2
3
. . 4
erence elements of the dst_entry structure immedi- 5
6
7
8

~ 0

struct file xfile;
struct files_struct *xfiles = current->files;

rcu_read_lock () ;

ately prior to the call to dst_release (). The dst_ : , ,
file = fcheck_files(files, fd);

release () primitive therefore contains a memory bar-

if (file) {
rier on line 14 preventing both the compiler and the CPU lg ifréiaiiﬁc;i?igifffzer" (§file->f_count)) {
from misordering accesses. 1 return NULL; i
Please note that the programmer making use of dst_ g } }
clone () and dst_release () need not be aware of 14 rcu_read_unlock ();
the memory barriers, only of the rules for using these two iz } return file;
primitives. 17

18 struct file «
19 fcheck_files(struct files_struct *files, unsigned int £fd)

8.1.1.4 Atomic Counting With Check and Release 20 |

21 struct file » file = NULL;

hlenlor)llgarrler 22 struct fdtable *fdt = rcu_dereference((files)->fdt);
23
The fact that reference-count acquisition can run concur- 24 if (fd < fdt->max_fds)
: : 25 file = d £ fdt->fd[£fd]);
rently with reference-count release adds further complica- e ile = reu dereference (fdt->fdlfd])
) return file;
tions. Suppose that a reference-count release finds that the 27}
. . . . 28
new value of the reference count is zero, s1gnalllqg that it 29 void fput (struct file file)
is now safe to clean up the reference-counted object. We 30 {
clearly cannot allow a reference-count acquisition to start 3 Af (atomic_dec_and test (&file->f _count))
y q A 32 call_rcu(&file->f_u.fu_rcuhead, file_free_rcu);
after such clean-up has commenced, so the acquisition 33 )
. : 34
must include a check for a ze.ro.reference count. This 35 static void file free_ rcu(struct rcu_head shead)
check must be part of the atomic increment operation, as 36 {
7 file «*f;
shown below. S0 struet file s
Quick Quiz 8.5: Why can’t the check for a zero ref- 39 £ = container_of (head, struct file, f_u.fu_rcuhead);

O . . 0 % he_free (fil hep, £);
erence count be made in a simple “if”” statement with an mem_cache_free (filp_cachep, f)

atomic increment in its “then” clause? H

The Linux kernel’s fget () and fput () primitives
use this style of reference counting. Simplified versions Figure 8.4: Linux Kernel fget/fput API
of these functions are shown in Figure 8.4.

Line 4 of fget () fetches the pointer to the cur-
rent process’s file-descriptor table, which might well
be shared with other processes. Line 6 invokes rcu__
read_lock (), which enters an RCU read-side criti-
cal section. The callback function from any subsequent
call_rcu () primitive will be deferred until a matching
rcu_read_unlock () isreached (line 10 or 14 in this
example). Line 7 looks up the file structure corresponding
to the file descriptor specified by the £d argument, as will
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be described later. If there is an open file correspond-
ing to the specified file descriptor, then line 9 attempts
to atomically acquire a reference count. If it fails to do
so, lines 10-11 exit the RCU read-side critical section
and report failure. Otherwise, if the attempt is successful,
lines 14-15 exit the read-side critical section and return a
pointer to the file structure.

The fcheck_files () primitive is a helper func-
tion for fget (). It uses the rcu_dereference ()
primitive to safely fetch an RCU-protected pointer for
later dereferencing (this emits a memory barrier on CPUs
such as DEC Alpha in which data dependencies do
not enforce memory ordering). Line 22 uses rcu_
dereference () to fetch a pointer to this task’s cur-
rent file-descriptor table, and line 24 checks to see if
the specified file descriptor is in range. If so, line 25
fetches the pointer to the file structure, again using the
rcu_dereference () primitive. Line 26 then returns
a pointer to the file structure or NULL in case of failure.

The fput () primitive releases a reference to a file
structure. Line 31 atomically decrements the reference
count, and, if the result was zero, line 32 invokes the
call_rcu() primitives in order to free up the file
structure (via the file_free_rcu () function spec-
ifiedin call_rcu () ’s second argument), but only after
all currently-executing RCU read-side critical sections
complete. The time period required for all currently-
executing RCU read-side critical sections to complete is
termed a “grace period”. Note that the atomic_dec_
and_test () primitive contains a memory barrier. This
memory barrier is not necessary in this example, since the
structure cannot be destroyed until the RCU read-side crit-
ical section completes, but in Linux, all atomic operations
that return a result must by definition contain memory
barriers.

Once the grace period completes, the file_free_
rcu () function obtains a pointer to the file structure on
line 39, and frees it on line 40.

This approach is also used by Linux’s virtual-memory
system, see get_page_unless_zero () and put_
page_testzero () for page structures as well as
try_to_unuse () and mmput () for memory-map
structures.

8.1.2 Linux Primitives Supporting Refer-
ence Counting

The Linux-kernel primitives used in the above examples
are summarized in the following list.
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atomic_t Type definition for 32-bit quantity to be
manipulated atomically.

void atomic_dec (atomic_t =var);
Atomically decrements the referenced variable
without necessarily issuing a memory barrier or
disabling compiler optimizations.

int atomic_dec_and_test (atomic_

t xvar); Atomically decrements the referenced
variable, returning true if the result is zero.
Issues a memory barrier and disables compiler
optimizations that might otherwise move memory
references across this primitive.

void atomic_inc (atomic_t =*var);
Atomically increments the referenced variable
without necessarily issuing a memory barrier or
disabling compiler optimizations.

int atomic_inc_not_zero (atomic_

t xvar); Atomically increments the referenced
variable, but only if the value is non-zero, and
returning t rue if the increment occurred. Issues a
memory barrier and disables compiler optimizations
that might otherwise move memory references
across this primitive.

int atomic_read(atomic_t =xvar); Re-
turns the integer value of the referenced variable.
This is not an atomic operation, and it neither is-
sues memory barriers nor disables compiler opti-
mizations.

void atomic_set (atomic_

t xvar, int wval); Sets the value of the
referenced atomic variable to “val”. This is not
an atomic operation, and it neither issues memory
barriers nor disables compiler optimizations.

void call_rcu(struct rcu_

head xhead, void (xfunc) (struct rcu_
head xhead)); Invokes func (head) some
time after all currently executing RCU read-side
critical sections complete, however, the call_
rcu () primitive returns immediately. Note that
head is normally a field within an RCU-protected
data structure, and that func is normally a function
that frees up this data structure. The time interval
between the invocation of call rcu () and the
invocation of func is termed a “grace period”. Any
interval of time containing a grace period is itself a
grace period.
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e type xcontainer_of (p, type, f);
Given a pointer “p” to a field “f” within a structure

of the specified type, return a pointer to the structure.

e void rcu_read_lock (void) ; Marks the be-
ginning of an RCU read-side critical section.

e void rcu_read_unlock (void) ; Marks the
end of an RCU read-side critical section. RCU read-
side critical sections may be nested.

e void smp_mb__before_atomic_
dec (void); Issues a memory barrier and
disables code-motion compiler optimizations only if
the platform’s atomic_dec () primitive does not
already do so.

* struct rcu_head A data structure used by the
RCU infrastructure to track objects awaiting a grace
period. This is normally included as a field within
an RCU-protected data structure.

8.1.3 Counter Optimizations

In some cases where increments and decrements are com-
mon, but checks for zero are rare, it makes sense to main-
tain per-CPU or per-task counters, as was discussed in
Chapter 4. See Appendix D.1 for an example of this
technique applied to RCU. This approach eliminates the
need for atomic instructions or memory barriers on the
increment and decrement primitives, but still requires that
code-motion compiler optimizations be disabled. In ad-
dition, the primitives such as synchronize_srcu()
that check for the aggregate reference count reaching zero
can be quite slow. This underscores the fact that these
techniques are designed for situations where the refer-
ences are frequently acquired and released, but where it
is rarely necessary to check for a zero reference count.

However, it is often the case that use of reference counts
requires writing (often atomically) to a data structure that
is otherwise read only. In this case, reference counts are
imposing expensive cache misses on readers. It is there-
fore worthwhile to look into synchronization mechanisms
that do not require readers to do writes. One such syn-
chronization mechanism, sequence locks, is covered in
the next section.

8.2 Sequence Locks

Sequence locks are used in the Linux kernel for read-
mostly data that must be seen in a consistent state by
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readers. However, unlike reader-writer locking, readers
do not exclude writers. Instead, sequence-lock readers
retry an operation if they detect activity from a concurrent
writer.

Quick Quiz 8.6: Why isn’t this sequence-lock discus-
sion in Chapter 6, you know, the one on locking?

The key component of sequence locking is the sequence
number, which has an even value in the absence of writers
and an odd value if there is an update in progress. Readers
can then snapshot the value before and after each access.
If either snapshot has an odd value, or if the two snap-
shots differ, there has been a concurrent update, and the
reader must discard the results of the access and then retry
it. Readers use the read_segbegin () and read_
seqretry () functions, as shown in Figure 8.5, when
accessing data protected by a sequence lock. Writers must
increment the value before and after each update, and
only one writer is permitted at a given time. Writers use
the write_seqglock () and write_sequnlock ()
functions, as shown in Figure 8.6, when updating data
protected by a sequence lock.

Sequence-lock-protected data can have an arbitrarily
large number of concurrent readers, but only one writer
at a time. Sequence locking is used in the Linux kernel
to protect calibration quantities used for timekeeping. It
is also used in pathname traversal to detect concurrent
rename operations.

Quick Quiz 8.7: Can you use sequence locks as the
only synchronization mechanism protecting a linked list
supporting concurrent addition, deletion, and search? ll

A simple implementation of sequence locks is shown in
Figure 8.7 (seglock.h). The seglock_t data struc-
ture is shown on lines 1-4, and contains the sequence
number along with a lock to serialize writers. Lines 6-10
show seglock_init (), which, as the name indicates,
initializes a seglock_t.

Lines 12-22 show read_segbegin (), which be-

do {
seq = read_segbegin(&test_seqglock) ;
/+ read-side access. */
} while (read_seqretry(&test_seqglock, seq));

=W N e

Figure 8.5: Sequence-Locking Reader

1 write_seqglock (&test_seqglock);
/% Update =/
3 write_sequnlock (&test_seqglock);

N

Figure 8.6: Sequence-Locking Writer
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typedef struct {
unsigned long seq;
spinlock_t lock;

} seglock_t;

static void seqglock_init (seqlock_t xslp)
{

slp->seq = 0;

spin_lock_init (&slp->1lock);
}

static unsigned long read_segbegin(seglock_t =xslp)

{

unsigned long s;

repeat:
s = ACCESS_ONCE (slp->seq) ;
smp_mb () ;
if (unlikely(s & 1)
goto repeat;
return s;

}

static int read_seqretry (seglock_t =slp,
unsigned long oldseq)
{

unsigned long s;

smp_mb () ;
s = ACCESS_ONCE (slp->seq);
return s != oldseq;

}

static void write_seqglock (seglock_t =*slp)
{

spin_lock (&slp->lock) ;

++slp->seq;

smp_nb () ;
}

static void write_sequnlock (segqlock_t =slp)
{

smp_mb () ;

++slp->seq;

spin_unlock (&slp->lock);
}

Figure 8.7: Sequence-Locking Implementation
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gins a sequence-lock read-side critical section. Line 17
takes a snapshot of the sequence counter, and line 18 or-
ders this snapshot operation before the caller’s critical
section. Line 19 checks to see if the snapshot is odd, indi-
cating that there is a concurrent writer, and, if so, line 20
jumps back to the beginning. Otherwise, line 21 returns
the value of the snapshot, which the caller will pass to a
later call to read_seqretry ().

Quick Quiz 8.8: Why bother with the check on line 19
of read_seqgbegin () in Figure 8.7? Given that a new
writer could begin at any time, why not simply incorporate
the check into line 31 of read_seqretry ()?

Lines 24-32 show read_seqretry (), which re-
turns true if there were no writers present since the time of
the corresponding call to read_segbegin (). Line 29
orders the caller’s prior critical section before line 30’s
fetch of the new snapshot of the sequence counter. Finally,
line 30 checks that the sequence counter has not changed,
in other words, that there has been no writer, and returns
true if so.

Quick Quiz 8.9: What prevents sequence-locking up-
daters from starving readers?

Lines 34-39 show write_seqlock (), which sim-
ply acquires the lock, increments the sequence number,
and executes a memory barrier to ensure that this in-
crement is ordered before the caller’s critical section.
Lines 41-46 show write_sequnlock (), which ex-
ecutes a memory barrier to ensure that the caller’s critical
section is ordered before the increment of the sequence
number on line 44, then releases the lock.

Quick Quiz 8.10: What if something else serializes
writers, so that the lock is not needed? B

Quick Quiz 8.11: Why isn’t seq on line 2 of Fig-
ure 8.7 unsigned rather than unsigned long? Af-
ter all, if unsigned is good enough for the Linux kernel,
shouldn’t it be good enough for everyone? Bl

Both the read-side and write-side critical sections of
a sequence lock can be thought of as transactions, and
sequence locking therefore can be thought of as a limited
form of transactional memory, which will be discussed in
Section 15.2.

Sequence locks allow writers to defer readers, but not
vice versa. This can result in unfairness and even starva-
tion in writer-heavy workloads. On the other hand, in the
absence of writers, sequence-lock readers are reasonably
fast and scale linearly. It is only human to want the best
of both worlds: fast readers without the possibility of
starvation. In addition, it would also be nice to overcome
sequence locking’s limitations with pointers. The follow-
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ing section presents a synchronization mechanism with
exactly these proporties.

8.3 Read-Copy Update (RCU)

This section covers RCU from a number of different per-
spectives. Section 8.3.1 provides the classic introduction
to RCU, Section 8.3.2 covers fundamental RCU concepts,
Section 8.3.3 introduces some common uses of RCU, Sec-
tion 8.3.4 presents the Linux-kernel API, Section 8.3.5
covers a sequence of “toy” implementations of user-level
RCU, and finally Section 8.3.6 provides some RCU exer-
cises.

8.3.1 Introduction to RCU

Suppose that you are writing a parallel real-time program
that needs to access data that is subject to gradual change,
perhaps due to changes in temperature, humidity, and
barometric pressure. The real-time response constraints
on this program are so severe that it is not permissible
to spin or block, thus ruling out locking, nor is it permis-
sible to use a retry loop, thus ruling out sequence locks.
Fortunately, the temperature and pressure are normally
controlled, so that a default hard-coded set of data is usu-
ally sufficient.

However, the temperature, humidity, and pressure oc-
casionally deviate too far from the defaults, and in such
situations it is necessary to provide data that replaces the
defaults. Because the temperature, humidity, and pres-
sure change gradually, providing the updated values is
not a matter of urgency, though it must happen within
a few minutes. The program is to use a global pointer
imaginatively named gpt r that is normally NULL, which
indicates that the default values are to be used. Otherwise,
gptr points to a structure providing values imaginatively
named a, b, and c that are to be used in the real-time
calculations.

How can we safely provide updated values when
needed without impeding real-time readers?

A classic approach is shown in Figure 8.8. The first
row shows the default state, with gpt r equal to NULL.
In the second row, we have allocated a structure which
is uninitialized, as indicated by the question marks. In
the third row, we have initialized the structure. Next, we
assign gpt r to reference this new element.! On modern

! On many computer systems, simple assignment is insufficient due
to interference from both the compiler and the CPU. These issues will
be covered in Section 8.3.2.
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(1) | gptr

W

—>a="? /

—>b=?
->c=?

—>b=2

->c=3

gptr = p; /*almost*/

—>a=1
->b=2 -

->c=3

P

() | gptr

p

(3) | gptr

P

(4) | gptr

Figure 8.8: Insertion With Concurrent Readers

general-purpose systems, this assignment is atomic in
the sense that concurrent readers will see either a NULL
pointer or a pointer to the new structure p, but not some
mash-up containing bits from both values. Each reader
is therefore guaranteed to either get the default value of
NULL or to get the newly installed non-default values, but
either way each reader will see a consistent result. Even
better, readers need not use any expensive synchronization
primitives, so this approach is quite suitable for real-time
use.”

But sooner or later, it will be necessary to remove data
that is being referenced by concurrent readers. Let us
move to a more complex example where we are removing
an element from a linked list, as shown in Figure 8.9.
This list initially contains elements A, B, and C, and we
need to remove element B. First, we use 1ist_del ()

2 Again, on many computer systems, additional work is required to
prevent interference from the compiler, and, on DEC Alpha systems,
the CPU as well. This will be covered in Section 8.3.2.



8.3. READ-COPY UPDATE (RCU)

/ Readers?
(1) A B C 1 Version
list_del() /*almost*/
Readers?
) A B C 2 Versions

Relders?

@ | A B C

W

(4) A o]

1 Versions

1 Versions

Figure 8.9: Deletion From Linked List With Concurrent
Readers

to carry out the removal,® at which point all new readers
will see element B as having been deleted from the list.
However, there might be old readers still referencing this
element. Once all these old readers have finished, we can
safely free element B, resulting in the situation shown at
the bottom of the figure.

But how can we tell when the readers are finished?

It is tempting to consider a reference-counting scheme,
but Figure 4.3 in Chapter 4 shows that this can also re-
sult in long delays, just as can the locking and sequence-
locking approaches that we already rejected.

Let’s consider the logical extreme where the readers
do absolutely nothing to announce their presence. This
approach clearly allows optimal performance for readers
(after all, free is a very good price), but leaves open the
question of how the updater can possibly determine when
all the old readers are done. We clearly need some addi-
tional constraints if we are to provide a reasonable answer
to this question.

3 And yet again, this approximates reality, which will be expanded
on in Section 8.3.2.
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One constraint that fits well with some types of real-
time operating systems (as well as some operating-system
kernels) is to consider the case where threads are not
subject to preemption. In such non-preemptible environ-
ments, each thread runs until it explicitly and voluntarily
blocks. This means that an infinite loop without blocking
will render a CPU useless for any other purpose from the
start of the infinite loop onwards.* Non-preemptibility
also requires that threads be prohibited from blocking
while holding spinlocks. Without this prohibition, all
CPUs might be consumed by threads spinning attempt-
ing to acquire a spinlock held by a blocked thread. The
spinning threads will not relinquish their CPUs until they
acquire the lock, but the thread holding the lock cannot
possibly release it until one of the spinning threads relin-
quishes a CPU. This is a classic deadlock situation.

Let us impose this same constraint on reader threads
traversing the linked list: such threads are not allowed
to block until after completing their traversal. Returning
to the second row of Figure 8.9, where the updater has
just completed executing 1ist_del (), imagine that
CPU 0 executes a context switch. Because readers are
not permitted to block while traversing the linked list,
we are guaranteed that all prior readers that might have
been running on CPU 0 will have completed. Extending
this line of reasoning to the other CPUs, once each CPU
has been observed executing a context switch, we are
guaranteed that all prior readers have completed, and
that there are no longer any reader threads referencing
element B. The updater can then safely free element B,
resulting in the state shown at the bottom of Figure 8.9.

A schematic of this approach is shown in Figure 8.10,
with time advancing from the top of the figure to the
bottom.

Although production-quality implementations of this
approach can be quite complex, a toy implementatoin is
exceedingly simple:

1 for_each_cpu(cpu)
2 run_on (cpu) ;

The for_online_cpu () primitive iterates over all
CPUgs, and the run_on () function causes the current
thread to execute on the specified CPU, which forces the
destination CPU to execute a context switch. Therefore,
once the for_online_cpu () has completed, each
CPU has executed a context switch, which in turn guaran-
tees that all pre-existing reader threads have completed.

4 In contrast, an infinite loop in a preemptible environment might be
preempted. This infinite loop might still waste considerable CPU time,
but the CPU in question would nevertheless be able to do other work.
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Figure 8.10: Waiting for Pre-Existing Readers

Please note that this approach is not production qual-
ity. Correct handling of a number of corner cases and
the need for a number of powerful optimizations mean
that production-quality implementations have significant
additional complexity. In addition, RCU implementations
for preemptible environments require that readers actually
do something. However, this simple non-preemptible ap-
proach is conceptually complete, and forms a good initial
basis for understanding the RCU fundamentals covered
in the following section.

8.3.2 RCU Fundamentals

Authors: Paul E. McKenney and Jonathan Walpole
Read-copy update (RCU) is a synchronization mech-
anism that was added to the Linux kernel in October of
2002. RCU achieves scalability improvements by allow-
ing reads to occur concurrently with updates. In contrast
with conventional locking primitives that ensure mutual
exclusion among concurrent threads regardless of whether
they be readers or updaters, or with reader-writer locks
that allow concurrent reads but not in the presence of
updates, RCU supports concurrency between a single up-
dater and multiple readers. RCU ensures that reads are
coherent by maintaining multiple versions of objects and
ensuring that they are not freed up until all pre-existing
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struct foo {
int a;
int b;
int c;
Vi
struct foo *xgp = NULL;

oUW N

/A Y

10 p = kmalloc(sizeof (xp), GFP_KERNEL) ;
11 p—>a 1;
12 p—>b 2;
13 p->c 3;
14 gp =

Lo 2 [ |

Figure 8.11: Data Structure Publication (Unsafe)

read-side critical sections complete. RCU defines and
uses efficient and scalable mechanisms for publishing and
reading new versions of an object, and also for deferring
the collection of old versions. These mechanisms dis-
tribute the work among read and update paths in such a
way as to make read paths extremely fast. In some cases
(non-preemptible kernels), RCU’s read-side primitives
have zero overhead.

Quick Quiz 8.12: But doesn’t Section 8.2’s seqlock
also permit readers and updaters to get work done concur-
rently? ll

This leads to the question “what exactly is RCU?”,
and perhaps also to the question “how can RCU possi-
bly work?” (or, not infrequently, the assertion that RCU
cannot possibly work). This document addresses these
questions from a fundamental viewpoint; later install-
ments look at them from usage and from API viewpoints.
This last installment also includes a list of references.

RCU is made up of three fundamental mechanisms,
the first being used for insertion, the second being used
for deletion, and the third being used to allow read-
ers to tolerate concurrent insertions and deletions. Sec-
tion 8.3.2.1 describes the publish-subscribe mechanism
used for insertion, Section 8.3.2.2 describes how waiting
for pre-existing RCU readers enabled deletion, and Sec-
tion 8.3.2.3 discusses how maintaining multiple versions
of recently updated objects permits concurrent insertions
and deletions. Finally, Section 8.3.2.4 summarizes RCU
fundamentals.

8.3.2.1 Publish-Subscribe Mechanism

One key attribute of RCU is the ability to safely scan data,
even though that data is being modified concurrently. To
provide this ability for concurrent insertion, RCU uses
what can be thought of as a publish-subscribe mechanism.
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For example, consider an initially NULL global pointer
gp that is to be modified to point to a newly allocated
and initialized data structure. The code fragment shown
in Figure 8.11 (with the addition of appropriate locking)
might be used for this purpose.

Unfortunately, there is nothing forcing the compiler
and CPU to execute the last four assignment statements
in order. If the assignment to gp happens before the ini-
tialization of p fields, then concurrent readers could see
the uninitialized values. Memory barriers are required
to keep things ordered, but memory barriers are notori-
ously difficult to use. We therefore encapsulate them into
a primitive rcu_assign_pointer () that has publi-
cation semantics. The last four lines would then be as
follows:

p->a
p—>b
p->c
rcu_assign_pointer (gp, p);

S W N e
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The rcu_assign_pointer () would publish the
new structure, forcing both the compiler and the CPU to
execute the assignment to gp after the assignments to the
fields referenced by p.

However, it is not sufficient to only enforce ordering at
the updater, as the reader must enforce proper ordering as
well. Consider for example the following code fragment:

1 p=gp;
2 if (p != NULL) {

3 do_something_with (p->a, p->b, p->c);
4

Although this code fragment might well seem im-
mune to misordering, unfortunately, the DEC Alpha
CPU [McKO05a, McKO05b] and value-speculation com-
piler optimizations can, believe it or not, cause the val-
ues of p—>a, p—>b, and p—>c to be fetched before the
value of p. This is perhaps easiest to see in the case of
value-speculation compiler optimizations, where the com-
piler guesses the value of p fetches p->a, p—>b, and
p—>c then fetches the actual value of p in order to check
whether its guess was correct. This sort of optimization
is quite aggressive, perhaps insanely so, but does actually
occur in the context of profile-driven optimization.

Clearly, we need to prevent this sort of skulldug-
gery on the part of both the compiler and the CPU.
The rcu_dereference () primitive uses whatever
memory-barrier instructions and compiler directives are
required for this purpose:
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Figure 8.12: Linux Circular Linked List
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Figure 8.13: Linux Linked List Abbreviated

rcu_read_lock () ;

p = rcu_dereference (gp);

if (p != NULL) {
do_something_with (p->a, p->b, p->c);

}

rcu_read_unlock () ;

oUW N

The rcu_dereference () primitive can thus be
thought of as subscribing to a given value of the spec-
ified pointer, guaranteeing that subsequent dereference
operations will see any initialization that occurred be-
fore the corresponding rcu_assign_pointer () op-
eration that published that pointer. The rcu_read_
lock () and rcu_read_unlock () calls are abso-
lutely required: they define the extent of the RCU read-
side critical section. Their purpose is explained in Sec-
tion 8.3.2.2, however, they never spin or block, nor do they
prevent the 1ist_add_rcu () from executing concur-
rently. In fact, in non-CONFIG_PREEMPT kernels, they
generate absolutely no code.

Although rcu_assign_pointer () and rcu_
dereference () can in theory be used to construct
any conceivable RCU-protected data structure, in prac-
tice it is often better to use higher-level constructs.
Therefore, the rcu_assign_pointer () and rcu_
dereference () primitives have been embedded in
special RCU variants of Linux’s list-manipulation API.
Linux has two variants of doubly linked list, the cir-
cular struct list_head and the linear struct
hlist_head/struct hlist_node pair. The for-
mer is laid out as shown in Figure 8.12, where the green
boxes represent the list header and the blue boxes repre-
sent the elements in the list. This notation is cumbersome,
and will therefore be abbreviated as shown in Figure 8.13.

Adapting the pointer-publish example for the linked
list results in the code shown in Figure 8.14.
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struct foo {
struct list_head =xlist;
int a;
int b;
int c;
}i
LIST_HEAD (head);

@ J o0 WN

9 /x . . . ox/

11 p = kmalloc(sizeof (xp), GFP_KERNEL) ;
12 p->a = 1;

13 p—>b
14 p->c
15 list_add_rcu(&p->1list, &head);

[}
58]

Figure 8.14: RCU Data Structure Publication
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Figure 8.15: Linux Linear Linked List

Line 15 must be protected by some synchronization
mechanism (most commonly some sort of lock) to prevent
multiple 1ist_add () instances from executing concur-
rently. However, such synchronization does not prevent
this 1ist_add () instance from executing concurrently
with RCU readers.

Subscribing to an RCU-protected list is straightfor-
ward:

1 rcu_read_lock();

2 list_for_each_entry_rcu(p, head, list) {
3 do_something_with (p->a, p->b, p->c);
4}

5

rcu_read_unlock();

The 1ist_add_rcu () primitive publishes an entry
into the specified list, guaranteeing that the correspond-
ing list_for_each_entry_rcu () invocation will
properly subscribe to this same entry.

Quick Quiz 8.13: What prevents the
list_for_each_entry_rcu() from getting
a segfault if it happens to execute at exactly the same
time as the 1ist_add_rcu()?l

Linux’s other doubly linked list, the hlist, is a linear
list, which means that it needs only one pointer for the
header rather than the two required for the circular list,
as shown in Figure 8.15. Thus, use of hlist can halve the
memory consumption for the hash-bucket arrays of large
hash tables. As before, this notation is cumbersome, so
hlists will be abbreviated in the same way lists are, as
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struct foo {
struct hlist_node =xlist;
int a;
int b;
int c;
Vi
HLIST_HEAD (head);
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9 /*x . .. %/

11 p = kmalloc(sizeof (xp), GFP_KERNEL);
12 p->a = 1;

13 p—>b
14 p->c
15 hlist_add_head_rcu(&p->1list, &head);

[
N

Figure 8.16: RCU hlist Publication

shown in Figure 8.13.

Publishing a new element to an RCU-protected hlist is
quite similar to doing so for the circular list, as shown in
Figure 8.16.

As before, line 15 must be protected by some sort of
synchronization mechanism, for example, a lock.

Subscribing to an RCU-protected hlist is also similar
to the circular list:

1 rcu_read_lock();
2 hlist_for_each_entry_rcu(p, g, head, 1list) {
3 do_something_with (p->a, p->b, p->c);
4}
5

rcu_read_unlock () ;

Quick Quiz 8.14: Why do we
need to pass two pointers into
hlist_for_each_entry_rcu() when  only

one is needed for 1ist_for_each_entry_rcu()?
|

The set of RCU publish and subscribe primitives are
shown in Table 8.2, along with additional primitives to
“unpublish”, or retract.

Note that the list_replace_rcu(), list_
del_rcu(), hlist_replace_rcu(), and
hlist_del_rcu() APIs add a complication. When
is it safe to free up the data element that was replaced or
removed? In particular, how can we possibly know when
all the readers have released their references to that data
element?

These questions are addressed in the following section.

8.3.2.2 Wait For Pre-Existing RCU Readers to Com-
plete

In its most basic form, RCU is a way of waiting for things
to finish. Of course, there are a great many other ways
of waiting for things to finish, including reference counts,
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Category || Publish Retract | Subscribe
Pointers rcu_assign_pointer () rcu_assign_pointer (..., NULL)| rcu_dereference ()
Tist_add_rcu(
Lists list_add_tail_rcu() list_del_rcu() list_for_each_entry_rcu()
list_replace_rcu()
hlist_add_after_rcu(
. hlist_add_before_rcu() . .
Hlists hlist_add_head_rcu() hlist_del_rcu() hlist_for_each_entry_rcu(
hlist_replace_rcu()
Table 8.2: RCU Publish and Subscribe Primitives
[ 1 1 struct foo {
|Reader| | Reader | | Reader 2 struct list_head slist;
| 3 int a;
r Peri 4 int b;
| Reader | |Reader| Grace Period 5 int c;
Extends as 6 1;
7 LIST_HEAD (head);
| Reader | | Reader Needed o
| 9 /.. L%/
10
| Reader | Reader 11 p = search (head, key);
12 if (p == NULL) {
. 13 /+ Take appropriate action, unlock, & return. =/
Removal Reclamation 14 }
15 g = kmalloc(sizeof (xp), GFP_KERNEL);
. 16 *g = *p;
Time 17 g->b = 2;

Figure 8.17: Readers and RCU Grace Period

reader-writer locks, events, and so on. The great advan-
tage of RCU is that it can wait for each of (say) 20,000
different things without having to explicitly track each
and every one of them, and without having to worry about
the performance degradation, scalability limitations, com-
plex deadlock scenarios, and memory-leak hazards that
are inherent in schemes using explicit tracking.

In RCU’s case, the things waited on are called “RCU
read-side critical sections”. An RCU read-side critical
section starts with an rcu_read_lock () primitive,
and ends with a corresponding rcu_read_unlock ()
primitive. RCU read-side critical sections can be nested,
and may contain pretty much any code, as long as that
code does not explicitly block or sleep (although a spe-
cial form of RCU called SRCU [McKO06b] does permit
general sleeping in SRCU read-side critical sections). If
you abide by these conventions, you can use RCU to wait
for any desired piece of code to complete.

RCU accomplishes this feat by indirectly determin-
ing when these other things have finished [McKO07g,
McKO07a], as is described in detail in Appendix D.

In particular, as shown in Figure 8.17, RCU is a way of
waiting for pre-existing RCU read-side critical sections to
completely finish, including memory operations executed

18 g->c = 3;

19 list_replace_rcu(&p->list, &g->list);
20 synchronize_rcu();

21 kfree(p);

Figure 8.18: Canonical RCU Replacement Example

by those critical sections. However, note that RCU read-
side critical sections that begin after the beginning of a
given grace period can and will extend beyond the end of
that grace period.

The following pseudocode shows the basic form of
algorithms that use RCU to wait for readers:

1. Make a change, for example, replace an element in
a linked list.

2. Wait for all pre-existing RCU read-side critical sec-
tions to completely finish (for example, by using the
synchronize_rcu () primitive). The key obser-
vation here is that subsequent RCU read-side critical
sections have no way to gain a reference to the newly
removed element.

3. Clean up, for example, free the element that was
replaced above.

The code fragment shown in Figure 8.18, adapted from
those in Section 8.3.2.1, demonstrates this process, with
field a being the search key.
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Lines 19, 20, and 21 implement the three steps called
out above. Lines 16-19 gives RCU (“read-copy update™)
its name: while permitting concurrent reads, line 16
copies and lines 17-19 do an update.

As discussed in Section 8.3.1, the synchronize_
rcu () primitive can be quite simple (see Section 8.3.5
for additional “toy” RCU implementations). However,
production-quality implementations must deal with dif-
ficult corner cases and also incorporate powerful opti-
mizations, both of which result in significant complexity.
Although it is good to know that there is a simple concep-
tual implementation of synchronize_rcu (), other
questions remain. For example, what exactly do RCU
readers see when traversing a concurrently updated list?
This question is addressed in the following section.

8.3.2.3 Maintain Multiple Versions of Recently Up-

dated Objects

This section demonstrates how RCU maintains multiple
versions of lists to accommodate synchronization-free
readers. Two examples are presented showing how an el-
ement that might be referenced by a given reader must re-
main intact while that reader remains in its RCU read-side
critical section. The first example demonstrates deletion
of a list element, and the second example demonstrates
replacement of an element.

Example 1: Maintaining Multiple Versions During
Deletion We can now revisit the deletion example from
Section 8.3.1, but now with the benefit of a firm under-
standing of the fundamental concepts underlying RCU.
To begin this new version of the deletion example, we
will modify lines 11-21 in Figure 8.18 to read as follows:
p = search(head, key);
if (p != NULL) {

list_del_rcu(&p->list);

synchronize_rcu();

kfree(p);
}

oUW N

This code will update the list as shown in Figure 8.19.
The triples in each element represent the values of fields a,
b, and c, respectively. The red-shaded elements indicate
that RCU readers might be holding references to them.
Please note that we have omitted the backwards pointers
and the link from the tail of the list to the head for clarity.

Afterthe 1ist_del_rcu () online 3 has completed,
the 5, 6, 7 element has been removed from the list, as
shown in the second row of Figure 8.19. Since readers
do not synchronize directly with updaters, readers might

CHAPTER 8. DEFERRED PROCESSING

1,2,3 - 5,6,7 = 1148
list_del_rcu()
1,2,3 5,6,7 ™ 11,48

synchronize_rcu()

Y

1,2,3 5,6,7 11,4,8

kfree()

1,2,3 » 11,48

Figure 8.19: RCU Deletion From Linked List

be concurrently scanning this list. These concurrent read-
ers might or might not see the newly removed element,
depending on timing. However, readers that were de-
layed (e.g., due to interrupts, ECC memory errors, or, in
CONFIG_PREEMPT_RT kernels, preemption) just after
fetching a pointer to the newly removed element might
see the old version of the list for quite some time after the
removal. Therefore, we now have two versions of the list,
one with element 5, 6, 7 and one without. The 5, 6, 7 el-
ement is shaded yellow, indicating that old readers might
still be referencing it, but that new readers cannot obtain
a reference to it.

Please note that readers are not permitted to maintain
references to element 5, 6, 7 after exiting from their
RCU read-side critical sections. Therefore, once the
synchronize_rcu () on line 4 completes, so that all
pre-existing readers are guaranteed to have completed,
there can be no more readers referencing this element,
as indicated by its green shading on the third row of Fig-
ure 8.19. We are thus back to a single version of the
list.

At this point, the 5, 6, 7 element may safely be freed,
as shown on the final row of Figure 8.19. At this point,
we have completed the deletion of element 5, 6, 7. The
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following section covers replacement.

Example 2: Maintaining Multiple Versions During
Replacement To start the replacement example, here
are the last few lines of the example shown in Figure 8.18:

g = kmalloc(sizeof (xp), GFP_KERNEL) ;
*q = *p;

a-—>b = 2;

g->c = 3;

list_replace_rcu(&p->1list, &g->1list);
synchronize_rcu();

kfree(p);

oUW N

The initial state of the list, including the pointer p, is
the same as for the deletion example, as shown on the first
row of Figure 8.20.

As before, the triples in each element represent the
values of fields a, b, and c, respectively. The red-shaded
elements might be referenced by readers, and because
readers do not synchronize directly with updaters, read-
ers might run concurrently with this entire replacement
process. Please note that we again omit the backwards
pointers and the link from the tail of the list to the head
for clarity.

The following text describes how to replace the 5, 6, 7
element with 5, 2, 3 in such a way that any given reader
sees one of these two values.

Line 1 kmalloc ()s a replacement element, as fol-
lows, resulting in the state as shown in the second row
of Figure 8.20. At this point, no reader can hold a refer-
ence to the newly allocated element (as indicated by its
green shading), and it is uninitialized (as indicated by the
question marks).

Line 2 copies the old element to the new one, resulting
in the state as shown in the third row of Figure 8.20. The
newly allocated element still cannot be referenced by
readers, but it is now initialized.

Line 3 updates g—>b to the value “2”, and line 4 up-
dates g—>c to the value “3”, as shown on the fourth row
of Figure 8.20.

Now, line 5 does the replacement, so that the new el-
ement is finally visible to readers, and hence is shaded
red, as shown on the fifth row of Figure 8.20. At this
point, as shown below, we have two versions of the list.
Pre-existing readers might see the 5, 6, 7 element (which
is therefore now shaded yellow), but new readers will in-
stead see the 5, 2, 3 element. But any given reader is
guaranteed to see some well-defined list.

After the synchronize_rcu () on line 6 returns,
a grace period will have elapsed, and so all reads that
started before the 1ist_replace_rcu () will have
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list_replace_rcu()

5,6,7

synchronize_rcu()

kfree()

Figure 8.20: RCU Replacement in Linked List
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completed. In particular, any readers that might have been
holding references to the 5, 6, 7 element are guaranteed
to have exited their RCU read-side critical sections, and
are thus prohibited from continuing to hold a reference.
Therefore, there can no longer be any readers holding ref-
erences to the old element, as indicated its green shading
in the sixth row of Figure 8.20. As far as the readers are
concerned, we are back to having a single version of the
list, but with the new element in place of the old.

After the kfree () on line 7 completes, the list will
appear as shown on the final row of Figure 8.20.

Despite the fact that RCU was named after the replace-
ment case, the vast majority of RCU usage within the
Linux kernel relies on the simple deletion case shown in
Section 8.3.2.3.

Discussion These examples assumed that a mutex was
held across the entire update operation, which would
mean that there could be at most two versions of the
list active at a given time.

Quick Quiz 8.15: How would you modify the deletion
example to permit more than two versions of the list to be
active? ll

Quick Quiz 8.16: How many RCU versions of a given
list can be active at any given time? H

This sequence of events shows how RCU updates use
multiple versions to safely carry out changes in presence
of concurrent readers. Of course, some algorithms cannot
gracefully handle multiple versions. There are techniques
for adapting such algorithms to RCU [McK04], but these
are beyond the scope of this section.

8.3.2.4 Summary of RCU Fundamentals

This section has described the three fundamental compo-
nents of RCU-based algorithms:

1. a publish-subscribe mechanism for adding new data,

2. a way of waiting for pre-existing RCU readers to
finish, and

3. adiscipline of maintaining multiple versions to per-
mit change without harming or unduly delaying con-
current RCU readers.

Quick Quiz 8.17: How can RCU updaters possibly
delay RCU readers, given that the rcu_read_lock ()
and rcu_read_unlock () primitives neither spin nor
block? H

CHAPTER 8. DEFERRED PROCESSING

Mechanism RCU Replaces

Reader-writer locking

Restricted reference-counting mechanism
Bulk reference-counting mechanism
Poor man’s garbage collector

Existence Guarantees

Type-Safe Memory

Wait for things to finish

| Section

Section 8.3.3.1
Section 8.3.3.2
Section 8.3.3.3
Section 8.3.3.4
Section 8.3.3.5
Section 8.3.3.6
Section 8.3.3.7

Table 8.3: RCU Usage

These three RCU components allow data to be updated
in face of concurrent readers, and can be combined in
different ways to implement a surprising variety of differ-
ent types of RCU-based algorithms, some of which are
described in the following section.

8.3.3 RCU Usage

This section answers the question "what is RCU?" from
the viewpoint of the uses to which RCU can be put. Be-
cause RCU is most frequently used to replace some ex-
isting mechanism, we look at it primarily in terms of its
relationship to such mechanisms, as listed in Table 8.3.
Following the sections listed in this table, Section 8.3.3.8
provides a summary.

8.3.3.1 RCU is a Reader-Writer Lock Replacement

Perhaps the most common use of RCU within the Linux
kernel is as a replacement for reader-writer locking in
read-intensive situations. Nevertheless, this use of RCU
was not immediately apparent to me at the outset, in fact, I
chose to implement something similar to br1ock before
implementing a general-purpose RCU implementation
back in the early 1990s. Each and every one of the uses
I envisioned for the proto-brlock primitive was instead
implemented using RCU. In fact, it was more than three
years before the proto-br1lock primitive saw its first use.
Boy, did I feel foolish!

The key similarity between RCU and reader-writer
locking is that both have read-side critical sections that
can execute in parallel. In fact, in some cases, it is possible
to mechanically substitute RCU API members for the
corresponding reader-writer lock API members. But first,
why bother?

Advantages of RCU include performance, deadlock
immunity, and realtime latency. There are, of course,
limitations to RCU, including the fact that readers and
updaters run concurrently, that low-priority RCU readers
can block high-priority threads waiting for a grace period
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Figure 8.21: Performance Advantage of RCU Over
Reader-Writer Locking

to elapse, and that grace-period latencies can extend for
many milliseconds. These advantages and limitations are
discussed in the following sections.

Performance The read-side performance advantages of
RCU over reader-writer locking are shown in Figure 8.21.

Quick Quiz 8.18: WTF? How the heck do you expect
me to believe that RCU has a 100-femtosecond overhead
when the clock period at 3GHz is more than 300 picosec-
onds? W

Note that reader-writer locking is orders of magnitude
slower than RCU on a single CPU, and is almost two
additional orders of magnitude slower on 16 CPUs. In
contrast, RCU scales quite well. In both cases, the error
bars span a single standard deviation in either direction.

A more moderate view may be obtained from a
CONFIG_PREEMPT kernel, though RCU still beats
reader-writer locking by between one and three orders
of magnitude, as shown in Figure 8.22. Note the high
variability of reader-writer locking at larger numbers of
CPUs. The error bars span a single standard deviation in
either direction.

Of course, the low performance of reader-writer lock-
ing in Figure 8.22 is exaggerated by the unrealistic zero-
length critical sections. The performance advantages of
RCU become less significant as the overhead of the crit-
ical section increases, as shown in Figure 8.23 for a 16-
CPU system, in which the y-axis represents the sum of
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Figure 8.22: Performance Advantage of Preemptible RCU
Over Reader-Writer Locking

the overhead of the read-side primitives and that of the
critical section.

Quick Quiz 8.19: Why does both the variability and
overhead of rwlock decrease as the critical-section over-
head increases? B

However, this observation must be tempered by the
fact that a number of system calls (and thus any RCU
read-side critical sections that they contain) can complete
within a few microseconds.

In addition, as is discussed in the next section,
RCU read-side primitives are almost entirely deadlock-
immune.

Deadlock Immunity Although RCU offers significant
performance advantages for read-mostly workloads, one
of the primary reasons for creating RCU in the first place
was in fact its immunity to read-side deadlocks. This im-
munity stems from the fact that RCU read-side primitives
do not block, spin, or even do backwards branches, so
that their execution time is deterministic. It is therefore
impossible for them to participate in a deadlock cycle.

Quick Quiz 8.20: Is there an exception to this dead-
lock immunity, and if so, what sequence of events could
lead to deadlock? M

An interesting consequence of RCU’s read-side dead-
lock immunity is that it is possible to unconditionally
upgrade an RCU reader to an RCU updater. Attempting
to do such an upgrade with reader-writer locking results
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in deadlock. A sample code fragment that does an RCU
read-to-update upgrade follows:
1 rcu_read_lock();
2 list_for_each_entry rcu(p, &head, list_field) {
3 do_something_with (p);
4 if (need_update(p)) {
5 spin_lock (my_lock);
[ do_update (p) ;
7 spin_unlock (&my_lock);
8 }
9
0

}
10 rcu_read_unlock();

Note that do_update () is executed under the pro-
tection of the lock and under RCU read-side protection.

Another interesting consequence of RCU’s deadlock
immunity is its immunity to a large class of priority inver-
sion problems. For example, low-priority RCU readers
cannot prevent a high-priority RCU updater from acquir-
ing the update-side lock. Similarly, a low-priority RCU
updater cannot prevent high-priority RCU readers from
entering an RCU read-side critical section.

Realtime Latency Because RCU read-side primitives
neither spin nor block, they offer excellent realtime laten-
cies. In addition, as noted earlier, this means that they are
immune to priority inversion involving the RCU read-side
primitives and locks.

However, RCU is susceptible to more subtle priority-
inversion scenarios, for example, a high-priority process
blocked waiting for an RCU grace period to elapse can be
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Figure 8.24: Response Time of RCU vs. Reader-Writer
Locking

blocked by low-priority RCU readers in -rt kernels. This
can be solved by using RCU priority boosting [McK07d,
GMTWO08].

RCU Readers and Updaters Run Concurrently Be-
cause RCU readers never spin nor block, and because
updaters are not subject to any sort of rollback or abort se-
mantics, RCU readers and updaters must necessarily run
concurrently. This means that RCU readers might access
stale data, and might even see inconsistencies, either of
which can render conversion from reader-writer locking
to RCU non-trivial.

However, in a surprisingly large number of situations,
inconsistencies and stale data are not problems. The clas-
sic example is the networking routing table. Because rout-
ing updates can take considerable time to reach a given
system (seconds or even minutes), the system will have
been sending packets the wrong way for quite some time
when the update arrives. It is usually not a problem to con-
tinue sending updates the wrong way for a few additional
milliseconds. Furthermore, because RCU updaters can
make changes without waiting for RCU readers to finish,
the RCU readers might well see the change more quickly
than would batch-fair reader-writer-locking readers, as
shown in Figure 8.24.

Once the update is received, the rwlock writer cannot
proceed until the last reader completes, and subsequent
readers cannot proceed until the writer completes. How-
ever, these subsequent readers are guaranteed to see the
new value, as indicated by the green background. In con-
trast, RCU readers and updaters do not block each other,
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which permits the RCU readers to see the updated values
sooner. Of course, because their execution overlaps that
of the RCU updater, all of the RCU readers might well
see updated values, including the three readers that started
before the update. Nevertheless only the RCU readers
with green backgrounds are guaranteed to see the updated
values, again, as indicated by the green background.

Reader-writer locking and RCU simply provide differ-
ent guarantees. With reader-writer locking, any reader
that begins after the writer begins is guaranteed to see
new values, and any reader that attempts to begin while
the writer is spinning might or might not see new values,
depending on the reader/writer preference of the rwlock
implementation in question. In contrast, with RCU, any
reader that begins after the updater completes is guar-
anteed to see new values, and any reader that completes
after the updater begins might or might not see new values,
depending on timing.

The key point here is that, although reader-writer lock-
ing does indeed guarantee consistency within the confines
of the computer system, there are situations where this
consistency comes at the price of increased inconsistency
with the outside world. In other words, reader-writer lock-
ing obtains internal consistency at the price of silently
stale data with respect to the outside world.

Nevertheless, there are situations where inconsistency
and stale data within the confines of the system can-
not be tolerated. Fortunately, there are a number of ap-
proaches that avoid inconsistency and stale data [McK04,
ACMSO03], and some methods based on reference count-
ing are discussed in Section 8.1.

Low-Priority RCU Readers Can Block High-Priority
Reclaimers In Realtime RCU [GMTWO08] (see Sec-
tion D.4), SRCU [McKO6b] (see Section D.1, or
QRCU [McKO07f] (see Section F.6, each of which is
described in the final installment of this series, a pre-
empted reader will prevent a grace period from com-
pleting, even if a high-priority task is blocked waiting
for that grace period to complete. Realtime RCU can
avoid this problem by substituting call_rcu () for
synchronize_rcu () or by using RCU priority boost-
ing [McKO07d, GMTWOS], which is still in experimental
status as of early 2008. It might become necessary to
augment SRCU and QRCU with priority boosting, but
not before a clear real-world need is demonstrated.

RCU Grace Periods Extend for Many Milliseconds
With the exception of QRCU and several of the “toy”
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RCU implementations described in Section 8.3.5, RCU
grace periods extend for multiple milliseconds. Although
there are a number of techniques to render such long
delays harmless, including use of the asynchronous inter-
faces where available (call_rcu () and call_rcu_
bh () ), this situation is a major reason for the rule of
thumb that RCU be used in read-mostly situations.

Comparison of Reader-Writer Locking and RCU
Code In the best case, the conversion from reader-writer
locking to RCU is quite simple, as shown in Figures 8.25,
8.26, and 8.27, all taken from Wikipedia [MPA06].

More-elaborate cases of replacing reader-writer locking
with RCU are beyond the scope of this document.

8.3.3.2 RCU is a Restricted Reference-Counting
Mechanism

Because grace periods are not allowed to complete while
there is an RCU read-side critical section in progress,
the RCU read-side primitives may be used as a restricted
reference-counting mechanism. For example, consider
the following code fragment:

1 rcu_read_lock(); /* acquire reference. x/

2 p = rcu_dereference (head);

3 /* do something with p. =%/
4 rcu_read_unlock(); /+* release reference. x/

The rcu_read_lock () primitive can be thought of
as acquiring a reference to p, because a grace period start-
ing after the rcu_dereference () assigns to p can-
not possibly end until after we reach the matching rcu__
read_unlock (). This reference-counting scheme is
restricted in that we are not allowed to block in RCU read-
side critical sections, nor are we permitted to hand off an
RCU read-side critical section from one task to another.

Regardless of these restrictions, the following code can
safely delete p:
spin_lock (&mylock) ;

p = head;

rcu_assign_pointer (head, NULL);

spin_unlock (&mylock) ;

/+ Wait for all references to be released. =*/

synchronize_rcu();
kfree (p);

S oUW N

The assignment to head prevents any future refer-
ences to p from being acquired, and the synchronize_
rcu () waits for any previously acquired references to
be released.

Quick Quiz 8.21: But wait! This is exactly the same
code that might be used when thinking of RCU as a re-
placement for reader-writer locking! What gives? il
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1 struct el {

2 struct list_head lp;

3 long key;

4 spinlock_t mutex;

5 int data;

6 /+ Other data fields =/
T}

8 DEFINE_RWLOCK (listmutex) ;
9 LIST_HEAD (head);
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struct el {

struct list_head 1lp;

long key;

spinlock_t mutex;

int data;

/+ Other data fields =/
}i
DEFINE_SPINLOCK (listmutex) ;
LIST_HEAD (head);

© W Jo U WN

Figure 8.25: Converting Reader-Writer Locking to RCU: Data

1p)

1 int search(long key, int xresult)
2

3 struct el xp;

4

5 read_lock (&listmutex) ;

6 list_for_each_entry(p, &head,
7 if (p->key == key) {

8 *result = p->data;

9 read_unlock (&listmutex) ;
10 return 1;
11 }
12 }
13 read_unlock (&listmutex) ;
14 return 0;
15 }

{

int search(long key, int xresult)
{
struct el xp;

1
2
3
4
5 rcu_read_lock();
6
7
8

list_for_each_entry_rcu(p, &head, 1lp) {
if (p->key == key) {
*result = p->data;
9 rcu_read_unlock () ;
10 return 1;
11 }
12 }
13 rcu_read_unlock () ;
14 return 0;
15 }

Figure 8.26: Converting Reader-Writer Locking to RCU: Search

1 int delete(long key)

2 A

3 struct el xp;

4

5 write_lock (&listmutex);

6 list_for_each_entry(p, &head,
7 if (p->key == key) {

8 list_del (&p->1p);

9 write_unlock (&listmutex) ;
10 kfree(p);
11 return 1;
12 }
13 }
14 write_unlock (&listmutex);
15 return 0;
16 }

1p)

{

1 int delete(long key)
2 {
3 struct el *p;
4
5 spin_lock (&listmutex);
6 list_for_each_entry(p, &head, 1lp) {
7 if (p->key == key) {
8 list_del_rcu (&p—>1p);
9 spin_unlock (&listmutex) ;
10 synchronize_rcu();
11 kfree(p);
12 return 1;
13 }
14 }
15 spin_unlock (&listmutex) ;
16 return 0;
17 3}

Figure 8.27: Converting Reader-Writer Locking to RCU: Deletion
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Figure 8.28: Performance of RCU vs. Reference Count-
ing

Of course, RCU can also be combined with traditional
reference counting, as has been discussed on LKML and
as summarized in Section 8.1.

But why bother? Again, part of the answer is perfor-
mance, as shown in Figure 8.28, again showing data taken
on a 16-CPU 3GHz Intel x86 system.

Quick Quiz 8.22: Why the dip in refcnt overhead near
6 CPUs?

And, as with reader-writer locking, the performance ad-
vantages of RCU are most pronounced for short-duration
critical sections, as shown Figure 8.29 for a 16-CPU sys-
tem. In addition, as with reader-writer locking, many
system calls (and thus any RCU read-side critical sections
that they contain) complete in a few microseconds.

However, the restrictions that go with RCU can be quite
onerous. For example, in many cases, the prohibition
against sleeping while in an RCU read-side critical section
would defeat the entire purpose. The next section looks
at ways of addressing this problem, while also reducing
the complexity of traditional reference counting, at least
in some cases.

8.3.3.3 RCU is a Bulk Reference-Counting Mecha-
nism

As noted in the preceding section, traditional reference
counters are usually associated with a specific data struc-
ture, or perhaps a specific group of data structures. How-
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ever, maintaining a single global reference counter for a
large variety of data structures typically results in bounc-
ing the cache line containing the reference count. Such
cache-line bouncing can severely degrade performance.

In contrast, RCU’s light-weight read-side primitives
permit extremely frequent read-side usage with negligible
performance degradation, permitting RCU to be used
as a "bulk reference-counting" mechanism with little or
no performance penalty. Situations where a reference
must be held by a single task across a section of code
that blocks may be accommodated with Sleepable RCU
(SRCU) [McKO06b]. This fails to cover the not-uncommon
situation where a reference is "passed" from one task
to another, for example, when a reference is acquired
when starting an I/O and released in the corresponding
completion interrupt handler. (In principle, this could be
handled by the SRCU implementation, but in practice, it
is not yet clear whether this is a good tradeoff.)

Of course, SRCU brings restrictions of its own,
namely that the return value from srcu_read_
lock () bepassed into the corresponding srcu_read_
unlock (), and that no SRCU primitives be invoked
from hardware irq handlers or from NMI/SMI handlers.
The jury is still out as to how much of a problem is pre-
sented by these restrictions, and as to how they can best
be handled.
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8.3.3.4 RCU is a Poor Man’s Garbage Collector

A not-uncommon exclamation made by people first learn-
ing about RCU is "RCU is sort of like a garbage collec-
tor!". This exclamation has a large grain of truth, but it
can also be misleading.

Perhaps the best way to think of the relationship be-
tween RCU and automatic garbage collectors (GCs) is
that RCU resembles a GC in that the timing of collection
is automatically determined, but that RCU differs from a
GC in that: (1) the programmer must manually indicate
when a given data structure is eligible to be collected, and
(2) the programmer must manually mark the RCU read-
side critical sections where references might legitimately
be held.

Despite these differences, the resemblance does go
quite deep, and has appeared in at least one theoretical
analysis of RCU. Furthermore, the first RCU-like mecha-
nism I am aware of used a garbage collector to handle the
grace periods. Nevertheless, a better way of thinking of
RCU is described in the following section.

8.3.3.5 RCU is a Way of Providing Existence Guar-
antees

Gamsa et al. [GKAS99] discuss existence guarantees and
describe how a mechanism resembling RCU can be used
to provide these existence guarantees (see section 5 on
page 7 of the PDF), and Section 6.4 discusses how to
guarantee existence via locking, along with the ensuing
disadvantages of doing so. The effect is that if any RCU-
protected data element is accessed within an RCU read-
side critical section, that data element is guaranteed to
remain in existence for the duration of that RCU read-side
critical section.

Figure 8.30 demonstrates how RCU-based existence
guarantees can enable per-element locking via a function
that deletes an element from a hash table. Line 6 computes
a hash function, and line 7 enters an RCU read-side criti-
cal section. If line 9 finds that the corresponding bucket
of the hash table is empty or that the element present is
not the one we wish to delete, then line 10 exits the RCU
read-side critical section and line 11 indicates failure.

Quick Quiz 8.23: What if the element we need to
delete is not the first element of the list on line 9 of Fig-
ure 8.30? A

Otherwise, line 13 acquires the update-side spinlock,
and line 14 then checks that the element is still the one
that we want. If so, line 15 leaves the RCU read-side
critical section, line 16 removes it from the table, line 17
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int delete (int key)
{

struct element *p;
int b;

b = hashfunction (key);
rcu_read_lock () ;

p = rcu_dereference (hashtable([b]);
if (p == NULL || p->key != key) {
10 rcu_read_unlock();

11 return 0;

12 }

13 spin_lock (&p—>1lock) ;

oUW N

©

14 if (hashtable[b] == p && p->key == key) {
15 rcu_read_unlock () ;

16 hashtable[b] = NULL;
17 spin_unlock (&p->1lock) ;
18 synchronize_rcu();

19 kfree(p);

20 return 1;

21 }

22 spin_unlock (&p->1lock) ;
23 rcu_read_unlock () ;

24 return 0O;

25 }

Figure 8.30: Existence Guarantees Enable Per-Element
Locking

releases the lock, line 18 waits for all pre-existing RCU
read-side critical sections to complete, line 19 frees the
newly removed element, and line 20 indicates success. If
the element is no longer the one we want, line 22 releases
the lock, line 23 leaves the RCU read-side critical section,
and line 24 indicates failure to delete the specified key.

Quick Quiz 8.24: Why is it OK to exit the RCU read-
side critical section on line 15 of Figure 8.30 before re-
leasing the lock on line 17?7 A

Quick Quiz 8.25: Why not exit the RCU read-side
critical section on line 23 of Figure 8.30 before releasing
the lock on line 227 l

Alert readers will recognize this as only a slight varia-
tion on the original "RCU is a way of waiting for things
to finish" theme, which is addressed in Section 8.3.3.7.
They might also note the deadlock-immunity advantages
over the lock-based existence guarantees discussed in
Section 6.4.

8.3.3.6 RCU is a Way of Providing Type-Safe Mem-
ory

A number of lockless algorithms do not require that a
given data element keep the same identity through a given
RCU read-side critical section referencing it—but only if
that data element retains the same type. In other words,
these lockless algorithms can tolerate a given data element
being freed and reallocated as the same type of structure
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while they are referencing it, but must prohibit a change
in type. This guarantee, called “type-safe memory” in
academic literature [GC96], is weaker than the existence
guarantees in the previous section, and is therefore quite
a bit harder to work with. Type-safe memory algorithms
in the Linux kernel make use of slab caches, specially
marking these caches with SLAB_DESTROY_BY_RCU
so that RCU is used when returning a freed-up slab to
system memory. This use of RCU guarantees that any
in-use element of such a slab will remain in that slab,
thus retaining its type, for the duration of any pre-existing
RCU read-side critical sections.

Quick Quiz 8.26: But what if there is an arbitrarily
long series of RCU read-side critical sections in multi-
ple threads, so that at any point in time there is at least
one thread in the system executing in an RCU read-side
critical section? Wouldn’t that prevent any data from a
SLAB_DESTROY_BY_RCU slab ever being returned to
the system, possibly resulting in OOM events? ll

These algorithms typically use a validation step that
checks to make sure that the newly referenced data struc-
ture really is the one that was requested [LS86, Section
2.5]. These validation checks require that portions of the
data structure remain untouched by the free-reallocate
process. Such validation checks are usually very hard to
get right, and can hide subtle and difficult bugs.

Therefore, although type-safety-based lockless algo-
rithms can be extremely helpful in a very few difficult
situations, you should instead use existence guarantees
where possible. Simpler is after all almost always better!

8.3.3.7 RCU is a Way of Waiting for Things to Fin-
ish

As noted in Section 8.3.2 an important component of
RCU is a way of waiting for RCU readers to finish. One
of RCU’s great strengths is that it allows you to wait for
each of thousands of different things to finish without
having to explicitly track each and every one of them, and
without having to worry about the performance degrada-
tion, scalability limitations, complex deadlock scenarios,
and memory-leak hazards that are inherent in schemes
that use explicit tracking.

In this section, we will show how synchronize_
sched () ’s read-side counterparts (which include any-
thing that disables preemption, along with hardware oper-
ations and primitives that disable irq) permit you to im-
plement interactions with non-maskable interrupt (NMI)
handlers that would be quite difficult if using locking.
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1 struct profile_buffer {

2 long size;

3 atomic_t entry[0];

4 };

5 static struct profile_buffer xbuf = NULL;
6

7 void nmi_profile (unsigned long pcvalue)

8 {

9 struct profile _buffer *p = rcu_dereference (buf);
10
11 if (p == NULL)
12 return;
13 if (pcvalue >= p->size)
14 return;
15 atomic_inc (&p->entry[pcvaluel);
16 }

18 void nmi_stop (void)

19 {

20 struct profile_buffer *p = buf;
21

22 if (p == NULL)

23 return;

24 rcu_assign_pointer (buf, NULL);
25 synchronize_sched () ;

26 kfree(p);

27 }

Figure 8.31: Using RCU to Wait for NMIs to Finish

This approach has been called "Pure RCU" [McK04], and
it is used in a number of places in the Linux kernel.

The basic form of such "Pure RCU" designs is as fol-
lows:

1. Make a change, for example, to the way that the OS
reacts to an NMI.

2. Wait for all pre-existing read-side critical sections
to completely finish (for example, by using the
synchronize_sched () primitive). The key ob-
servation here is that subsequent RCU read-side crit-
ical sections are guaranteed to see whatever change
was made.

3. Clean up, for example, return status indicating that
the change was successfully made.

The remainder of this section presents example
code adapted from the Linux kernel. In this exam-
ple, the timer_stop function uses synchronize_
sched () to ensure that all in-flight NMI notifications
have completed before freeing the associated resources.
A simplified version of this code is shown Figure 8.31.

Lines 1-4 define a profile_buffer structure, con-
taining a size and an indefinite array of entries. Line 5
defines a pointer to a profile buffer, which is presumably
initialized elsewhere to point to a dynamically allocated
region of memory.
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Lines 7-16 define the nmi_profile () function,
which is called from within an NMI handler. As such,
it cannot be preempted, nor can it be interrupted by a
normal irq handler, however, it is still subject to delays
due to cache misses, ECC errors, and cycle stealing by
other hardware threads within the same core. Line 9
gets a local pointer to the profile buffer using the rcu_
dereference () primitive to ensure memory ordering
on DEC Alpha, and lines 11 and 12 exit from this func-
tion if there is no profile buffer currently allocated, while
lines 13 and 14 exit from this function if the pcvalue ar-
gument is out of range. Otherwise, line 15 increments the
profile-buffer entry indexed by the pcvalue argument.
Note that storing the size with the buffer guarantees that
the range check matches the buffer, even if a large buffer
is suddenly replaced by a smaller one.

Lines 18-27 define the nmi_stop () function, where
the caller is responsible for mutual exclusion (for exam-
ple, holding the correct lock). Line 20 fetches a pointer
to the profile buffer, and lines 22 and 23 exit the func-
tion if there is no buffer. Otherwise, line 24 NULLs
out the profile-buffer pointer (using the rcu_assign_
pointer () primitive to maintain memory ordering on
weakly ordered machines), and line 25 waits for an RCU
Sched grace period to elapse, in particular, waiting for all
non-preemptible regions of code, including NMI handlers,
to complete. Once execution continues at line 26, we are
guaranteed that any instance of nmi_profile () that
obtained a pointer to the old buffer has returned. It is
therefore safe to free the buffer, in this case using the
kfree () primitive.

Quick Quiz 8.27:  Suppose that the nmi_
profile () function was preemptible. What would
need to change to make this example work correctly? ll

In short, RCU makes it easy to dynamically switch
among profile buffers (you just ¢ry doing this efficiently
with atomic operations, or at all with locking!). However,
RCU is normally used at a higher level of abstraction, as
was shown in the previous sections.

8.3.3.8 RCU Usage Summary

At its core, RCU is nothing more nor less than an API
that provides:

1. a publish-subscribe mechanism for adding new data,

2. a way of waiting for pre-existing RCU readers to
finish, and
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3. adiscipline of maintaining multiple versions to per-
mit change without harming or unduly delaying con-
current RCU readers.

That said, it is possible to build higher-level con-
structs on top of RCU, including the reader-writer-locking,
reference-counting, and existence-guarantee constructs
listed in the earlier sections. Furthermore, I have no doubt
that the Linux community will continue to find interesting
new uses for RCU, as well as for any of a number of other
synchronization primitives.

8.3.4 RCU Linux-Kernel API

This section looks at RCU from the viewpoint of its
Linux-kernel API. Section 8.3.4.1 presents RCU’s wait-to-
finish APIs, and Section 8.3.4.2 presents RCU’s publish-
subscribe and version-maintenance APIs. Finally, Sec-
tion 8.3.4.4 presents concluding remarks.

8.3.4.1 RCU has a Family of Wait-to-Finish APIs

The most straightforward answer to “what is RCU” is that
RCU is an API used in the Linux kernel, as summarized
by Tables 8.4 and 8.5, which shows the wait-for-RCU-
readers portions of the non-sleepable and sleepable APIs,
respectively, and by Table 8.6, which shows the publish/-
subscribe portions of the APIL.

If you are new to RCU, you might consider focusing
on just one of the columns in Table 8.4, each of which
summarizes one member of the Linux kernel’s RCU API
family. For example, if you are primarily interested in un-
derstanding how RCU is used in the Linux kernel, “RCU
Classic” would be the place to start, as it is used most
frequently. On the other hand, if you want to understand
RCU for its own sake, “SRCU” has the simplest APIL. You
can always come back for the other columns later.

If you are already familiar with RCU, these tables can
serve as a useful reference.

Quick Quiz 8.28: Why do some of the cells in Ta-
ble 8.4 have exclamation marks (“!”)? H

The “RCU Classic” column corresponds to the
original RCU implementation, in which RCU read-
side critical sections are delimited by rcu_read_
lock () and rcu_read_unlock (), which may be
nested. The corresponding synchronous update-side prim-
itives, synchronize_rcu (), along with its synonym
synchronize_net (), wait for any currently execut-
ing RCU read-side critical sections to complete. The
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Attribute | RCU Classic RCU BH | RCU Sched | Realtime RCU
Purpose Original Prevent DDoS attacks Wait for preempt-disable | Realtime response
regions, hardirgs, &
NMIs
Availability 2.543 2.6.9 2.6.12 2.6.26
Read-side primitives rcu_read_lock () ! rcu_read_lock_bh () preempt_disable () rcu_read_lock ()
rcu_read_ rcu_read_unlock_ preempt_enable () rcu_read_unlock ()
unlock () ! bh () (and friends)
Update-side primitives (syn- synchronize_rcu() synchronize_ synchronize_rcu()
chronous) synchronize_net () sched () synchronize_net ()

Update-side primitives
(asynchronous/callback)

call_rcu() !

call_rcu_bh()

call_rcu_sched()

call_rcu()

Update-side primitives (wait

rcu_barrier ()

rcu_barrier_bh ()

rcu_barrier_

rcu_barrier ()

for callbacks) sched ()
Type-safe memory SLAB_DESTROY_BY__ SLAB_DESTROY_BY_
RCU RCU
Read side constraints No blocking No irq enabling No blocking Only preemption and lock
acquisition
Read side overhead Preempt  disable/enable | BH disable/enable Preempt  disable/enable | Simple instructions, irq

(free on non-PREEMPT)

(free on non-PREEMPT)

disable/enable

Asynchronous update-side sub-microsecond sub-microsecond sub-microsecond
overhead

Grace-period latency 10s of milliseconds 10s of milliseconds 10s of milliseconds 10s of milliseconds
Non-PREEMPT_RT imple- | RCU Classic RCU BH RCU Classic Preemptible RCU
mentation

PREEMPT_RT implementa- | Preemptible RCU Realtime RCU Forced Schedule on all | Realtime RCU

tion

Attribute

CPUs

Table 8.4: RCU Wait-to-Finish APIs

| SRCU

| QRCU

Purpose

Sleeping readers

Sleeping readers and fast grace periods

Availability

2.6.19

Read-side primitives

srcu_read_lock ()
srcu_read_unlock ()

grcu_read_lock ()
grcu_read_unlock ()

Update-side primitives (syn-

synchronize_srcu()

synchronize_qgrcu()
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chronous)

Update-side primitives | N/A N/A
(asynchronous/callback)

Update-side primitives (wait | N/A N/A

for callbacks)
Type-safe memory
Read side constraints

No synchronize_srcu () No synchronize_grcu ()

Read side overhead Simple instructions, preempt dis- | Atomic increment and decrement of
able/enable shared variable

Asynchronous update-side | N/A N/A

overhead

Grace-period latency 10s of milliseconds 10s of nanoseconds in absence of read-

ers

Non-PREEMPT_RT imple- | SRCU N/A

mentation

PREEMPT_RT implementa- | SRCU N/A

tion

Table 8.5: Sleepable RCU Wait-to-Finish APIs
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length of this wait is known as a “grace period”. The asyn-
chronous update-side primitive, call_rcu (), invokes
a specified function with a specified argument after a sub-
sequent grace period. For example, call_rcu(p, £);
will result in the “RCU callback” f (p) being invoked
after a subsequent grace period. There are situations,
such as when unloading a Linux-kernel module that uses
call_rcu(), when it is necessary to wait for all out-
standing RCU callbacks to complete [McK07¢e]. The
rcu_barrier () primitive does this job. Note that the
more recent hierarchical RCU [McKO08a] implementation
described in Sections D.2 and D.3 also adheres to “RCU
Classic” semantics.

Finally, RCU may be used to provide type-safe mem-
ory [GC96], as described in Section 8.3.3.6. In the con-
text of RCU, type-safe memory guarantees that a given
data element will not change type during any RCU read-
side critical section that accesses it. To make use of
RCU-based type-safe memory, pass SLAB_DESTROY__
BY_RCU to kmem_cache_create (). Itis important
to note that SLAB_DESTROY_BY_RCU will in no way
prevent kmem_cache_alloc () from immediately re-
allocating memory that was just now freed via kmem__
cache_free ()! In fact, the SLAB_DESTROY_BY__
RCU-protected data structure just returned by rcu_
dereference might be freed and reallocated an ar-
bitrarily large number of times, even when under the
protection of rcu_read_lock (). Instead, SLAB_
DESTROY_BY_ RCU operates by preventing kmem__
cache_free () from returning a completely freed-up
slab of data structures to the system until after an RCU
grace period elapses. In short, although the data element
might be freed and reallocated arbitrarily often, at least
its type will remain the same.

Quick Quiz 8.29: How do you prevent a huge num-
ber of RCU read-side critical sections from indefinitely
blocking a synchronize_rcu () invocation? ll

Quick Quiz 8.30: The synchronize_rcu () API
waits for all pre-existing interrupt handlers to complete,
right?

In the “RCU BH” column, rcu_read_lock_bh ()
and rcu_read_unlock_bh () delimit RCU read-
side critical sections, and call_rcu_bh () invokes
the specified function and argument after a subsequent
grace period. Note that RCU BH does not have a syn-
chronous synchronize_rcu_bh () interface, though
one could easily be added if required.

Quick Quiz 8.31: What happens if you mix and
match? For example, suppose you use rcu_read_
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lock () and rcu_read_unlock () to delimit RCU
read-side critical sections, but then use call_rcu_
bh () to post an RCU callback? B

Quick Quiz 8.32: Hardware interrupt handlers can be
thought of as being under the protection of an implicit
rcu_read_lock_bh (), right? l

In the “RCU Sched” column, anything that dis-
ables preemption acts as an RCU read-side critical
section, and synchronize_sched () waits for the
corresponding RCU grace period. This RCU API
family was added in the 2.6.12 kernel, which split
the old synchronize_kernel () API into the cur-
rent synchronize_rcu() (for RCU Classic) and
synchronize_sched () (for RCU Sched). Note that
RCU Sched did not originally have an asynchronous
call rcu_sched () interface, but one was added in
2.6.26. In accordance with the quasi-minimalist philos-
ophy of the Linux community, APIs are added on an
as-needed basis.

Quick Quiz 8.33: What happens if you mix and match
RCU Classic and RCU Sched? B

Quick Quiz 8.34: In general, you cannot rely on
synchronize_sched () to wait for all pre-existing
interrupt handlers, right? l

The “Realtime RCU” column has the same API as does
RCU Classic, the only difference being that RCU read-
side critical sections may be preempted and may block
while acquiring spinlocks. The design of Realtime RCU
is described elsewhere [McKO07a].

Quick Quiz 8.35: Why do both SRCU and QRCU
lack asynchronous call_srcu() or call_grcu()
interfaces? M

The “SRCU” column in Table 8.5 displays a specialized
RCU API that permits general sleeping in RCU read-side
critical sections (see Appendix D.1 for more details). Of
course, use of synchronize_srcu () in an SRCU
read-side critical section can result in self-deadlock, so
should be avoided. SRCU differs from earlier RCU imple-
mentations in that the caller allocates an srcu_struct
for each distinct SRCU usage. This approach prevents
SRCU read-side critical sections from blocking unrelated
synchronize_srcu () invocations. In addition, in
this variant of RCU, srcu_read_lock () returns a
value that must be passed into the corresponding srcu__
read_unlock ().

The “QRCU” column presents an RCU implementation
with the same API structure as SRCU, but optimized for
extremely low-latency grace periods in absence of readers,
as described elsewhere [McKO7f]. As with SRCU, use of
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synchronize_qgrcu () in a QRCU read-side critical
section can result in self-deadlock, so should be avoided.
Although QRCU has not yet been accepted into the Linux
kernel, it is worth mentioning given that it is the only
kernel-level RCU implementation that can boast deep
sub-microsecond grace-period latencies.

Quick Quiz 8.36: Under what conditions can
synchronize_srcu() be safely used within an
SRCU read-side critical section? ll

The Linux kernel currently has a surprising number
of RCU APIs and implementations. There is some hope
of reducing this number, evidenced by the fact that a
given build of the Linux kernel currently has at most
three implementations behind four APIs (given that RCU
Classic and Realtime RCU share the same API). However,
careful inspection and analysis will be required, just as
would be required in order to eliminate one of the many
locking APIs.

The various RCU APIs are distinguished by the
forward-progress guarantees that their RCU read-side
critical sections must provide, and also by their scope, as
follows:

1. RCU BH: read-side critical sections must guarantee
forward progress against everything except for NMI
and irq handlers, but not including softirq handlers.
RCU BH is global in scope.

2. RCU Sched: read-side critical sections must guaran-
tee forward progress against everything except for
NMI and irq handlers, including softirq handlers.
RCU Sched is global in scope.

3. RCU (both classic and real-time): read-side critical
sections must guarantee forward progress against
everything except for NMI handlers, irq handlers,
softirq handlers, and (in the real-time case) higher-
priority real-time tasks. RCU is global in scope.

4. SRCU and QRCU: read-side critical sections need
not guarantee forward progress unless some other
task is waiting for the corresponding grace period
to complete, in which case these read-side critical
sections should complete in no more than a few sec-
onds (and preferably much more quickly).> SRCU’s
and QRCU’s scope is defined by the use of the cor-
responding srcu_struct or grcu_struct, re-
spectively.

3 Thanks to James Bottomley for urging me to this formulation, as
opposed to simply saying that there are no forward-progress guarantees.
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In other words, SRCU and QRCU compensate for their
extremely weak forward-progress guarantees by permit-
ting the developer to restrict their scope.

8.3.4.2 RCU has Publish-Subscribe and Version-
Maintenance APIs

Fortunately, the RCU publish-subscribe and version-
maintenance primitives shown in the following table ap-
ply to all of the variants of RCU discussed above. This
commonality can in some cases allow more code to be
shared, which certainly reduces the API proliferation that
would otherwise occur. The original purpose of the RCU
publish-subscribe APIs was to bury memory barriers into
these APIs, so that Linux kernel programmers could use
RCU without needing to become expert on the memory-
ordering models of each of the 20+ CPU families that
Linux supports [Spr01].

The first pair of categories operate on Linux
struct list_head lists, which are circular, doubly-
linked lists. The list_for_each_entry_rcu()
primitive traverses an RCU-protected list in a type-safe
manner, while also enforcing memory ordering for situ-
ations where a new list element is inserted into the list
concurrently with traversal. On non-Alpha platforms, this
primitive incurs little or no performance penalty com-
pared to list_for_each_entry (). The list_
add_rcu(), list_add_tail_rcu(),and list__
replace_rcu () primitives are analogous to their non-
RCU counterparts, but incur the overhead of an addi-
tional memory barrier on weakly-ordered machines. The
list_del_rcu() primitive is also analogous to its
non-RCU counterpart, but oddly enough is very slightly
faster due to the fact that it poisons only the prev pointer
rather than both the prev and next pointers as 1ist_
del () must do. Finally, the 1ist_splice_init_
rcu () primitive is similar to its non-RCU counterpart,
but incurs a full grace-period latency. The purpose of this
grace period is to allow RCU readers to finish their traver-
sal of the source list before completely disconnecting it
from the list header — failure to do this could prevent such
readers from ever terminating their traversal.

Quick Quiz 8.37: Why doesn’t 1ist_del_rcu()
poison both the next and prev pointers? l

The second pair of categories operate on Linux’s
struct hlist_head, which is a linear linked
list. One advantage of struct hlist_head over
struct list_head is that the former requires only a
single-pointer list header, which can save significant mem-
ory in large hash tables. The struct hlist_head
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Category \ Primitives \ Availability \ Overhead

List traversal list_for_each_entry_ 2.5.59 Simple instructions
rcu () (memory barrier on

Alpha)

List update list_add_rcu() 2.5.44 Memory barrier
list_add_tail rcu() 2.5.44 Memory barrier
list_del_rcul() 2.5.44 Simple instructions
list_replace_rcu() 2.6.9 Memory barrier
list_splice_init_rcu() 2.6.21 Grace-period latency

Hlist traversal hlist_for_each_entry_ 2.6.8 Simple instructions
rcu () (memory barrier on

Alpha)
hlist_add_after_rcu() 2.6.14 Memory barrier
hlist_add_before_rcu() 2.6.14 Memory barrier
hlist_add_head_rcu() 2.5.64 Memory barrier
hlist_del rcu() 2.5.64 Simple instructions
hlist_replace_rcu() 2.6.15 Memory barrier

Pointer traversal rcu_dereference () 2.6.9 Simple instructions

(memory barrier on

Alpha)

Pointer update rcu_assign_pointer () 2.6.10 Memory barrier

Table 8.6: RCU Publish-Subscribe and Version Maintenance APIs

primitives in the table relate to their non-RCU counter-
parts in much the same way as do the struct 1list_
head primitives.

The final pair of categories operate directly on point-
ers, and are useful for creating RCU-protected non-list
data structures, such as RCU-protected arrays and trees.
The rcu_assign_pointer () primitive ensures that
any prior initialization remains ordered before the assign-
ment to the pointer on weakly ordered machines. Simi-
larly, the rcu_dereference () primitive ensures that
subsequent code dereferencing the pointer will see the
effects of initialization code prior to the corresponding
rcu_assign_pointer () on Alpha CPUs. On non-
Alpha CPUs, rcu_dereference () documents which
pointer dereferences are protected by RCU.

Quick Quiz 8.38: Normally, any pointer subject to
rcu_dereference () must always be updated using

rcu_assign_pointer (). What is an exception to
this rule? H

Quick Quiz 8.39: Are there any downsides to the fact
that these traversal and update primitives can be used with
any of the RCU API family members? ll
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Figure 8.32: RCU API Usage Constraints

8.3.4.3 Where Can RCU’s APIs Be Used?

Figure 8.32 shows which APIs may be used in which
in-kernel environments. The RCU read-side primitives
may be used in any environment, including NMI, the
RCU mutation and asynchronous grace-period primitives
may be used in any environment other than NMI, and, fi-
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nally, the RCU synchronous grace-period primitives may
be used only in process context. The RCU list-traversal
primitives include 1ist_for_each_entry_rcu(),
hlist_for_each_entry_rcu(), etc. Similarly,
the RCU list-mutation primitives include 1ist_add_
rcu(),hlist_del_ rcu(), etc.

Note that primitives from other families of RCU may
be substituted, for example, srcu_read_lock () may
be used in any context in which rcu_read_lock ()
may be used.

8.3.4.4 So, What is RCU Really?

At its core, RCU is nothing more nor less than an API
that supports publication and subscription for insertions,
waiting for all RCU readers to complete, and mainte-
nance of multiple versions. That said, it is possible to
build higher-level constructs on top of RCU, including the
reader-writer-locking, reference-counting, and existence-
guarantee constructs listed in the companion article. Fur-
thermore, I have no doubt that the Linux community will
continue to find interesting new uses for RCU, just as
they do for any of a number of synchronization primitives
throughout the kernel.

Of course, a more-complete view of RCU would also
include all of the things you can do with these APIs.

However, for many people, a complete view of RCU
must include sample RCU implementations. The next
section therefore presents a series of “toy” RCU imple-
mentations of increasing complexity and capability.

8.3.5

The toy RCU implementations in this section are designed
not for high performance, practicality, or any kind of
production use,® but rather for clarity. Nevertheless, you
will need a thorough understanding of Chapters 1, 2, 3,
5, and 8 for even these toy RCU implementations to be
easily understandable.

This section provides a series of RCU implementa-
tions in order of increasing sophistication, from the view-
point of solving the existence-guarantee problem. Sec-
tion 8.3.5.1 presents a rudimentary RCU implementation
based on simple locking, while Section 8.3.5.3 through
8.3.5.9 present a series of simple RCU implementations
based on locking, reference counters, and free-running
counters. Finally, Section 8.3.5.10 provides a summary
and a list of desirable RCU properties.

“Toy” RCU Implementations

6 However, production-quality user-level RCU implementations are
available [Des09].
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8.3.5.1 Lock-Based RCU

Perhaps the simplest RCU implementation leverages lock-
ing, as shown in Figure 8.33 (rcu_lock.h and rcu_
lock.c). In this implementation, rcu_read_lock ()
acquires a global spinlock, rcu_read_unlock () re-
leases it, and synchronize_rcu () acquires it then
immediately releases it.

Because synchronize_rcu () does not return un-
til it has acquired (and released) the lock, it cannot return
until all prior RCU read-side critical sections have com-
pleted, thus faithfully implementing RCU semantics. Of
course, only one RCU reader may be in its read-side
critical section at a time, which almost entirely defeats
the purpose of RCU. In addition, the lock operations in
rcu_read_lock () and rcu_read_unlock () are
extremely heavyweight, with read-side overhead rang-
ing from about 100 nanoseconds on a single Power5
CPU up to more than 17 microseconds on a 64-CPU
system. Worse yet, these same lock operations permit
rcu_read_lock () to participate in deadlock cycles.
Furthermore, in absence of recursive locks, RCU read-
side critical sections cannot be nested, and, finally, al-
though concurrent RCU updates could in principle be
satisfied by a common grace period, this implementation
serializes grace periods, preventing grace-period sharing.

Quick Quiz 8.40: Why wouldn’t any deadlock in the
RCU implementation in Figure 8.33 also be a deadlock
in any other RCU implementation? Hl

Quick Quiz 8.41: Why not simply use reader-writer
locks in the RCU implementation in Figure 8.33 in order
to allow RCU readers to proceed in parallel? l

It is hard to imagine this implementation being useful
in a production setting, though it does have the virtue of
being implementable in almost any user-level application.

static void rcu_read_lock (void)
{

spin_lock (&rcu_gp_lock);
}

static void rcu_read_unlock (void)
{

spin_unlock (&rcu_gp_lock);
9 }

11 void synchronize_rcu(void)
12 {

13 spin_lock (&rcu_gp_lock);
14 spin_unlock (&rcu_gp_lock) ;
15 }

Figure 8.33: Lock-Based RCU Implementation


rcu_lock.h
rcu_lock.c
rcu_lock.c
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Furthermore, similar implementations having one lock
per CPU or using reader-writer locks have been used in
production in the 2.4 Linux kernel.

A modified version of this one-lock-per-CPU approach,
but instead using one lock per thread, is described in the
next section.

8.3.5.2 Per-Thread Lock-Based RCU

Figure 8.34 (rcu_lock_percpu.hand rcu_lock_
percpu. c) shows an implementation based on one lock
per thread. The rcu_read_lock () and rcu_read_
unlock () functions acquire and release, respectively,
the current thread’s lock. The synchronize_rcu()
function acquires and releases each thread’s lock in turn.
Therefore, all RCU read-side critical sections running
when synchronize_rcu () starts must have com-
pleted before synchronize_rcu () can return.

This implementation does have the virtue of permitting
concurrent RCU readers, and does avoid the deadlock
condition that can arise with a single global lock. Further-
more, the read-side overhead, though high at roughly 140
nanoseconds, remains at about 140 nanoseconds regard-
less of the number of CPUs. However, the update-side
overhead ranges from about 600 nanoseconds on a single
Power5 CPU up to more than 100 microseconds on 64
CPUs.

Quick Quiz 8.42: Wouldn’t it be cleaner to acquire
all the locks, and then release them all in the loop from
lines 15-18 of Figure 8.34? After all, with this change,
there would be a point in time when there were no readers,
simplifying things greatly.

Quick Quiz 8.43: Is the implementation shown in Fig-
ure 8.34 free from deadlocks? Why or why not?

Quick Quiz 8.44: Isn’t one advantage of the RCU
algorithm shown in Figure 8.34 that it uses only primi-
tives that are widely available, for example, in POSIX
pthreads? W

This approach could be useful in some situations, given
that a similar approach was used in the Linux 2.4 ker-
nel [MMOO].

The counter-based RCU implementation described next
overcomes some of the shortcomings of the lock-based
implementation.

8.3.5.3 Simple Counter-Based RCU

A slightly more sophisticated RCU implementation is
shown in Figure 8.35 (rcu_rcg.h and rcu_rcg.c).
This implementation makes use of a global reference
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static void rcu_read_lock (void)

{
spin_lock (&__get_thread_var (rcu_gp_lock));

}

static void rcu_read_unlock (void)

{
spin_unlock (&__get_thread_var (rcu_gp_lock));
9}

11 void synchronize_rcu(void)
12 {

13 int t;

14

15 for_each_running_thread(t) {

16 spin_lock (&per_thread (rcu_gp_lock, t));
17 spin_unlock (&per_thread(rcu_gp_lock, t));
18 }

19 }

Figure 8.34: Per-Thread Lock-Based RCU Implementa-
tion

atomic_t rcu_refcnt;

1

2

3 static void rcu_read_lock (void)
4 {

5 atomic_inc (&rcu_refcnt);

6 smp_mb () ;

7}

9 static void rcu_read_unlock (void)
10 |
11 smp_mb () ;
12 atomic_dec (&rcu_refcnt);
13 }

15 void synchronize_rcu(void)

16 {

17 smp_mb () ;

18 while (atomic_read(&rcu_refcnt) != 0) {
19 poll (NULL, 0, 10);

20 }

21 smp_mb () ;

22}

Figure 8.35: RCU Implementation Using Single Global
Reference Counter


rcu_rcg.h
rcu_rcg.c

8.3. READ-COPY UPDATE (RCU)

counter rcu_refcnt defined on line 1. The rcu_
read_lock () primitive atomically increments this
counter, then executes a memory barrier to ensure that
the RCU read-side critical section is ordered after the
atomic increment. Similarly, rcu_read_unlock ()
executes a memory barrier to confine the RCU read-side
critical section, then atomically decrements the counter.
The synchronize_rcu () primitive spins waiting for
the reference counter to reach zero, surrounded by mem-
ory barriers. The poll () on line 19 merely provides
pure delay, and from a pure RCU-semantics point of view
could be omitted. Again, once synchronize_rcu()
returns, all prior RCU read-side critical sections are guar-
anteed to have completed.

In happy contrast to the lock-based implementation
shown in Section 8.3.5.1, this implementation allows par-
allel execution of RCU read-side critical sections. In
happy contrast to the per-thread lock-based implementa-
tion shown in Section 8.3.5.2, it also allows them to be
nested. In addition, the rcu_read_lock () primitive
cannot possibly participate in deadlock cycles, as it never
spins nor blocks.

Quick Quiz 8.45: But what if you hold a lock across
acall to synchronize_rcu (), and then acquire that
same lock within an RCU read-side critical section? l

However, this implementations still has some seri-
ous shortcomings. First, the atomic operations in rcu__
read_lock () and rcu_read_unlock () are still
quite heavyweight, with read-side overhead ranging from
about 100 nanoseconds on a single Power5 CPU up to al-
most 40 microseconds on a 64-CPU system. This means
that the RCU read-side critical sections have to be ex-
tremely long in order to get any real read-side parallelism.
On the other hand, in the absence of readers, grace periods
elapse in about 40 nanoseconds, many orders of magni-
tude faster than production-quality implementations in
the Linux kernel.

Quick Quiz 8.46: How can the grace period possibly
elapse in 40 nanoseconds when synchronize_rcu ()
contains a 10-millisecond delay? H

Second, if there are many concurrent rcu_read_
lock () and rcu_read_unlock () operations, there
will be extreme memory contention on rcu_refcnt,
resulting in expensive cache misses. Both of these first
two shortcomings largely defeat a major purpose of RCU,
namely to provide low-overhead read-side synchroniza-
tion primitives.

Finally, a large number of RCU readers with long read-
side critical sections could prevent synchronize_
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DEFINE_SPINLOCK (rcu_gp_lock) ;
atomic_t rcu_refcnt[2];

atomic_t rcu_idx;
DEFINE_PER_THREAD (int, rcu_nesting);
DEFINE_PER_THREAD (int, rcu_read_idx);

g W N

Figure 8.36: RCU Global Reference-Count Pair Data

1 static void rcu_read_lock (void)

2 {

3 int 1i;

4 int n;

5

6 n = __get_thread _var (rcu_nesting);

7 if (n == 0) {

8 i = atomic_read (&rcu_idx) ;

9 __get_thread_var (rcu_read_idx) = i;
10 atomic_inc (&rcu_refcnt[i]);
11 }
12 __get_thread_var (rcu_nesting) = n + 1;

13 smp_mb () ;
14 }

16 static void rcu_read_unlock (void)
17 |

18 int 1i;

19 int n;

20

21 smp_mb () ;

22 n = __get_thread_var (rcu_nesting);

23 if (n == 1) {

24 i = _ _get_thread_var (rcu_read_idx);
25 atomic_dec (&rcu_refcnt[i]);

26 }

27 __get_thread_var (rcu_nesting) = n - 1;
28 }

Figure 8.37: RCU Read-Side Using Global Reference-
Count Pair

rcu () from ever completing, as the global counter might
never reach zero. This could result in starvation of RCU
updates, which is of course unacceptable in production
settings.

Quick Quiz 8.47: Why not simply make rcu_read__
lock () wait when a concurrent synchronize_
rcu () has been waiting too long in the RCU im-
plementation in Figure 8.35? Wouldn’t that prevent
synchronize_rcu () from starving? B

Therefore, it is still hard to imagine this implementa-
tion being useful in a production setting, though it has
a bit more potential than the lock-based mechanism, for
example, as an RCU implementation suitable for a high-
stress debugging environment. The next section describes
a variation on the reference-counting scheme that is more
favorable to writers.
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8.3.5.4 Starvation-Free Counter-Based RCU

Figure 8.37 (rcu_rcgp.h) shows the read-side primi-
tives of an RCU implementation that uses a pair of refer-
ence counters (rcu_refcnt []), along with a global in-
dex that selects one counter out of the pair (rcu_1idx), a
per-thread nesting counter rcu_nesting, a per-thread
snapshot of the global index (rcu_read_idx), and
a global lock (rcu_gp_lock), which are themselves
shown in Figure 8.36.

The rcu_read_lock () primitive atomically incre-
ments the member of the rcu_refcnt [] pair indexed
by rcu_idx, and keeps a snapshot of this index in
the per-thread variable rcu_read_idx. The rcu_
read_unlock () primitive then atomically decrements
whichever counter of the pair that the corresponding
rcu_read_lock () incremented. However, because
only one value of rcu_ idx is remembered per thread, ad-
ditional measures must be taken to permit nesting. These
additional measures use the per-thread rcu_nesting
variable to track nesting.

To make all this work, line 6 of rcu_read_lock ()
in Figure 8.37 picks up the current thread’s instance of
rcu_nesting, and if line 7 finds that this is the out-
ermost rcu_read_lock (), then lines 8-10 pick up
the current value of rcu_idx, save it in this thread’s
instance of rcu_read_1idx, and atomically increment
the selected element of rcu_refcnt. Regardless of the
value of rcu_nesting, line 12 increments it. Line 13
executes a memory barrier to ensure that the RCU read-
side critical section does not bleed out before the rcu__
read_lock () code.

Similarly, the rcu_read_unlock () function ex-
ecutes a memory barrier at line 21 to ensure that the
RCU read-side critical section does not bleed out af-
ter the rcu_read_unlock () code. Line 22 picks up
this thread’s instance of rcu_nesting, and if line 23
finds that this is the outermost rcu_read_unlock (),
then lines 24 and 25 pick up this thread’s instance of
rcu_read_idx (saved by the outermost rcu_read_
lock () ) and atomically decrements the selected element
of rcu_refent. Regardless of the nesting level, line 27
decrements this thread’s instance of rcu_nesting.

Figure 8.38 (rcu_rcpg. c) shows the corresponding
synchronize_rcu () implementation. Lines 6 and
19 acquire and release rcu_gp_lock in order to prevent
more than one concurrent instance of synchronize_
rcu (). Lines 7-8 pick up the value of rcu_idx and
complement it, respectively, so that subsequent instances
of rcu_read_lock () will use a different element of
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void synchronize_rcu(void)
{

int 1i;

1

2

3

4

5 smp_mb () ;
6 spin_lock (&rcu_gp_lock) ;
5

8

i = atomic_read (&rcu_idx) ;
atomic_set (&rcu_idx, !'1);
9 smp_mb () ;
10 while (atomic_read(&rcu_refcnt[i]) != 0) {
11 poll (NULL, 0, 10);

12 }
13 smp_mb () ;

14 atomic_set (&rcu_idx, 1i);

15 smp_mb () ;

16 while (atomic_read(&rcu_refcnt[!i]) != 0) {
17 poll (NULL, 0, 10);

18 }

19 spin_unlock (&rcu_gp_lock) ;
20 smp_mb () ;

Figure 8.38: RCU Update Using Global Reference-Count
Pair

rcu_idx that did preceding instances. Lines 10-12 then
wait for the prior element of rcu_idx to reach zero, with
the memory barrier on line 9 ensuring that the check of
rcu_1idx is not reordered to precede the complementing
of rcu_idx. Lines 13-18 repeat this process, and line 20
ensures that any subsequent reclamation operations are
not reordered to precede the checking of rcu_refcnt.

Quick Quiz 8.48: Why the memory barrier on line 5 of
synchronize_rcu () in Figure 8.38 given that there
is a spin-lock acquisition immediately after? ll

Quick Quiz 8.49: Why is the counter flipped twice in
Figure 8.38? Shouldn’t a single flip-and-wait cycle be
sufficient? ll

This implementation avoids the update-starvation is-
sues that could occur in the single-counter implementation
shown in Figure 8.35.

There are still some serious shortcomings. First, the
atomic operations in rcu_read_lock () and rcu_
read_unlock () are still quite heavyweight. In fact,
they are more complex than those of the single-counter
variant shown in Figure 8.35, with the read-side primitives
consuming about 150 nanoseconds on a single Power5
CPU and almost 40 microseconds on a 64-CPU system.
The updates-side synchronize_rcu () primitive is
more costly as well, ranging from about 200 nanoseconds
on a single Power5 CPU to more than 40 microseconds
on a 64-CPU system. This means that the RCU read-side
critical sections have to be extremely long in order to get
any real read-side parallelism.

Second, if there are many concurrent rcu_read_


rcu_rcgp.h
rcu_rcpg.c

8.3. READ-COPY UPDATE (RCU)

DEFINE_SPINLOCK (rcu_gp_lock);
DEFINE_PER_THREAD (int [2], rcu_refcnt);
atomic_t rcu_idx;
DEFINE_PER_THREAD (int, rcu_nesting);
DEFINE_PER_THREAD (int, rcu_read_idx);
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Figure 8.39: RCU Per-Thread Reference-Count Pair Data

lock () and rcu_read_unlock () operations, there
will be extreme memory contention on the rcu_refcnt
elements, resulting in expensive cache misses. This fur-
ther extends the RCU read-side critical-section duration
required to provide parallel read-side access. These first
two shortcomings defeat the purpose of RCU in most
situations.

Third, the need to flip rcu_idx twice imposes sub-
stantial overhead on updates, especially if there are large
numbers of threads.

Finally, despite the fact that concurrent RCU updates
could in principle be satisfied by a common grace period,
this implementation serializes grace periods, preventing
grace-period sharing.

Quick Quiz 8.50: Given that atomic increment and
decrement are so expensive, why not just use non-atomic
increment on line 10 and a non-atomic decrement on
line 25 of Figure 8.377 W

Despite these shortcomings, one could imagine this
variant of RCU being used on small tightly coupled multi-
processors, perhaps as a memory-conserving implementa-
tion that maintains API compatibility with more complex
implementations. However, it would not not likely scale
well beyond a few CPUs.

The next section describes yet another variation on the
reference-counting scheme that provides greatly improved
read-side performance and scalability.

8.3.5.5 Scalable Counter-Based RCU

Figure 8.40 (rcu_rcpl.h) shows the read-side prim-
itives of an RCU implementation that uses per-thread
pairs of reference counters. This implementation is quite
similar to that shown in Figure 8.37, the only difference
being that rcu_refcnt is now a per-thread variable (as
shown in Figure 8.39), so the rcu_read_lock () and
rcu_read_unlock () primitives no longer perform
atomic operations.

Quick Quiz 8.51: Come off it! We can
see the atomic_read () primitive in rcu_read_
lock () !!! So why are you trying to pretend that rcu__
read_lock () contains no atomic operations??? ll
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1 static void rcu_read_lock (void)

2 {

3 int 1i;

4 int n;

5

6 n = __get_thread_var (rcu_nesting);

7 if (n == 0) {

8 i = atomic_read (&rcu_idx) ;

9 __get_thread_var (rcu_read_idx) = 1i;
10 __get_thread_var (rcu_refecnt) [1]++;
11 }

12 __get_thread_var(rcu_nesting) = n + 1;
13 smp_mb () ;
14 3}
15
16 static void rcu_read_unlock (void)
17 |
18 int 1i;
19 int n;
20
21 smp_mb () ;
22 n = __get_thread_var (rcu_nesting);
23 if (n == 1) {
24 i = __get_thread_var (rcu_read_idx);
25 __get_thread_var (rcu_refent) [1]-—;
26 }
27 __get_thread_var (rcu_nesting) = n - 1;
28 }
Figure 8.40: RCU Read-Side Using Per-Thread

Reference-Count Pair

1 static void flip_counter_and_wait (int 1)
2 {
3 int t;
4
5 atomic_set (&rcu_idx, !'1i);
6 smp_mb () ;
7 for_each_thread(t) {
8 while (per_thread(rcu_refecnt, t)[i] != 0) {
9 poll (NULL, 0, 10);
10 }
11 }
12 smp_mb () ;
13}
14
15 void synchronize_rcu(void)
16 {
17 int 1i;
18

19 smp_mb () ;
20 spin_lock (&rcu_gp_lock);

21 i = atomic_read (&rcu_idx) ;
22 flip_counter_and_wait (i);
23 flip_counter_and_wait (!i);

24 spin_unlock (&rcu_gp_lock);
25 smp_mb () ;

Figure 8.41: RCU Update Using Per-Thread Reference-
Count Pair


rcu_rcpl.h
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Figure 8.41 (rcu_rcpl.c) shows the implementa-
tion of synchronize_rcu (), along with a helper
function named flip_counter_and_wait (). The
synchronize_rcu () function resembles that shown
in Figure 8.38, except that the repeated counter flip is
replaced by a pair of calls on lines 22 and 23 to the new
helper function.

The new flip_counter_and_wait () function
updates the rcu_idx variable on line 5, executes a mem-
ory barrier on line 6, then lines 7-11 spin on each thread’s
prior rcu_refcnt element, waiting for it to go to zero.
Once all such elements have gone to zero, it executes
another memory barrier on line 12 and returns.

This RCU implementation imposes important new re-
quirements on its software environment, namely, (1) that
it be possible to declare per-thread variables, (2) that these
per-thread variables be accessible from other threads, and
(3) that it is possible to enumerate all threads. These
requirements can be met in almost all software environ-
ments, but often result in fixed upper bounds on the num-
ber of threads. More-complex implementations might
avoid such bounds, for example, by using expandable
hash tables. Such implementations might dynamically
track threads, for example, by adding them on their first
call to rcu_read_lock ().

Quick Quiz 8.52: Great, if we have N threads, we
can have 2N ten-millisecond waits (one set per £1ip_
counter_and_wait () invocation, and even that as-
sumes that we wait only once for each thread. Don’t we
need the grace period to complete much more quickly? l

This implementation still has several shortcomings.
First, the need to flip rcu_idx twice imposes substantial
overhead on updates, especially if there are large numbers
of threads.

Second, synchronize_rcu () must now examine
a number of variables that increases linearly with the
number of threads, imposing substantial overhead on ap-
plications with large numbers of threads.

Third, as before, although concurrent RCU updates
could in principle be satisfied by a common grace period,
this implementation serializes grace periods, preventing
grace-period sharing.

Finally, as noted in the text, the need for per-thread
variables and for enumerating threads may be problematic
in some software environments.

That said, the read-side primitives scale very nicely,
requiring about 115 nanoseconds regardless of whether
running on a single-CPU or a 64-CPU Power5 system. As
noted above, the synchronize_rcu () primitive does
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DEFINE_SPINLOCK (rcu_gp_lock);
DEFINE_PER_THREAD (int [2], rcu_refcnt);
long rcu_idx;

DEFINE_PER_THREAD (int, rcu_nesting);
DEFINE_PER_THREAD (int, rcu_read_idx);
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Figure 8.42: RCU Read-Side Using Per-Thread
Reference-Count Pair and Shared Update Data

1 static void rcu_read_lock (void)

2 A

3 int 1i;

4 int n;

5

6 n = __get_thread_var (rcu_nesting);

7 if (n == 0) {

8 i = ACCESS_ONCE (rcu_idx) & 0x1;

9 __get_thread_var (rcu_read_idx) = 1i;
10 __get_thread_var (rcu_refecnt) [1]++;
11 }

12 __get_thread_var (rcu_nesting) = n + 1;

13 smp_mb () ;

16 static void rcu_read_unlock (void)
17 {

18 int 1i;

19 int n;

20

21 smp_mb () ;

22 n = __get_thread_var (rcu_nesting);

23 if (n == 1) {

24 i = _ _get_thread_var (rcu_read_idx);
25 __get_thread_var (rcu_refent) [1]--;
26 }

27 __get_thread_var (rcu_nesting) = n - 1;
28 }

Figure 8.43: RCU Read-Side Using Per-Thread

Reference-Count Pair and Shared Update

not scale, ranging in overhead from almost a microsecond
on a single Power5 CPU up to almost 200 microseconds
on a 64-CPU system. This implementation could con-
ceivably form the basis for a production-quality user-level
RCU implementation.

The next section describes an algorithm permitting
more efficient concurrent RCU updates.

8.3.5.6 Scalable Counter-Based RCU With Shared
Grace Periods

Figure 8.43 (rcu_rcpls.h) shows the read-side primi-
tives for an RCU implementation using per-thread refer-
ence count pairs, as before, but permitting updates to share
grace periods. The main difference from the earlier imple-
mentation shown in Figure 8.40 is that rcu_idx is now
a long that counts freely, so that line 8 of Figure 8.43
must mask off the low-order bit. We also switched from
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1 static void flip_counter_and_wait (int ctr)
2 {

3 int i;

4 int t;

5

6 ACCESS_ONCE (rcu_idx) = ctr + 1;

7 i = ctr & 0Ox1;

8 smp_mb () ;

9 for_each_thread(t) {
10 while (per_thread(rcu_refcnt, t)[i] != 0) {
11 poll (NULL, 0, 10);
12 }
13 }

14 smp_mb () ;
15 }

17 void synchronize_rcu(void)
18 {

19 int ctr;

20 int oldctr;

22 smp_mb () ;
23 oldctr =
24 smp_mb () ;
25 spin_lock (&rcu_gp_lock) ;
26 ctr = ACCESS_ONCE (rcu_1idx) ;
27 if (ctr - oldctr >= 3) {

ACCESS_ONCE (rcu_idx) ;

28 spin_unlock (&rcu_gp_lock) ;

29 smp_mb () ;

30 return;

31 }

32 flip_counter_and_wait (ctr);

33 if (ctr - oldctr < 2)

34 flip_counter_and_wait (ctr + 1);

35 spin_unlock (&rcu_gp_lock);
36 smp_mb () ;

Figure 8.44: RCU Shared Update Using Per-Thread
Reference-Count Pair

using atomic_read () and atomic_set () to using
ACCESS_ONCE (). The data is also quite similar, as
shown in Figure 8.42, with rcu_idx now being a lock
instead of an atomic_t.

Figure 8.44 (rcu_rcpls.c) shows the implemen-
tation of synchronize_rcu () and its helper func-
tion flip_counter_and_wait (). These are simi-
lar to those in Figure 8.41. The differences in £1ip_
counter_and_wait () include:

1. Line 6 wuses ACCESS_ONCE () instead of
atomic_set (), and increments rather than
complementing.

2. A new line 7 masks the counter down to its bottom
bit.
The changes to synchronize_rcu () are more per-
vasive:

1. There is a new oldctr local variable that cap-
tures the pre-lock-acquisition value of rcu_idx
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on line 23.

2. Line 26 uses ACCESS_ONCE () instead of

atomic_read ().

3. Lines 27-30 check to see if at least three counter flips
were performed by other threads while the lock was
being acquired, and, if so, releases the lock, does a
memory barrier, and returns. In this case, there were
two full waits for the counters to go to zero, so those
other threads already did all the required work.

4. At lines 33-34, flip_counter_and_wait ()
is only invoked a second time if there were fewer
than two counter flips while the lock was being ac-
quired. On the other hand, if there were two counter
flips, some other thread did one full wait for all the
counters to go to zero, so only one more is required.

With this approach, if an arbitrarily large number
of threads invoke synchronize_rcu () concurrently,
with one CPU for each thread, there will be a total of only
three waits for counters to go to zero.

Despite the improvements, this implementation of RCU
still has a few shortcomings. First, as before, the need
to flip rcu_idx twice imposes substantial overhead on
updates, especially if there are large numbers of threads.

Second, each updater still acquires rcu_gp_lock,
even if there is no work to be done. This can result in a
severe scalability limitation if there are large numbers of
concurrent updates. Section D.4 shows one way to avoid
this in a production-quality real-time implementation of
RCU for the Linux kernel.

Third, this implementation requires per-thread vari-
ables and the ability to enumerate threads, which again
can be problematic in some software environments.

Finally, on 32-bit machines, a given update thread
might be preempted long enough for the rcu_idx
counter to overflow. This could cause such a thread to
force an unnecessary pair of counter flips. However, even
if each grace period took only one microsecond, the of-
fending thread would need to be preempted for more than
an hour, in which case an extra pair of counter flips is
likely the least of your worries.

As with the implementation described in Sec-
tion 8.3.5.3, the read-side primitives scale extremely
well, incurring roughly 115 nanoseconds of overhead
regardless of the number of CPUs. The synchronize_
rcu () primitives is still expensive, ranging from about
one microsecond up to about 16 microseconds. This is
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DEFINE_SPINLOCK (rcu_gp_lock);

long rcu_gp_ctr = 0;

DEFINE_PER_THREAD (long, rcu_reader_gp);
DEFINE_PER_THREAD (long, rcu_reader_gp_snap);

=W N e

Figure 8.45: Data for Free-Running Counter Using RCU

nevertheless much cheaper than the roughly 200 microsec-
onds incurred by the implementation in Section 8.3.5.5.
So, despite its shortcomings, one could imagine this RCU
implementation being used in production in real-life ap-

plications.
Quick Quiz 8.53: All of these toy RCU im-
plementations have either atomic operations in

and rcu_read_unlock (),
or synchronize_rcu() overhead that increases
linearly with the number of threads. Under what
circumstances could an RCU implementation enjoy
light-weight implementations for all three of these
primitives, all having deterministic (O (1)) overheads and
latencies? l

Referring back to Figure 8.43, we see that there is
one global-variable access and no fewer than four ac-
cesses to thread-local variables. Given the relatively high
cost of thread-local accesses on systems implementing
POSIX threads, it is tempting to collapse the three thread-
local variables into a single structure, permitting rcu__
read_lock () and rcu_read_unlock () to access
their thread-local data with a single thread-local-storage
access. However, an even better approach would be to
reduce the number of thread-local accesses to one, as is
done in the next section.

rcu_read_lock ()

8.3.5.7 RCU Based on Free-Running Counter

Figure 8.46 (rcu.h and rcu. c) show an RCU imple-
mentation based on a single global free-running counter
that takes on only even-numbered values, with data shown
in Figure 8.45. The resulting rcu_read_lock () im-
plementation is extremely straightforward. Line 3 simply
adds one to the global free-running rcu_gp_ctr vari-
able and stores the resulting odd-numbered value into the
rcu_reader_gp per-thread variable. Line 4 executes
a memory barrier to prevent the content of the subsequent
RCU read-side critical section from “leaking out”.

The rcu_read_unlock () implementation is simi-
lar. Line 9 executes a memory barrier, again to prevent the
prior RCU read-side critical section from “leaking out”.
Line 10 then copies the rcu_gp_ctr global variable to
the rcu_reader_gp per-thread variable, leaving this
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1 static void rcu_read_lock (void)

2 {

3 __get_thread_var (rcu_reader_gp) = rcu_gp_ctr + 1;
4 smp_mb () ;

5}

6

7 static void rcu_read_unlock (void)

8 {

9 smp_mb () ;

10 __get_thread_var (rcu_reader_gp) = rcu_gp_ctr;

11}

13 void synchronize_rcu(void)
14 {
15 int t;

17 smp_mb () ;

18 spin_lock (&rcu_gp_lock) ;
19 rcu_gp_ctr += 2;

20 smp_mb () ;

21 for_each_thread(t) {

22 while ((per_thread(rcu_reader_gp, t) & 0xl) &&
23 ((per_thread(rcu_reader_gp, t) -

24 rcu_gp_ctr) < 0)) {

25 poll (NULL, 0, 10);

26 }

27 }

28 spin_unlock (&rcu_gp_lock) ;
29 smp_mb () ;

Figure 8.46: Free-Running Counter Using RCU

per-thread variable with an even-numbered value so that
a concurrent instance of synchronize_rcu () will
know to ignore it.

Quick Quiz 8.54: If any even value is sufficient to
tell synchronize_rcu () toignore a given task, why
doesn’t line 10 of Figure 8.46 simply assign zero to rcu_
reader_gp? M

Thus, synchronize_rcu () could wait for all of
the per-thread rcu_reader_gp variables to take on
even-numbered values. However, it is possible to do much
better than that because synchronize_rcu () need
only wait on pre-existing RCU read-side critical sections.
Line 17 executes a memory barrier to prevent prior ma-
nipulations of RCU-protected data structures from being
reordered (by either the CPU or the compiler) to follow
the increment on line 17. Line 18 acquires the rcu_gp_
lock (and line 28 releases it) in order to prevent multiple
synchronize_rcu () instances from running concur-
rently. Line 19 then increments the global rcu_gp_
ctr variable by two, so that all pre-existing RCU read-
side critical sections will have corresponding per-thread
rcu_reader_gp variables with values less than that of
rcu_gp_ctr, modulo the machine’s word size. Recall
also that threads with even-numbered values of rcu__
reader_gp are not in an RCU read-side critical section,
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so that lines 21-27 scan the rcu_reader_gp values
until they all are either even (line 22) or are greater than
the global rcu_gp_ctr (lines 23-24). Line 25 blocks
for a short period of time to wait for a pre-existing RCU
read-side critical section, but this can be replaced with a
spin-loop if grace-period latency is of the essence. Finally,
the memory barrier at line 29 ensures that any subsequent
destruction will not be reordered into the preceding loop.

Quick Quiz 8.55: Why are the memory barriers on
lines 17 and 29 of Figure 8.46 needed? Aren’t the memory
barriers inherent in the locking primitives on lines 18 and
28 sufficient? l

This approach achieves much better read-side perfor-
mance, incurring roughly 63 nanoseconds of overhead
regardless of the number of Power5 CPUs. Updates incur
more overhead, ranging from about 500 nanoseconds on
a single Power5 CPU to more than 100 microseconds on
64 such CPUs.

Quick Quiz 8.56: Couldn’t the update-side optimiza-
tion described in Section 8.3.5.6 be applied to the imple-
mentation shown in Figure 8.467 l

This implementation suffers from some serious short-
comings in addition to the high update-side overhead
noted earlier. First, it is no longer permissible to nest
RCU read-side critical sections, a topic that is taken up
in the next section. Second, if a reader is preempted at
line 3 of Figure 8.46 after fetching from rcu_gp_ctr
but before storing to rcu_reader_gp, and if the rcu__
gp_ctr counter then runs through more than half but
less than all of its possible values, then synchronize_
rcu () will ignore the subsequent RCU read-side critical
section. Third and finally, this implementation requires
that the enclosing software environment be able to enu-
merate threads and maintain per-thread variables.

Quick Quiz 8.57: Is the possibility o readers being
preempted in line 3 of Figure 8.46 a real problem, in other
words, is there a real sequence of events that could lead
to failure? If not, why not? If so, what is the sequence of
events, and how can the failure be addressed? B

8.3.5.8 Nestable RCU Based on Free-Running
Counter

Figure 8.48 (rcu_nest.h and rcu_nest.c) show
an RCU implementation based on a single global free-
running counter, but that permits nesting of RCU read-
side critical sections. This nestability is accomplished
by reserving the low-order bits of the global rcu_gp_
ctr to count nesting, using the definitions shown in
Figure 8.47. This is a generalization of the scheme
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DEFINE_SPINLOCK (rcu_gp_lock) ;
#define RCU_GP_CTR_SHIFT 7

long rcu_gp_ctr = 0;
DEFINE_PER_THREAD (long, rcu_reader_gp);

oUW N

Figure 8.47: Data for Nestable RCU Using a Free-
Running Counter

static void rcu_read_lock (void)
{

long tmp;
long *rrgp;

rrgp = &__get_thread_var (rcu_reader_gp);
tmp = *rrgp;
if ((tmp & RCU_GP_CTR_NEST_MASK) == 0)
9 tmp = rcu_gp_ctr;
10 tmp++;
11 *rrgp = tmp;
12 smp_mb () ;
13}
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15 static void rcu_read_unlock (void)
16 {
17 long tmp;

19 smp_mb () ;
20 __get_thread_var (rcu_reader_gp)——;
21 }

23 void synchronize_rcu(void)
24 {
25 int t;

27 smp_mb () ;

28 spin_lock (&rcu_gp_lock) ;

29 rcu_gp_ctr += RCU_GP_CTR_BOTTOM_BIT;
30 smp_mb () ;

31 for_each_thread (t) {

32 while (rcu_gp_ongoing(t) &&

33 ((per_thread(rcu_reader_gp, t) -
34 rcu_gp_ctr) < 0)) {

35 poll (NULL, 0, 10);

36 }

37 }

38 spin_unlock (&rcu_gp_lock) ;
39 smp_mb () ;

Figure 8.48: Nestable RCU Using a Free-Running
Counter

#define RCU_GP_CTR_BOTTOM_BIT (1 << RCU_GP_CTR_SHIFT)
#define RCU_GP_CTR_NEST_MASK (RCU_GP_CTR_BOTTOM_BIT - 1)


rcu_nest.h
rcu_nest.c
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in Section 8.3.5.7, which can be thought of as hav-
ing a single low-order bit reserved for counting nesting
depth. Two C-preprocessor macros are used to arrange
this, RCU_GP_CTR_NEST_MASK and RCU_GP_CTR__
BOTTOM_BIT. These are related: RCU_GP_CTR_
NEST_MASK=RCU_GP_CTR_BOTTOM_BIT-1. The
RCU_GP_CTR_BOTTOM_BIT macro contains a single
bit that is positioned just above the bits reserved for count-
ing nesting, and the RCU_GP_CTR_NEST_MASK has
all one bits covering the region of rcu_gp_ctr used
to count nesting. Obviously, these two C-preprocessor
macros must reserve enough of the low-order bits of the
counter to permit the maximum required nesting of RCU
read-side critical sections, and this implementation re-
serves seven bits, for a maximum RCU read-side critical-
section nesting depth of 127, which should be well in
excess of that needed by most applications.

The resulting rcu_read_lock () implementation
is still reasonably straightforward. Line 6 places a pointer
to this thread’s instance of rcu_reader_gp into the
local variable rrgp, minimizing the number of expen-
sive calls to the pthreads thread-local-state API. Line 7
records the current value of rcu_reader_gp into an-
other local variable tmp, and line 8 checks to see if the
low-order bits are zero, which would indicate that this is
the outermost rcu_read_lock (). If so, line 9 places
the global rcu_gp_ctr into tmp because the current
value previously fetched by line 7 is likely to be obsolete.
In either case, line 10 increments the nesting depth, which
you will recall is stored in the seven low-order bits of
the counter. Line 11 stores the updated counter back into
this thread’s instance of rcu_reader_gp, and, finally,
line 12 executes a memory barrier to prevent the RCU
read-side critical section from bleeding out into the code
preceding the call to rcu_read_lock ().

In other words, this implementation of rcu_read_
lock () picks up a copy of the global rcu_gp_ctr
unless the current invocation of rcu_read_lock () is
nested within an RCU read-side critical section, in which
case it instead fetches the contents of the current thread’s
instance of rcu_reader_gp. Either way, it increments
whatever value it fetched in order to record an additional
nesting level, and stores the result in the current thread’s
instance of rcu_reader_gp.

Interestingly enough, the implementation of rcu_
read_unlock () is identical to that shown in Sec-
tion 8.3.5.7. Line 19 executes a memory barrier in or-
der to prevent the RCU read-side critical section from
bleeding out into code following the call to rcu_read__
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1 DEFINE_SPINLOCK (rcu_gp_lock);
2 long rcu_gp_ctr = 0;
3 DEFINE_PER_THREAD (long, rcu_reader_gs_gp);

Figure 8.49: Data for Quiescent-State-Based RCU

unlock (), and line 20 decrements this thread’s instance
of rcu_reader_gp, which has the effect of decrement-
ing the nesting count contained in rcu_reader_gp’s
low-order bits. Debugging versions of this primitive
would check (before decrementing!) that these low-order
bits were non-zero.

The implementation of synchronize_xrcu() is
quite similar to that shown in Section 8.3.5.7. There are
two differences. The first is that line 29 adds RCU_GP__
CTR_BOTTOM_BIT to the global rcu_gp_ctr instead
of adding the constant “2”, and the second is that the com-
parison on line 32 has been abstracted out to a separate
function, where it checks the bit indicated by RCU_GP__
CTR_BOTTOM_BIT instead of unconditionally checking
the low-order bit.

This approach achieves read-side performance almost
equal to that shown in Section 8.3.5.7, incurring roughly
65 nanoseconds of overhead regardless of the number
of Power5 CPUs. Updates again incur more overhead,
ranging from about 600 nanoseconds on a single Power5
CPU to more than 100 microseconds on 64 such CPUs.

Quick Quiz 8.58: Why not simply maintain a separate
per-thread nesting-level variable, as was done in previ-
ous section, rather than having all this complicated bit
manipulation? ll

This implementation suffers from the same shortcom-
ings as does that of Section 8.3.5.7, except that nesting
of RCU read-side critical sections is now permitted. In
addition, on 32-bit systems, this approach shortens the
time required to overflow the global rcu_gp_ctr vari-
able. The following section shows one way to greatly
increase the time required for overflow to occur, while
greatly reducing read-side overhead.

Quick Quiz 8.59: Given the algorithm shown in Fig-
ure 8.48, how could you double the time required to over-
flow the global rcu_gp_ctr?ll

Quick Quiz 8.60: Again, given the algorithm shown
in Figure 8.48, is counter overflow fatal? Why or why
not? If it is fatal, what can be done to fix it? Il
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static void rcu_read_lock (void)
{
}

static void rcu_read_unlock (void)
{
}
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9 rcu_qguiescent_state (void)
10 {
11 smp_mb () ;
12 __get_thread_var (rcu_reader_gs_gp) =
13 ACCESS_ONCE (rcu_gp_ctr) + 1;
14 smp_mb () ;
15 }

17 static void rcu_thread_offline(void)
18 {
19 smp_mb () ;

20 __get_thread_var (rcu_reader_gs_gp) =
21 ACCESS_ONCE (rcu_gp_ctr) ;

22 smp_mb () ;

23}

25 static void rcu_thread_online (void)
26 {

27 rcu_quiescent_state();

28 }

Figure 8.50: Quiescent-State-Based RCU Read Side

8.3.5.9 RCU Based on Quiescent States

Figure 8.50 (rcu_gs . h) shows the read-side primitives
used to construct a user-level implementation of RCU
based on quiescent states, with the data shown in Fig-
ure 8.49. As can be seen from lines 1-7 in the figure,
the rcu_read_lock () and rcu_read_unlock ()
primitives do nothing, and can in fact be expected to be
inlined and optimized away, as they are in server builds
of the Linux kernel. This is due to the fact that quiescent-
state-based RCU implementations approximate the ex-
tents of RCU read-side critical sections using the afore-
mentioned quiescent states, which contains calls to rcu_
quiescent_state (), shown from lines 9-15 in the
figure. Threads entering extended quiescent states (for
example, when blocking) may instead use the thread_
offline() and thread_online () APIs to mark
the beginning and the end, respectively, of such an ex-
tended quiescent state. As such, thread_online ()
is analogous to rcu_read_lock () and thread_
offline () is analogous to rcu_read_unlock ().
These two functions are shown on lines 17-28 in the fig-
ure. In either case, it is illegal for a quiescent state to
appear within an RCU read-side critical section.

In rcu_quiescent_state (), line 11 executes a
memory barrier to prevent any code prior to the quies-
cent state from being reordered into the quiescent state.
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Lines 12-13 pick up a copy of the global rcu_gp_
ctr, using ACCESS_ONCE () to ensure that the com-
piler does not employ any optimizations that would re-
sult in rcu_gp_ctr being fetched more than once, and
then adds one to the value fetched and stores it into the
per-thread rcu_reader_gs_gp variable, so that any
concurrent instance of synchronize_rcu () will see
an odd-numbered value, thus becoming aware that a new
RCU read-side critical section has started. Instances of
synchronize_rcu () that are waiting on older RCU
read-side critical sections will thus know to ignore this
new one. Finally, line 14 executes a memory barrier.

Quick Quiz 8.61: Doesn’t the additional memory bar-
rier shown on line 14 of Figure 8.50, greatly increase the
overhead of rcu_quiescent_state? il

Some applications might use RCU only occasion-
ally, but use it very heavily when they do use it.
Such applications might choose to use rcu_thread_
online () when starting to use RCU and rcu_
thread_offline () when no longer using RCU. The
time between a call to rcu_thread_offline () and
a subsequent call to rcu_thread_online () is an
extended quiescent state, so that RCU will not expect
explicit quiescent states to be registered during this time.

The rcu_thread_offline () function simply
sets the per-thread rcu_reader_gs_gp variable to
the current value of rcu_gp_ctr, which has an
even-numbered value. Any concurrent instances of
synchronize_rcu () will thus know to ignore this
thread.

Quick Quiz 8.62: Why are the two memory barriers
on lines 19 and 22 of Figure 8.50 needed?

The rcu_thread_online () function simply in-
vokes rcu_quiescent_state (), thus marking the
end of the extended quiescent state.

Figure 8.51 (rcu_gs . c) shows the implementation of
synchronize_rcu (), which is quite similar to that
of the preceding sections.

This implementation has blazingly fast read-side
primitives, with an rcu_read_lock () -rcu_read_
unlock () round trip incurring an overhead of roughly
50 picoseconds. The synchronize_rcu () overhead
ranges from about 600 nanoseconds on a single-CPU
Power5 system up to more than 100 microseconds on a
64-CPU system.

Quick Quiz 8.63: To be sure, the clock frequencies
of ca-2008 Power systems were quite high, but even a
5GHz clock frequency is insufficient to allow loops to be
executed in 50 picoseconds! What is going on here? B
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void synchronize_rcu(void)
{
int t;

spin_lock (&rcu_gp_lock);

1

2

3

4

5 smp_mb () ;
6

7 rcu_gp_ctr += 2;
8

smp_mb () ;
9 for_each_thread (t) {
10 while (rcu_gp_ongoing(t) &&
11 ((per_thread(rcu_reader_gs_gp, t) -
12 rcu_gp_ctr) < 0)) {
13 poll (NULL, 0, 10);

14 }
15 }

16 spin_unlock (&rcu_gp_lock);
17 smp_mb () ;

Figure 8.51: RCU Update Side Using Quiescent States

However, this implementation requires that each
thread either invoke rcu_quiescent_state () pe-
riodically or to invoke rcu_thread_offline () for
extended quiescent states. The need to invoke these func-
tions periodically can make this implementation difficult
to use in some situations, such as for certain types of
library functions.

Quick Quiz 8.64: Why would the fact that the code
is in a library make any difference for how easy it is to
use the RCU implementation shown in Figures 8.50 and
85171

Quick Quiz 8.65: But what if you hold a lock across
acallto synchronize_rcu (), and then acquire that
same lock within an RCU read-side critical section? This
should be a deadlock, but how can a primitive that gener-
ates absolutely no code possibly participate in a deadlock
cycle?

In addition, this implementation does not permit con-
current calls to synchronize_rcu () to share grace
periods. That said, one could easily imagine a production-
quality RCU implementation based on this version of
RCU.

8.3.5.10 Summary of Toy RCU Implementations

If you made it this far, congratulations! You should now
have a much clearer understanding not only of RCU it-
self, but also of the requirements of enclosing software
environments and applications. Those wishing an even
deeper understanding are invited to read Appendix D,
which presents some RCU implementations that have
seen extensive use in production.

The preceding sections listed some desirable properties
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of the various RCU primitives. The following list is pro-
vided for easy reference for those wishing to create a new
RCU implementation.

1. There must be read-side primitives (such as rcu_
read_lock () and rcu_read_unlock ())and
grace-period primitives (such as synchronize_
rcu() and call_rcu()), such that any RCU
read-side critical section in existence at the start of a
grace period has completed by the end of the grace
period.

2. RCU read-side primitives should have minimal over-
head. In particular, expensive operations such as
cache misses, atomic instructions, memory barriers,
and branches should be avoided.

3. RCU read-side primitives should have O (1) compu-
tational complexity to enable real-time use. (This
implies that readers run concurrently with updaters.)

4. RCU read-side primitives should be usable in all
contexts (in the Linux kernel, they are permitted
everywhere except in the idle loop). An important
special case is that RCU read-side primitives be us-
able within an RCU read-side critical section, in
other words, that it be possible to nest RCU read-
side critical sections.

5. RCU read-side primitives should be unconditional,
with no failure returns. This property is extremely
important, as failure checking increases complexity
and complicates testing and validation.

6. Any operation other than a quiescent state (and thus
a grace period) should be permitted in an RCU read-
side critical section. In particular, non-idempotent
operations such as I/O should be permitted.

7. It should be possible to update an RCU-protected
data structure while executing within an RCU read-
side critical section.

8. Both RCU read-side and update-side primitives
should be independent of memory allocator design
and implementation, in other words, the same RCU
implementation should be able to protect a given
data structure regardless of how the data elements
are allocated and freed.

9. RCU grace periods should not be blocked by threads
that halt outside of RCU read-side critical sections.
(But note that most quiescent-state-based implemen-
tations violate this desideratum.)
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Quick Quiz 8.66: Given that grace periods are prohib-
ited within RCU read-side critical sections, how can an
RCU data structure possibly be updated while in an RCU
read-side critical section?

8.3.6 RCU Exercises

This section is organized as a series of Quick Quizzes
that invite you to apply RCU to a number of examples
earlier in this book. The answer to each Quick Quiz
gives some hints, and also contains a pointer to a later
section where the solution is explained at length. The
rcu_read_lock (), rcu_read_unlock (), rcu_
dereference (), rcu_assign_pointer (), and
synchronize_rcu () primitives should suffice for
most of these exercises.

Quick Quiz 8.67: The statistical-counter implementa-
tion shown in Figure 4.8 (count_end. c) used a global
lock to guard the summation in read_count (), which
resulted in poor performance and negative scalability.
How could you use RCU to provide read_count ()
with excellent performance and good scalability. (Keep in
mind that read_count () ’s scalability will necessarily
be limited by its need to scan all threads’ counters.) ll

Quick Quiz 8.68: Section 4.5 showed a fanciful pair
of code fragments that dealt with counting I/O accesses to
removable devices. These code fragments suffered from
high overhead on the fastpath (starting an I/O) due to the
need to acquire a reader-writer lock. How would you use
RCU to provide excellent performance and scalability?
(Keep in mind that the performance of the common-case
first code fragment that does I/O accesses is much more
important than that of the device-removal code fragment.)
]
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Chapter 9

Applying RCU

This chapter shows how to apply RCU to some exam-
ples discussed earlier in this book. In some cases, RCU
provides simpler code, in other cases better performance
and scalability, and in still other cases, both.

9.1 RCU and Per-Thread-Variable-
Based Statistical Counters

Section 4.2.4 described an implementation of statistical
counters that provided excellent performance, roughly
that of simple increment (as in the C ++ operator), and
linear scalability — but only for incrementing via inc_
count (). Unfortunately, threads needing to read out the
value via read_count () were required to acquire a
global lock, and thus incurred high overhead and suffered
poor scalability. The code for the lock-based implementa-
tion is shown in Figure 4.8 on Page 33.

Quick Quiz 9.1: Why on earth did we need that global
lock in the first place? l

9.1.1 Design

The hope is to use RCU rather than final_mutex to
protect the thread traversal in read_count () in or-
der to obtain excellent performance and scalability from
read_count (), rather than just from inc_count ().
However, we do not want to give up any accuracy in the
computed sum. In particular, when a given thread exits,
we absolutely cannot lose the exiting thread’s count, nor
can we double-count it. Such an error could result in inac-
curacies equal to the full precision of the result, in other
words, such an error would make the result completely
useless. And in fact, one of the purposes of final__
mutex is to ensure that threads do not come and go in
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the middle of read_count () execution.

Quick Quiz 9.2: Just what is the accuracy of read__
count (), anyway? H

Therefore, if we are to dispense with final_mutex,
we will need to come up with some other method for
ensuring consistency. One approach is to place the to-
tal count for all previously exited threads and the ar-
ray of pointers to the per-thread counters into a sin-
gle structure. Such a structure, once made available to
read_count (), is held constant, ensuring that read_
count () sees consistent data.

9.1.2 Implementation

Lines 1-4 of Figure 9.1 show the countarray struc-
ture, which contains a ->total field for the count from
previously exited threads, and a counterp [] array of
pointers to the per-thread counter for each currently
running thread. This structure allows a given execution
of read_count () to see a total that is consistent with
the indicated set of running threads.

Lines 6-8 contain the definition of the per-thread
counter variable, the global pointer countarrayp
referencing the current countarray structure, and the
final_mutex spinlock.

Lines 10-13 show inc_count (), which is un-
changed from Figure 4.8.

Lines 15-29 show read_count (), which has
changed significantly. Lines 21 and 27 substitute rcu_
read_lock () and rcu_read_unlock () for ac-
quisition and release of final mutex. Line 22
uses rcu_dereference () to snapshot the current
countarray structure into local variable cap. Proper
use of RCU will guarantee that this countarray struc-
ture will remain with us through at least the end of the
current RCU read-side critical section at line 27. Line 23
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6
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struct countarray {

unsigned long total;

unsigned long xcounterp[NR_THREADS];
}i

long __thread counter = 0;
struct countarray xcountarrayp = NULL;
DEFINE_SPINLOCK (final_mutex);

void inc_count (void)
{
counter++;

}

long read_count (void)

{
struct countarray =*cap;
unsigned long sum;
int t;

rcu_read_lock();
cap = rcu_dereference (countarrayp);
sum = cap->total;
for_each_thread(t)

if (cap->counterp[t] != NULL)

sum += xcap—>counterp[t];

rcu_read_unlock () ;
return sum;

}

void count_init (void)
{
countarrayp = malloc(sizeof (xcountarrayp));
if (countarrayp == NULL) {
fprintf (stderr, "Out of memory\n");
exit (-1);
}
memset (countarrayp,

}

\0’, sizeof (xcountarrayp));

void count_register_thread(void)
{
int idx = smp_thread_id();

spin_lock (&final_mutex) ;
countarrayp->counterp[idx] = &counter;
spin_unlock (&final_mutex);

}

void count_unregister_thread(int nthreadsexpected)
{

struct countarray =*cap;

struct countarray xcapold;

int idx = smp_thread_id();

cap = malloc(sizeof (xcountarrayp));

if (cap == NULL) {
fprintf (stderr,
exit (-1);

}

spin_lock (&final_mutex);

*cap = *countarrayp;

cap—->total += counter;

cap->counterp[idx] = NULL;

capold = countarrayp;

rcu_assign_pointer (countarrayp,

spin_unlock (&final_mutex) ;

synchronize_rcu();

free (capold);

"Out of memory\n");

cap) ;

Figure 9.1: RCU and Per-Thread Statistical Counters
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initializes sum to cap—>total, which is the sum of the
counts of threads that have previously exited. Lines 24-26
add up the per-thread counters corresponding to currently
running threads, and, finally, line 28 returns the sum.
The initial value for countarrayp is provided by
count_init () on lines 31-39. This function runs
before the first thread is created, and its job is to allo-
cate and zero the initial structure, and then assign it to

countarrayp.
Lines 41-48 show the count_register_
thread () function, which is invoked by each

newly created thread. Line 43 picks up the current
thread’s index, line 45 acquires final_mutex, line 46
installs a pointer to this thread’s counter, and line 47
releases final_mutex.

Quick Quiz 9.3: Hey!!! Line 45 of Figure 9.1 modifies
a value in a pre-existing countarray structure! Didn’t
you say that this structure, once made available to read__
count (), remained constant??? ll

Lines 50-70 shows count_unregister_
thread (), which is invoked by each thread just
before it exits. Lines 56-60 allocate a new countarray
structure, line 61 acquires final_mutex and line 67
releases it. Line 62 copies the contents of the current
countarray into the newly allocated version, line 63
adds the exiting thread’s counter to new structure’s to-
tal, and line 64 NULLs the exiting thread’s counterp [ ]
array element. Line 65 then retains a pointer to the
current (soon to be old) countarray structure, and
line 66 uses rcu_assign_pointer () to install the
new version of the countarray structure. Line 68
waits for a grace period to elapse, so that any threads
that might be concurrently executing in read_count,
and thus might have references to the old countarray
structure, will be allowed to exit their RCU read-side
critical sections, thus dropping any such references.
Line 69 can then safely free the old countarray
structure.

9.1.3 Discussion

Quick Quiz 9.4: Wow! Figure 9.1 contains 69 lines of
code, compared to only 42 in Figure 4.8. Is this extra
complexity really worth it? ll

Use of RCU enables exiting threads to wait until
other threads are guaranteed to be done using the exiting
threads’ ___thread variables. This allows the read__
count () function to dispense with locking, thereby pro-
viding excellent performance and scalability for both the
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inc_count () and read_count () functions. How-
ever, this performance and scalability come at the cost of
some increase in code complexity. It is hoped that com-
piler and library writers employ user-level RCU [Des09]
to provide safe cross-thread access to __thread vari-
ables, greatly reducing the complexity seen by users of
___thread variables.

9.2 RCU and Counters for Remov-
able I/0O Devices

Section 4.5 showed a fanciful pair of code fragments for
dealing with counting I/O accesses to removable devices.
These code fragments suffered from high overhead on
the fastpath (starting an I/O) due to the need to acquire a
reader-writer lock.

This section shows how RCU may be used to avoid this
overhead.

The code for performing an I/O is quite similar to the
original, with an RCU read-side critical section be substi-
tuted for the reader-writer lock read-side critical section
in the original:

1 rcu_read_lock();

2 if (removing) {
rcu_read_unlock () ;
cancel_io();

} else {
add_count (1) ;
rcu_read_unlock () ;
do_io();
sub_count (1) ;

}

w
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The RCU read-side primitives have minimal overhead,
thus speeding up the fastpath, as desired.

The updated code fragment removing a device is as
follows:

spin_lock (&mylock) ;

removing = 1;

sub_count (mybias);

spin_unlock (&mylock) ;

synchronize_rcu();

while (read_count () != 0) {
poll (NULL, 0, 1);

}

remove_device () ;

O 00 J o U b W N

Here we replace the reader-writer lock with an exclu-
sive spinlock and add a synchronize_rcu () to wait
for all of the RCU read-side critical sections to complete.

Because of the synchronize_rcu (), once we reach
line 6, we know that all remaining I/Os have been ac-
counted for.

Of course, the overhead of synchronize_rcu ()
can be large, but given that device removal is quite rare,
this is usually a good tradeoff.
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Chapter 10

Validation

I have had a few parallel programs work the first time,
but that is only because I have written so many parallel
programs over the past two decades. And I have had far
more parallel programs that fooled me into thinking that
they were working correctly the first time than actually
were working the first time.

I have therefore had great need of validation for my
parallel programs. The basic trick behind parallel valida-
tion, as with other software validation, is to realize that
the computer knows what is wrong. It is therefore your
job to force it to tell you. This chapter can therefore be
thought of as a short course in machine interrogation. !

A longer course may be found in many recent books
on validation, as well as at least one rather old but quite
worthwhile one [Mye79]. Validation is an extremely im-
portant topic that cuts across all forms of software, and is
therefore worth intensive study in its own right. However,
this book is primarily about concurrency, so this chapter
will necessarily do little more than scratch the surface of
this critically important topic.

@ @ @ roadmap

10.1 Required Mindset

When carrying out any validation effort, you should keep
the following defintions in mind:

1. The only bug-free programs are trivial programs.

2. A reliable program has no known bugs.

From these definitions, it logically follows that any
reliable non-trivial program contains at least one bug that

! But you can leave the thumbscrews and waterboards at home.
This chapter covers much more sophisticated and effective methods,
especially when you consider that most computer systems neither feel
pain nor fear drowning.
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you do not know about. Therefore, any validation effort
undertaken on a non-trivial program that fails to find any
bugs is itself a failure. A good validation is therefore
an exercise in destruction. It helps if you deeply enjoy
breaking things.

Quick Quiz 10.1: Suppose that you are writing a script
that processes the output of the t ime command, which
looks as follows:

real Om0.132s
user Om0.040s
sys O0m0.008s

The script is required to check its input for errors, and to
give appropriate diagnostics if fed erroneous t ime output.
What test inputs should you provide to this program to test
it for use with t ime output generated by single-threaded
programs? H

10.2 Tracing

When all else fails, add aprintk ()! Oraprintf (),
if you are working with user-mode applications.

The rationale is simple: If you cannot figure out how
execution reached a given point in the code, sprinkle
print statements earlier in the code to work out what hap-
pened. You can get a similar effect, and with more con-
venience and flexibility, by using a debugger such as gdb
(for user applications) or kgdb (for debugging Linux ker-
nels). Much more sophisticated tools exist, with some of
the more recent offering the ability to rewind backwards
in time from the point of failure.

These brute-force testing tools are all valuable, and
much has been written about them, so this chapter will
add little more.

However, they all have a serious shortcoming when
the job at hand is to convince a the fastpath of a high-
performance parallel algorithm to tell you what is go-
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ing wrong, namely, they often have excessive overheads.
There are special tracing technologies for this purpose,
which typically leverage data ownership techniques (see
Chapter 7) to minimize the overhead of runtime data col-
lection. One example within the Linux kernel is “trace
events” [Ros10b, Ros10c, Ros10d, Ros10a]. Another ex-
ample that handles userspace (but has not been accepted
into the Linux kernel) is LTTng [DD09]. Each of these
uses per-CPU buffers to allow data to be collected with
extremely low overhead.

Problems with brute-force debugging. The machine
knows all, which is almost always more than your head
can hold. Post-processing with scripts. But beware —
scripts won’t necessarily notice surprising things.

10.3 Assertions

straight assertions (improvement over comments), lock-
dep.

10.4 Static Analysis

Compiler warnings.
The sparse static analyzer.

10.5 Probability and Heisenbugs

So your parallel program fails. Sometimes.

But you figured out the problem and now have a fix in
place! Congratulations!!!

But now how much testing do you have to do in order
to be certain that you actually fixed the bug, as opposed
to just reducing the probability of it occurring on the one
hand or having fixed only one of several related bugs on
the other?

Unfortunately, the honest answer is that an infinite
amount of testing is required to attain absolute certainty.

Quick Quiz 10.2: Suppose that you had a very large
number of systems at your disposal. For example, at
current cloud prices, you can purchase a huge amount
of CPU time at a reasonably low cost. Why not use this
approach to get close enough to certainty for all practical
purposes? ll

But suppose that we are willing to give up absolute
certainty in favor of high probability. Then we can bring
powerful statistical tools to bear on this problem. How-
ever, this section will focus on simple statistical tools.
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These tools are extremely helpful, but readers should not
make the mistake of assuming that reading this section is
in any way a substitute for taking a good set of statistics
classes.?

For our start with simple statistical tools, we need to de-
cide whether we are doing discrete or continuous testing.
Discrete testing features well-defined individual test runs.
For example, a boot-up test of a Linux kernel patch is an
example of a discrete test. You boot the kernel, and it
either comes up or it does not. Although you might spend
an hour boot-testing your kernel, the number of times you
attempted to boot the kernel and the number of times the
boot-up succeeded would often be of more interest than
the length of time you spent testing. Functional tests tend
to be discrete.

On the other hand, if my patch involved RCU, I would
probably run rcutorture, which is a kernel module that,
strangely enough, tests RCU. Unlike booting the kernel,
where the appearance of a login prompt signals the suc-
cessful end of a discrete test, rcutorture will happily con-
tinue torturing RCU until either the kernel crashes or until
you tell it to stop. The duration of the rcutorture test is
therefore (usually) of more interest than the number of
times you started and stopped it. Therefore, rcutorture is
an example of a continuous test, a category that includes
many stress tests.

The statistics governing discrete and continuous tests
differs somewhat. However, the statistics for discrete tests
is simpler and more familiar than that for continuous tests,
and furthermore the statistics for discrete tests can often
be pressed into service (with some loss of accuracy) for
continuous tests, we start with discrete tests.

10.5.1 Statistics for Discrete Testing

Suppose that the bug had a 10% chance of occurring in a
given run and that we do five runs. How do we compute
that probability of at least one run failing? One way is as
follows:

1. Compute the probability of a given run succeeding,
which is 90%.

2. Compute the probability of all five runs succeeding,
which is 0.9 raised to the fifth power, or about 59%.

3. There are only two possibilities: either all five runs
succeed, or at least one fails. Therefore, the proba-

2 Which I most highly recommend. The few statistics courses I have
taken have provided value way out of proportion to the time I spent
studying for them.
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bility of at least one failure is 59% taken away from
100%, or 41%.

However, many people find it easier to work with a
formula than a series of steps, although if you prefer the
above series of steps, have at it! For those who like for-
mulas, call the probability of a single failure f. The prob-
ability of a single success is then 1 — f and the probability
that all of » tests will succeed is then:

Sp=(1—f)" (10.1)
The probability of failure is 1 — S,,, or:
Fo=1—(1-f)" (10.2)

Quick Quiz 10.3: Say what??? When I plug the earlier
example of five tests each with a 10% failure rate into
the formula, I get 59,050% and that just doesn’t make
sense!!! H

So suppose that a given test has been failing 10% of
the time. How many times do you have to run the test to
be 99% sure that your supposed fix has actually improved
matters?

Another way to ask this question is “how many times
would we need to run the test to cause the probability of
failure to rise above 99%?” After all, if we were to run
the test enough times that the probability of seeing at least
one failure becomes 99%, if there are no failures, there
is only 1% probability of this being due to dumb luck.
And if we plug f = 0.1 into Equation 10.2 and vary n,
we find that 43 runs gives us a 98.92% chance of at least
one test failing given the original 10% per-test failure rate,
while 44 runs gives us a 99.03% chance of at least one
test failing. So if we run the test on our fix 44 times and
see no failures, there is a 99% probability that our fix was
actually a real improvement.

But repeatedly plugging numbers into Equation 10.2
can get tedious, so let’s solve for n:

Fo=1-(1—f) (10.3)
1—F,=(1—f)" (10.4)
log(1—F,) =nlog(l—f) (10.5)
(10.6)

Finally the number of tests required is given by:

_ log(1—F;,)

"= a1 (10.7)
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Figure 10.1: Number of Tests Required for 99 Percent
Confidence Given Failure Rate

Quick Quiz 10.4: In Equation 10.7, are the logarithms
base-10, base-2, or base-¢? H

Figure 10.1 shows a plot of this function. Not surpris-
ingly, the less frequently each test run fails, the more test
runs are required to be 99% confident that the bug has
been fixed. If the bug caused the test to fail only 1% of
the time, then a mind-boggling 458 test runs are required.

The moral of this story is that when you have found a
rarely occurring bug, your testing job will be much easier
if you can come up with a carefully targeted test with a
much higher failure rate. For example, if your targeted test
raised the failure rate from 1% to 30%, then the number
of runs required for 99% confidence would drop from a
mind-boggling 458 test runs to a mere thirteen test runs.

But these thirteen test runs would only give you 99%
confidence that your fix had produced “some improve-
ment”. Suppose you instead want to have 99% confidence
that your fix reduced the failure rate by an order of mag-
nitude. How many failure-free test runs are required?

An order of magnitude improvement from a 30% fail-
ure rate would be a 3% failure rate. Plugging these num-
bers into Equation 10.7 yields:

. log(1—0.99)
~ log(1—0.03)
So our order of magnitude improvement requires

roughly an order of magnitude more testing. Certainty
is impossible, and high probabilities are quite expensive.

=151.2 (10.8)
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Clearly making tests run more quickly and making fail-
ures more probable are essential skills in the development
of highly reliable software. These skills will be covered
in a later section.

10.5.2 Abusing Statistics for Discrete Test-
ing

But suppose that you have a continuous test that fails
about three times every ten hours, and that you fix the bug
that you believe was causing the failure. How long do
you have to run this test without failure to be 99% certain
that you reduced the probability of failure?

Without doing excessive violence to statistics, we could
simply redefine a one-hour run to be a discrete test that
has a 30% probability of failure. Then the results of in the
previous section tell us that if the test runs for 13 hours
without failure, there is a 99% probability that our fix
actually improved the program’s reliability.

A dogmatic statistician might not approve of this ap-
proach, but the sad fact is that the errors introduced by
this sort of abuse of statistical methodology are usually
way down in the noise compared to the errors inherent in
your measurements of your program’s failure rates. Nev-
ertheless, the next section describes a slightly less dodgy
approach.

10.5.3 Statistics for Continuous Testing

@@@ continuous formulation for time-based tests
leads to Poisson distribution. This can be handled us-
ing maxima with quantile_poisson () and cdf_
poisson (), aftera load (distrib).

10.5.4 Heisenbugs
Heisenbugs

and Creating Anti-

This line of thought also leads to an understanding of
heisenbugs: adding tracing and assertions can easily re-
duce the probability of a bug appearing. And this is why
extremely lightweight tracing and assertion mechanism
are so critically important.

Measure bug probability as a function of configuration
parameters, input, intensity of load, number of CPUs, etc.
Set up experiments.
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10.6 Profiling
10.7 Differential Profiling

@ @ @ pull in concepts and methods from http://www.
rdrop.com/users/paulmck/scalability/
paper/profiling.2002.06.04.pdf. Also need
tools work.

10.8 Performance Estimation

@ @ @ pull in concepts and methods from http://www.
rdrop.com/users/paulmck/scalability/
paper/lockperf _J DS.2002.05.22b.pdf.
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Chapter 11
Data Structures

11.1 Lists

Lists, double lists, hlists, hashes, trees, rbtrees, radix trees.

11.2 Computational = Complexity
and Performance

Complexity, performance, O(N).

11.3 Design Tradeoffs

Trade-offs between memory consumption, performance,
complexity.

11.4 Protection

Compiler (e.g., const) and hardware.

11.5 Bits and Bytes

Bit fields, endianness, packing.

11.6 Hardware Considerations

CPU word alignment, cache alignment.
@@ @ pull in material from Orran Kreiger’s 1995
paper (permission granted).
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Chapter 12

Advanced Synchronization

12.1 Avoiding Locks

List the ways: RCU, non-blocking synchronization (no-
tably simpler forms), memory barriers, deferred process-
ing.

@ @ @ Pull deferral stuff back to this section?

12.2 Memory Barriers

Author: David Howells and Paul McKenney.

Causality and sequencing are deeply intuitive, and hack-
ers often tend to have a much stronger grasp of these con-
cepts than does the general population. These intuitions
can be extremely powerful tools when writing, analyzing,
and debugging both sequential code and parallel code
that makes use of standard mutual-exclusion mechanisms,
such as locking and RCU.

Unfortunately, these intuitions break down completely
in face of code that makes direct use of explicit memory
barriers for data structures in shared memory (driver writ-
ers making use of MMIO registers can place greater trust
in their intuition, but more on this @ @ @ later). The fol-
lowing sections show exactly where this intuition breaks
down, and then puts forward a mental model of memory
barriers that can help you avoid these pitfalls.

Section 12.2.1 gives a brief overview of memory or-
dering and memory barriers. Once this background is
in place, the next step is to get you to admit that your
intuition has a problem. This painful task is taken up by
Section 12.2.2, which shows an intuitively correct code
fragment that fails miserably on real hardware, and by
Section 12.2.3, which presents some code demonstrating
that scalar variables can take on multiple values simul-
taneously. Once your intuition has made it through the
grieving process, Section 12.2.4 provides the basic rules
that memory barriers follow, rules that we will build upon.
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@ @ @ roadmap...

12.2.1 Memory Ordering and Memory

Barriers

But why are memory barriers needed in the first place?
Can’t CPUs keep track of ordering on their own? Isn’t
that why we have computers in the first place, to keep
track of things?

Many people do indeed expect their computers to keep
track of things, but many also insist that they keep track
of things quickly. One difficulty that modern computer-
system vendors face is that the main memory cannot keep
up with the CPU — modern CPUs can execute hundreds
of instructions in time required to fetch a single variable
from memory. CPUs therefore sport increasingly large
caches, as shown in Figure 12.1. Variables that are heavily
used by a given CPU will tend to remain in that CPU’s
cache, allowing high-speed access to the corresponding
data.

CPUO CPU1

Cache Cache

Interconnect

Memory

Figure 12.1: Modern Computer System Cache Structure
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Unfortunately, when a CPU accesses data that is not yet
in its cache will result in an expensive “cache miss”, re-
quiring the data to be fetched from main memory. Doubly
unfortunately, running typical code results in a significant
number of cache misses. To limit the resulting perfor-
mance degradation, CPUs have been designed to execute
other instructions and memory references while waiting
for a cache miss to fetch data from memory. This clearly
causes instructions and memory references to execute
out of order, which could cause serious confusion, as il-
lustrated in Figure 12.2. Compilers and synchronization
primitives (such as locking and RCU) are responsible
for maintaining the illusion of ordering through use of
“memory barriers” (for example, smp_mb () in the Linux
kernel). These memory barriers can be explicit instruc-
tions, as they are on ARM, POWER, Itanium, and Alpha,
or they can be implied by other instructions, as they are
on x86.
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Figure 12.2: CPUs Can Do Things Out of Order

Since the standard synchronization primitives preserve
the illusion of ordering, your path of least resistance is to
stop reading this section and simply use these primitives.

However, if you need to implement the synchronization
primitives themselves, or if you are simply interested in
understanding how memory ordering and memory barri-
ers work, read on!

The next sections present counter-intuitive scenarios
that you might encounter when using explicit memory
barriers.
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12.2.2 If B Follows A, and C Follows B,
Why Doesn’t C Follow A?

Memory ordering and memory barriers can be extremely
counter-intuitive. For example, consider the functions
shown in Figure 12.3 executing in parallel where variables
A, B, and C are initially zero:

1 threadO (void)

}

2 A

3 A= 1;

4 smp_wmb () ;
5 B =1;

6

7

8 threadl (void)
9 {

10 while (B != 1)
11 continue;
12 barrier();

13 c=1;

14 }

15

16 thread2(void)
17 {

18 while (C != 1)
19 continue;

20 smp_mb () ;

21 assert (A !'= 0);
22}

Figure 12.3: Parallel Hardware is Non-Causal

Intuitively, threadO () assigns to B after it assigns
to A, threadl () waits until threadO () has assigned
to B before assigning to C, and thread2 () waits un-
til threadl () has assigned to C before referencing A.
Therefore, again intuitively, the assertion on line 21 can-
not possibly fire.

This line of reasoning, intuitively obvious though it
may be, is completely and utterly incorrect. Please note
that this is not a theoretical assertion: actually running this
code on real-world weakly-ordered hardware (a 1.5GHz
16-CPU POWER 5 system) resulted in the assertion firing
16 times out of 10 million runs. Clearly, anyone who
produces code with explicit memory barriers should do
some extreme testing — although a proof of correctness
might be helpful, the strongly counter-intuitive nature of
the behavior of memory barriers should in turn strongly
limit one’s trust in such proofs. The requirement for
extreme testing should not be taken lightly, given that a
number of dirty hardware-dependent tricks were used to
greatly increase the probability of failure in this run.

Quick Quiz 12.1: How on earth could the assertion on
line 21 of the code in Figure 12.3 on page 140 possibly
fail? @

Quick Quiz 12.2: Great... So how do I fix it? H
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So what should you do? Your best strategy, if possible,
is to use existing primitives that incorporate any needed
memory barriers, so that you can simply ignore the rest
of this chapter.

Of course, if you are implementing synchronization
primitives, you don’t have this luxury. The following
discussion of memory ordering and memory barriers is
for you.

12.2.3 Variables Can Have More Than One
Value

It is natural to think of a variable as taking on a well-
defined sequence of values in a well-defined, global order.
Unfortunately, it is time to say “goodbye” to this sort of
comforting fiction.

To see this, consider the program fragment shown in
Figure 12.4. This code fragment is executed in parallel
by several CPUs. Line 1 sets a shared variable to the cur-
rent CPU’s ID, line 2 initializes several variables from a
gettb () function that delivers the value of fine-grained
hardware “timebase” counter that is synchronized among
all CPUs (not available from all CPU architectures, unfor-
tunately!), and the loop from lines 3-8 records the length
of time that the variable retains the value that this CPU
assigned to it. Of course, one of the CPUs will “win”,
and would thus never exit the loop if not for the check on
lines 7-8.

Quick Quiz 12.3: What assumption is the code frag-
ment in Figure 12.4 making that might not be valid on
real hardware? H
state.variable = mycpu;
lasttb = oldtb = firsttb = gettb();
while (state.variable == mycpu) {

lasttb = oldtb;

oldtb = gettb();

if (lasttb - firsttb > 1000)
break;

W J o0 WN

Figure 12.4: Software Logic Analyzer

Upon exit from the loop, firsttb will hold a times-
tamp taken shortly after the assignment and lasttb will
hold a timestamp taken before the last sampling of the
shared variable that still retained the assigned value, or
a value equal to firsttb if the shared variable had
changed before entry into the loop. This allows us to plot
each CPU’s view of the value of state.variable
over a 532-nanosecond time period, as shown in Fig-
ure 12.5. This data was collected on 1.5GHz POWERS
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system with 8 cores, each containing a pair of hardware
threads. CPUs 1, 2, 3, and 4 recorded the values, while
CPU 0 controlled the test. The timebase counter period
was about 5.32ns, sufficiently fine-grained to allow obser-
vations of intermediate cache states.

CPU1 — 2

CPU2 2

CPU3 2

CPU 4 ﬁ 4 2

i i i i y
100ns 200ns 300ns 400ns 500ns

Figure 12.5: A Variable With Multiple Simultaneous Val-
ues

Each horizontal bar represents the observations of a
given CPU over time, with the black regions to the left
indicating the time before the corresponding CPU’s first
measurement. During the first 5ns, only CPU 3 has an
opinion about the value of the variable. During the next
10ns, CPUs 2 and 3 disagree on the value of the variable,
but thereafter agree that the value is “2”, which is in fact
the final agreed-upon value. However, CPU 1 believes
that the value is “1” for almost 300ns, and CPU 4 believes
that the value is “4” for almost 500ns.

Quick Quiz 12.4: How could CPUs possibly have
different views of the value of a single variable at the
same time? A

Quick Quiz 12.5: Why do CPUs 2 and 3 come to
agreement so quickly, when it takes so long for CPUs 1
and 4 to come to the party? H

We have entered a regime where we must bade a fond
farewell to comfortable intuitions about values of vari-
ables and the passage of time. This is the regime where
memory barriers are needed.

12.2.4 What Can You Trust?

You most definitely cannot trust your intuition.

What can you trust?

It turns out that there are a few reasonably simple rules
that allow you to make good use of memory barriers. This
section derives those rules, for those who wish to get to
the bottom of the memory-barrier story, at least from the
viewpoint of portable code. If you just want to be told
what the rules are rather than suffering through the actual
derivation, please feel free to skip to Section 12.2.6.
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The exact semantics of memory barriers vary wildly
from one CPU to another, so portable code must rely only
on the least-common-denominator semantics of memory
barriers.

Fortunately, all CPUs impose the following rules:

1. All accesses by a given CPU will appear to that CPU
to have occurred in program order.

2. All CPUs’ accesses to a single variable will be con-
sistent with some global ordering of stores to that
variable.

3. Memory barriers will operate in a pair-wise fashion.

4. Operations will be provided from which exclusive
locking primitives may be constructed.

Therefore, if you need to use memory barriers in
portable code, you can rely on all of these properties.!
Each of these properties is described in the following
sections.

12.2.4.1 Self-References Are Ordered

A given CPU will see its own accesses as occurring in
“program order”, as if the CPU was executing only one
instruction at a time with no reordering or speculation.
For older CPUs, this restriction is necessary for binary
compatibility, and only secondarily for the sanity of us
software types. There have been a few CPUs that violate
this rule to a limited extent, but in those cases, the com-
piler has been responsible for ensuring that ordering is
explicitly enforced as needed.

Either way, from the programmer’s viewpoint, the CPU
sees its own accesses in program order.

12.2.4.2 Single-Variable Memory Consistency

If a group of CPUs all do concurrent stores to a single
variable, the series of values seen by all CPUs will be
consistent with at least one global ordering. For example,
in the series of accesses shown in Figure 12.5, CPU 1
sees the sequence {1, 2}, CPU 2 sees the sequence {2},
CPU 3 sees the sequence {3, 2}, and CPU 4 sees the
sequence {4, 2}. This is consistent with the global se-
quence {3, 1,4, 2}, but also with all five of the other
sequence of these four numbers that end in “2”.

Had the CPUs used atomic operations (such as the
Linux kernel’s atomic_inc_return () primitive)

1 Or, better yet, you can avoid explicit use of memory barriers
entirely. But that would be the subject of other sections.
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rather than simple stores of unique values, their observa-
tions would be guaranteed to determine a single globally
consistent sequence of values.

12.2.4.3 Pair-Wise Memory Barriers

Pair-wise memory barriers provide conditional ordering
semantics. For example, in the following set of operations,
CPU 1’s access to A does not unconditionally precede
its access to B from the viewpoint of an external logic
analyzer (see Appendix C for examples). However, if
CPU 2’s access to B sees the result of CPU 1’s access to B,
then CPU 2’s access to A is guaranteed to see the result of
CPU I’s access to A. Although some CPUs’ memory bar-
riers do in fact provide stronger, unconditional ordering
guarantees, portable code may rely only on this weaker
if-then conditional ordering guarantee.

CPU 1 | cpu 2
access (A) ; access (B);
smp_mb () ; smp_mb () ;
access (B); access (A);

Quick Quiz 12.6: But if the memory barriers do not
unconditionally force ordering, how the heck can a device
driver reliably execute sequences of loads and stores to
MMIO registers? B

Of course, accesses must be either loads or stores, and
these do have different properties. Table 12.1 shows all
possible combinations of loads and stores from a pair of
CPUs. Of course, to enforce conditional ordering, there
must be a memory barrier between each CPU’s pair of
operations.

12.2.4.4 Pair-Wise Memory Barriers: Portable

Combinations

The following pairings from Table 12.1, enumerate all the
combinations of memory-barrier pairings that portable
software may depend on.

Pairing 1. In this pairing, one CPU executes a pair of
loads separated by a memory barrier, while a second CPU
executes a pair of stores also separated by a memory bar-
rier, as follows (both A and B are initially equal to zero):

CPU 1 | cpU 2
A=1; Y=B;
smp_mb () ;| smp_mb () ;
B=1; X=A;

After both CPUs have completed executing these code

sequences, if Y==1, then we must also have X==1. In
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I CPU 1 I CPU 2 | Description

0 || load(A) | load(B) || load(B) | load(A) || Ears to ears.

1 || load(A) | load(B) || load(B) | store(A) || Only one store.

2 || load(A) | load(B) || store(B) | load(A) || Only one store.

3 || load(A) | load(B) || store(B) | store(A) || Pairing 1.

4 || load(A) | store(B) || load(B) | load(A) || Only one store.

5 || load(A) | store(B) || load(B) | store(A) || Pairing 2.

6 || load(A) | store(B) || store(B) | load(A) || Mouth to mouth, ear to ear.

7 || load(A) | store(B) || store(B) | store(A) || Pairing 3.

8 || store(A) | load(B) || load(B) | load(A) | Only one store.

9 || store(A) | load(B) | load(B) | store(A) || Mouth to mouth, ear to ear.

A || store(A) | load(B) || store(B) | load(A) || Ears to mouths.

B || store(A) | load(B) || store(B) | store(A) || Stores “pass in the night”.

C || store(A) | store(B) || load(B) | load(A) || Pairing 1.

D || store(A) | store(B) || load(B) | store(A) || Pairing 3.

E || store(A) | store(B) || store(B) | load(A) || Stores “pass in the night”.

F || store(A) | store(B) || store(B) | store(A) || Stores “pass in the night”.

Table 12.1: Memory-Barrier Combinations

this case, the fact that Y==1 means that CPU 2’s load
prior to its memory barrier has seen the store following
CPU 1’s memory barrier. Due to the pairwise nature of
memory barriers, CPU 2’s load following its memory bar-
rier must therefore see the store that precedes CPU 1’s
memory barrier, so that Y==1.

On the other hand, if Y==0, the memory-barrier condi-
tion does not hold, and so in this case, X could be either
Oor 1.

Pairing 2. In this pairing, each CPU executes a load
followed by a memory barrier followed by a store,
as follows (both A and B are initially equal to zero):

CPU 1 | cpPU 2
X=A; Y=B;
smp_mb () ;| smp_mb () ;
B=1; A=1;

After both CPUs have completed executing these code se-

quences, if X==1, then we must also have Y==0. In this
case, the fact that X==1 means that CPU 1’s load prior to
its memory barrier has seen the store following CPU 2’s
memory barrier. Due to the pairwise nature of memory
barriers, CPU 1’s store following its memory barrier must
therefore see the results of CPU 2’s load preceding its
memory barrier, so that Y==0.

On the other hand, if X==0, the memory-barrier condi-
tion does not hold, and so in this case, Y could be either

Oorl.

The two CPUs’ code sequences are symmetric, so if
Y==1 after both CPUs have finished executing these code
sequences, then we must have X==0.

Pairing 3. In this pairing, one CPU executes a
load followed by a memory barrier followed by
a store, while the other CPU executes a pair
of stores separated by a memory barrier, as fol-
lows (both A and B are initially equal to zero):

CPU 1 | cPU 2
X=A; B=2;
smp_mb () ;| smp_mb () ;
B=1; A=1;

After both CPUs have completed executing these code

sequences, if X==1, then we must also have B==1. In
this case, the fact that X==1 means that CPU 1’s load
prior to its memory barrier has seen the store following
CPU 2’s memory barrier. Due to the pairwise nature of
memory barriers, CPU 1’s store following its memory
barrier must therefore see the results of CPU 2’s store
preceding its memory barrier. This means that CPU 1’s
store to B will overwrite CPU 2’s store to B, resulting in
B==1.

On the other hand, if X==0, the memory-barrier condi-
tion does not hold, and so in this case, B could be either 1
or 2.
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12.2.4.5 Pair-Wise Memory Barriers: Semi-

Portable Combinations

The following pairings from Table 12.1 can be used on
modern hardware, but might fail on some systems that
were produced in the 1990s. However, these can safely
be used on all mainstream hardware introduced since the
year 2000.

Ears to Mouths. Since the stores cannot see the results
of the loads (again, ignoring MMIO registers for the mo-
ment), it is not always possible to determine whether the
memory-barrier condition has been met. However, recent
hardware would guarantee that at least one of the loads
saw the value stored by the corresponding store (or some
later value for that same variable).

Stores ‘“Pass in the Night”. In the following ex-
ample, after both CPUs have finished executing
their code sequences, it is quite tempting to con-
clude that the result {A==1,B==2} cannot happen.

CPU 1 | cPU 2
A=1; B=2;
smp_mb () ;| smp_mb () ;
B=1; A=2;

Unfortunately, such a conclusion does not necessarily
hold on all 20"-century systems. Suppose that the cache
line containing A is initially owned by CPU 2, and that
containing B is initially owned by CPU 1. Then, in sys-
tems that have invalidation queues and store buffers, it is
possible for the first assignments to “pass in the night”,
so that the second assignments actually happen first. This
strange (but quite common) effect is explained in Ap-
pendix C.

This same effect can happen in any memory-barrier
pairing where each CPU’s memory barrier is preceded by
a store, including the “ears to mouths” pairing.

However, 21%-century hardware does accommodate
ordering intuitions, and do permit this combination to be
used safely.

12.2.4.6 Pair-Wise Memory Barriers: Non-Portable
Combinations

In the following pairings from Table 12.1, the memory
barriers have no effect that portable code can safely de-
pend on.
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Ears to Ears. Since loads do not change the state of
memory (ignoring MMIO registers for the moment), it is
not possible for one of the loads to see the results of the
other load.

Mouth to Mouth, Ear to Ear. One of the variables is
only loaded from, and the other is only stored to. Because
(once again, ignoring MMIO registers) it is not possible
for one load to see the results of the other, it is not possible
to detect the conditional ordering provided by the mem-
ory barrier. (Yes, it is possible to determine which store
happened last, but this does not depend on the memory
barrier.)

Only One Store. Because there is only one store, only
one of the variables permits one CPU to see the results
of the other CPU’s access. Therefore, there is no way to
detect the conditional ordering provided by the memory
barriers. (Yes, it is possible to determine whether or not
the load saw the result of the corresponding store, but this
does not depend on the memory barrier.)

12.2.4.7 Semantics Sufficient to Implement Locking

Suppose we have an exclusive lock (spinlock_t inthe
Linux kernel, pthread_mutex_t in pthreads code)
that guards a number of variables (in other words, these
variables are not accessed except from the lock’s critical
sections). The following properties must then hold true:

1. A given CPU or thread must see all of its own loads
and stores as if they had occurred in program order.

2. The lock acquisitions and releases must appear to
have executed in a single global order.

3. Suppose a given variable has not yet been stored to
in a critical section that is currently executing. Then
any load from a given variable performed in that
critical section must see the last store to that variable
from the last previous critical section that stored to
it.

The difference between the last two properties is a bit
subtle: the second requires that the lock acquisitions and
releases occur in a well-defined order, while the third re-
quires that the critical sections not “bleed out” far enough
to cause difficulties for other critical section.

20f course, this order might be different from one run to the next.
On any given run, however, all CPUs and threads must have a consistent
view of the order of critical sections for a given exclusive lock.
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Why are these properties necessary?

Suppose the first property did not hold. Then the asser-
tion in the following code might well fail!

a=1;
b =1+ a;
assert (b == 2);

Quick Quiz 12.7: How could the assertion b==2 on
page 145 possibly fail? l

Suppose that the second property did not hold. Then
the following code might leak memory!

spin_lock (&mylock) ;
if (p == NULL)

p = kmalloc (sizeof (xp), GFP_KERNEL);
spin_unlock (&mylock) ;

Quick Quiz 12.8: How could the code on page 145
possibly leak memory? H

Suppose that the third property did not hold. Then the
counter shown in the following code might well count
backwards. This third property is crucial, as it cannot be
strictly with pairwise memory barriers.

spin_lock (&mylock);
ctr = ctr + 1;
spin_unlock (&mylock) ;

Quick Quiz 12.9: How could the code on page 145
possibly count backwards? ll

If you are convinced that these rules are necessary, let’s
look at how they interact with a typical locking implemen-
tation.

12.2.5 Review of Locking Implementations

Naive pseudocode for simple lock and unlock opera-
tions are shown below. Note that the atomic_xchg ()
primitive implies a memory barrier both before and af-
ter the atomic exchange operation, which eliminates the
need for an explicit memory barrier in spin_lock ().
Note also that, despite the names, atomic_read () and
atomic_set () do not execute any atomic instructions,
instead, it merely executes a simple load and store, re-
spectively. This pseudocode follows a number of Linux
implementations for the unlock operation, which is a sim-
ple non-atomic store following a memory barrier. These
minimal implementations must possess all the locking
properties laid out in Section 12.2.4.
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1 void spin_lock (spinlock_t =x1lck)

2 {

3 while (atomic_xchg(&lck->a, 1) != 0)
4 while (atomic_read(&lck->a) != 0)
5 continue;

6

7

8

}

void spin_unlock (spinlock_t 1lck)
9 {
10 smp_mb () ;
11 atomic_set (&lck->a, 0);
12 }

The spin_lock () primitive cannot proceed until
the preceding spin_unlock () primitive completes. If
CPU 1 is releasing a lock that CPU 2 is attempting to
acquire, the sequence of operations might be as follows:

CPU 1 CPU 2
(critical section) atomic_xchg(&lck->a, 1)->1
smp_mb () ; lck->a->1
lck->a=0; lck->a—>1
lck->a->0

(implicit smp_mb () 1)
atomic_xchg(&lck->a, 1)->0
(implicit smp_mb ()2)
(critical section)

In this particular case, pairwise memory barriers suf-
fice to keep the two critical sections in place. CPU 2’s
atomic_xchg (&lck->a, 1) has seen CPU 1’s
lck—->a=0, so therefore everything in CPU 2’s follow-
ing critical section must see everything that CPU 1’s pre-
ceding critical section did. Conversely, CPU 1°s critical
section cannot see anything that CPU 2’s critical section
will do.

@@@

12.2.6 A Few Simple Rules

@@@
Probably the easiest way to understand memory barri-
ers is to understand a few simple rules:

1. Each CPU sees its own accesses in order.

2. If a single shared variable is loaded and stored by
multiple CPUs, then the series of values seen by a
given CPU will be consistent with the series seen
by the other CPUs, and there will be at least one se-
quence consisting of all values stored to that variable
with which each CPUs series will be consistent.’

3. If one CPU does ordered stores to variables A and

3 A given CPU’s series may of course be incomplete, for example, if
a given CPU never loaded or stored the shared variable, then it can have
no opinion about that variable’s value.



146

B.,4, and if a second CPU does ordered loads from B
and A3, then if the second CPU’s load from B gives
the value stored by the first CPU, then the second
CPU’s load from A must give the value stored by the
first CPU.

4. If one CPU does a load from A ordered before a
store to B, and if a second CPU does a load from
B ordered before a store from A, and if the second
CPU’s load from B gives the value stored by the first
CPU, then the first CPU’s load from A must not give
the value stored by the second CPU.

5. If one CPU does a load from A ordered before a
store to B, and if a second CPU does a store to B
ordered before a store to A, and if the first CPU’s
load from A gives the value stored by the second
CPU, then the first CPU’s store to B must happen
after the second CPU’s store to B, hence the value
stored by the first CPU persists.°

So what exactly @ @ @

12.2.7 Abstract Memory Access Model

Consider the abstract model of the system shown in Fig-
ure 12.6.

CPU 1 - = CPU2

> Device -

Figure 12.6: Abstract Memory Access Model

Each CPU executes a program that generates memory
access operations. In the abstract CPU, memory operation
ordering is very relaxed, and a CPU may actually perform

4 For example, by executing the store to A, a memory barrier, and
then the store to B.

3 For example, by executing the load from B, a memory barrier, and
then the load from A.

6 Or, for the more competitively oriented, the first CPU’s store to B
“wins”.
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the memory operations in any order it likes, provided
program causality appears to be maintained. Similarly,
the compiler may also arrange the instructions it emits in
any order it likes, provided it doesn’t affect the apparent
operation of the program.

So in the above diagram, the effects of the memory
operations performed by a CPU are perceived by the rest
of the system as the operations cross the interface between
the CPU and rest of the system (the dotted lines).

For example, consider the following sequence of events

given the initial values {A = 1, B = 2}:
CPU 1 | CPU 2
A = 3; x = A;
B=4; |y =8

The set of accesses as seen by the memory system in
the middle can be arranged in 24 different combinations,
with loads denoted by “ld” and stores denoted by “st”:

st A=3, st B=4, x=1d A—3, y=1d B—4
st A=3, st B=4, y=1d B—4, x=1d A—3
st A=3, x=1d A—=3, st B=4, y=1d B—4
st A=3, x=1d A3, y=1d B—2, st B=4
st A=3, y=1d B—2, st B=4, x=1d A—3
st A=3, y=1d B—2, x=1d A—3, st B=4
st B=4, st A=3, x=1d A—3, y=1d B—4
st B=4,

and can thus result in four different combinations of
values:

o
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Furthermore, the stores committed by a CPU to the
memory system may not be perceived by the loads made
by another CPU in the same order as the stores were
committed.

As a further example, consider this sequence of events
given the initial values {A = 1, B = 2, C = 3,
P = &A, QO = &C}:

\

P

[

P
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There is an obvious data dependency here, as the value
loaded into D depends on the address retrieved from P by
CPU 2. At the end of the sequence, any of the following
results are possible:

(Q == &A) and (D == 1)
(Q == &B) and (D == 2)
(Q == &B) and (D == 4)

Note that CPU 2 will never try and load C into D
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because the CPU will load P into Q before issuing the
load of *Q.

12.2.8 Device Operations

Some devices present their control interfaces as collec-
tions of memory locations, but the order in which the
control registers are accessed is very important. For in-
stance, imagine an Ethernet card with a set of internal
registers that are accessed through an address port register
(A) and a data port register (D). To read internal register
5, the following code might then be used:

*A = 5;
x = %D;

but this might show up as either of the following two
sequences:

STORE *A = 5, x = LOAD xD
x = LOAD xD, STORE %A = 5

the second of which will almost certainly result in a
malfunction, since it set the address after attempting to
read the register.

12.2.9 Guarantees

There are some minimal guarantees that may be expected
of a CPU:

1. On any given CPU, dependent memory accesses will
be issued in order, with respect to itself. This means
that for:

Q =P; D= *0Q;

the CPU will issue the following memory operations:

Q = LOAD P, D = LOAD *Q

and always in that order.

2. Overlapping loads and stores within a particular
CPU will appear to be ordered within that CPU. This
means that for:

a = *xX; *xX = Db;

the CPU will only issue the following sequence of
memory operations:
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a = LOAD X, STORE %X = b

And for:

the CPU will only issue:

STORE *X = ¢, d = LOAD xX

(Loads and stores overlap if they are targetted at
overlapping pieces of memory).

3. A series of stores to a single variable will appear to
all CPUs to have occurred in a single order, thought
this order might not be predictable from the code,
and in fact the order might vary from one run to
another.

And there are a number of things that must or must not
be assumed:

1. It must not be assumed that independent loads and
stores will be issued in the order given. This means

that for:

X = %xA; Y = xB; xD = Z;

we may get any of the following sequences:

X = LOAD xA, Y = LOAD =B, STORE *«D = Z
X = LOAD xA, STORE *D = Z, Y = LOAD xB
Y = LOAD «B, X = LOAD *A, STORE %D = 7
Y = LOAD xB, STORE *D = 7z, X = LOAD =*A
STORE D = Z, X = LOAD <A, Y = LOAD *B
STORE xD = Z, Y = LOAD B, X = LOAD xA

2. It must be assumed that overlapping memory ac-
cesses may be merged or discarded. This means that
for:

we may get any one of the following sequences:

X = LOAD #A; Y = LOAD (A + 4);
Y = LOAD % (A + 4); X = LOAD +*A;
{X, Y} = LOAD {#A, (A + 4) };
And for:
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*A = X; Y = xA;

we may get either of:

STORE xA
STORE *A

X; Y = LOAD =*A;
Y = X;

12.2.10 What Are Memory Barriers?

As can be seen above, independent memory operations
are effectively performed in random order, but this can
be a problem for CPU-CPU interaction and for I/O. What
is required is some way of intervening to instruct the
compiler and the CPU to restrict the order.

Memory barriers are such interventions. They impose
a perceived partial ordering over the memory operations
on either side of the barrier.

Such enforcement is important because the CPUs and
other devices in a system can use a variety of tricks
to improve performance - including reordering, defer-
ral and combination of memory operations; speculative
loads; speculative branch prediction and various types of
caching. Memory barriers are used to override or sup-
press these tricks, allowing the code to sanely control the
interaction of multiple CPUs and/or devices.

12.2.10.1 Explicit Memory Barriers

Memory barriers come in four basic varieties:

1. Write (or store) memory barriers,
2. Data dependency barriers,
3. Read (or load) memory barriers, and

4. General memory barriers.

Each variety is described below.

Write Memory Barriers A write memory barrier gives
a guarantee that all the STORE operations specified before
the barrier will appear to happen before all the STORE
operations specified after the barrier with respect to the
other components of the system.

A write barrier is a partial ordering on stores only; it is
not required to have any effect on loads.

A CPU can be viewed as committing a sequence of
store operations to the memory system as time progresses.
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All stores before a write barrier will occur in the sequence
before all the stores after the write barrier.

T Note that write barriers should normally be paired
with read or data dependency barriers; see the "SMP
barrier pairing" subsection.

Data Dependency Barriers A data dependency barrier
is a weaker form of read barrier. In the case where two
loads are performed such that the second depends on the
result of the first (e.g., the first load retrieves the address to
which the second load will be directed), a data dependency
barrier would be required to make sure that the target of
the second load is updated before the address obtained by
the first load is accessed.

A data dependency barrier is a partial ordering on inter-
dependent loads only; it is not required to have any effect
on stores, independent loads or overlapping loads.

As mentioned for write memory barriers, the other
CPUs in the system can be viewed as committing se-
quences of stores to the memory system that the CPU
being considered can then perceive. A data dependency
barrier issued by the CPU under consideration guarantees
that for any load preceding it, if that load touches one of
a sequence of stores from another CPU, then by the time
the barrier completes, the effects of all the stores prior to
that touched by the load will be perceptible to any loads
issued after the data dependency barrier.

See the "Examples of memory barrier sequences"” sub-
section for diagrams showing the ordering constraints.

T Note that the first load really has to have a data depen-
dency and not a control dependency. If the address for the
second load is dependent on the first load, but the depen-
dency is through a conditional rather than actually loading
the address itself, then it’s a control dependency and a
full read barrier or better is required. See the "Control
dependencies" subsection for more information.

1 Note that data dependency barriers should normally
be paired with write barriers; see the "SMP barrier pair-
ing" subsection.

Read Memory Barriers A read barrier is a data depen-
dency barrier plus a guarantee that all the LOAD opera-
tions specified before the barrier will appear to happen
before all the LOAD operations specified after the barrier
with respect to the other components of the system.

A read barrier is a partial ordering on loads only; it is
not required to have any effect on stores.

Read memory barriers imply data dependency barriers,
and so can substitute for them.
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T Note that read barriers should normally be paired with
write barriers; see the "SMP barrier pairing" subsection.

General Memory Barriers A general memory barrier
gives a guarantee that all the LOAD and STORE opera-
tions specified before the barrier will appear to happen
before all the LOAD and STORE operations specified
after the barrier with respect to the other components of
the system.

A general memory barrier is a partial ordering over
both loads and stores.

General memory barriers imply both read and write
memory barriers, and so can substitute for either.

12.2.10.2 Implicit Memory Barriers

There are a couple of types of implicit memory barriers, so
called because they are embedded into locking primitives:

1. LOCK operations and
2. UNLOCK operations.

LOCK Operations A lock operation acts as a one-way
permeable barrier. It guarantees that all memory opera-
tions after the LOCK operation will appear to happen after
the LOCK operation with respect to the other components
of the system.

Memory operations that occur before a LOCK opera-
tion may appear to happen after it completes.

A LOCK operation should almost always be paired
with an UNLOCK operation.

UNLOCK Operations Unlock operations also act as a
one-way permeable barrier. It guarantees that all memory
operations before the UNLOCK operation will appear to
happen before the UNLOCK operation with respect to
the other components of the system.

Memory operations that occur after an UNLOCK oper-
ation may appear to happen before it completes.

LOCK and UNLOCK operations are guaranteed to
appear with respect to each other strictly in the order
specified.

The use of LOCK and UNLOCK operations generally
precludes the need for other sorts of memory barrier (but
note the exceptions mentioned in the subsection "MMIO
write barrier").

Quick Quiz 12.10: What effect does the following
sequence have on the order of stores to variables “a” and
“b”?
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a=1;
b =1;
<write barrier>Ml

12.2.10.3 What May Not Be Assumed About Mem-
ory Barriers?

There are certain things that memory barriers cannot guar-
antee outside of the confines of a given architecture:

1. There is no guarantee that any of the memory ac-
cesses specified before a memory barrier will be
complete by the completion of a memory barrier in-
struction; the barrier can be considered to draw a
line in that CPU’s access queue that accesses of the
appropriate type may not cross.

2. There is no guarantee that issuing a memory barrier
on one CPU will have any direct effect on another
CPU or any other hardware in the system. The indi-
rect effect will be the order in which the second CPU
sees the effects of the first CPU’s accesses occur, but
see the next point.

3. There is no guarantee that a CPU will see the correct
order of effects from a second CPU’s accesses, even
if the second CPU uses a memory barrier, unless the
first CPU also uses a matching memory barrier (see
the subsection on "SMP Barrier Pairing").

4. There is no guarantee that some intervening piece of
off-the-CPU hardware’ will not reorder the memory
accesses. CPU cache coherency mechanisms should
propagate the indirect effects of a memory barrier
between CPUs, but might not do so in order.

12.2.10.4 Data Dependency Barriers

The usage requirements of data dependency barriers are
a little subtle, and it’s not always obvious that they’re
needed. To illustrate, consider the following sequence of

events, with initial values {A = 1, B = 2, C = 3,
P = &3, Q = &C}:
CPU 1 | cpu 2
B = 4;
<write barrier>
P = &B;
Q =P;
D = *Q;

7 This is of concern primarily in operating-system kernels. For
more information on hardware operations and memory ordering, see the
files pci.txt, DMA-API-HOWTO. txt, and DMA-APTI.txt in the
Documentation directory in the Linux source tree [Tor03c].


pci.txt
DMA-API-HOWTO.txt
DMA-API.txt
Documentation
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There’s a clear data dependency here, and it would
seem intuitively obvious that by the end of the sequence,
O must be either &A or &B, and that:

(Q == &A) implies (D == 1)
(Q == &B) implies (D == 4)

Counter-intuitive though it might be, it is quite possible
that CPU 2’s perception of P might be updated before its
perception of B, thus leading to the following situation:

(Q == &B) and (D == 2) ?2?22°?

Whilst this may seem like a failure of coherency or
causality maintenance, it isn’t, and this behaviour can be
observed on certain real CPUs (such as the DEC Alpha).

To deal with this, a data dependency barrier must be
inserted between the address load and the data load (again

with initial valuesof {A = 1, B =2, C = 3, P
= &A, Q = &C}):
CPU 1 | cpu 2
B = 4;
<write barrier>
P = &B;
Q = P;
<data dependency barrier>
D = *Q;

This enforces the occurrence of one of the two implica-
tions, and prevents the third possibility from arising.

Note that this extremely counterintuitive situation
arises most easily on machines with split caches, so that,
for example, one cache bank processes even-numbered
cache lines and the other bank processes odd-numbered
cache lines. The pointer P might be stored in an odd-
numbered cache line, and the variable B might be stored in
an even-numbered cache line. Then, if the even-numbered
bank of the reading CPU’s cache is extremely busy while
the odd-numbered bank is idle, one can see the new value
of the pointer P (which is &B), but the old value of the
variable B (which is 1).

Another example of where data dependency barriers
might by required is where a number is read from memory
and then used to calculate the index for an array access

with initial values {M[0] = 1, M[1l] = 2, M[3]
=3, P=0, Q=3
CPU 1 | cpu 2
M[1] = 4;
<write barrier>
P =1;
Q = P;
<data dependency barrier>
D = M[Q];

The data dependency barrier is very important to the
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Linux kernel’s RCU system, for example, see rcu_
dereference () in include/linux/rcupdate.
h. This permits the current target of an RCU’d pointer
to be replaced with a new modified target, without the re-
placement target appearing to be incompletely initialised.

See also the subsection on @ @ @"Cache Coherency"
for a more thorough example.

12.2.10.5 Control Dependencies

A control dependency requires a full read memory barrier,
not simply a data dependency barrier to make it work
correctly. Consider the following bit of code:

q = &a;j
if (p)
q = &b;
<data dependency barrier>
X = *xqj

g w N

This will not have the desired effect because there is no
actual data dependency, but rather a control dependency
that the CPU may short-circuit by attempting to predict
the outcome in advance. In such a case what’s actually
required is:

q = sa;
if (p)

q = &b;
<read barrier>
X = *q;

g w N

12.2.10.6 SMP Barrier Pairing

When dealing with CPU-CPU interactions, certain types
of memory barrier should always be paired. A lack of
appropriate pairing is almost certainly an error.

A write barrier should always be paired with a data de-
pendency barrier or read barrier, though a general barrier
would also be viable. Similarly a read barrier or a data
dependency barrier should always be paired with at least
an write barrier, though, again, a general barrier is viable:

CPU 1 CPU 2

A= 1;

<write barrier>

B = 2;
X = B;
<read barrier>
Y = A;

Or:

CPU 1 CPU 2

A= 1;

<write barrier>

B = &A;
X = B;
<data dependency barrier>
Y = *X;


include/linux/rcupdate.h
include/linux/rcupdate.h
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One way or another, the read barrier must always be
present, even though it might be of a weaker type.?

Note that the stores before the write barrier would nor-
mally be expected to match the loads after the read barrier
or data dependency barrier, and vice versa:

CPU 1
1;

2; §
ige barrier> ?

4;

Q
]
c
N

barrier>

w a

00 AT
[N
I\/\f\/\/\/\
KX AR
In]
o i
o000
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12.2.10.7 Examples of Memory Barrier Pairings

Firstly, write barriers act as a partial orderings on store
operations. Consider the following sequence of events:

STORE A 1
STORE B 2
STORE C = 3
<write barrier>
STORE D 4
STORE E 5

This sequence of events is committed to the memory
coherence system in an order that the rest of the system
might perceive as the unordered set of {A=1, B=2, C=3}
all occurring before the unordered set of {D=4, E=5},
as shown in Figure 12.7.

Secondly, data dependency barriers act as a partial or-
derings on data-dependent loads. Consider the following

sequence of events with initial values {B = 7, X =
9, Y =8, C = &Y}:

CPU 1 | cpu 2

A =1;

B = 2;

<write barrier>

C = &B; LOAD X

D = 4; LOAD C (gets &B)

LOAD *C (reads B)

Without intervention, CPU 2 may perceive the events
on CPU 1 in some effectively random order, despite the
write barrier issued by CPU 1, as shown in Figure 12.8.

In the above example, CPU 2 perceives that B is 7,
despite the load of »C (which would be B) coming after
the LOAD of C.

If, however, a data dependency barrier were to be
placed between the load of C and the load of «C (i.e.:
B) on CPU 2, again with initial values of {B = 7, X
=9, Y=28, C=&Y}:

8 By “weaker”, we mean "makes fewer ordering guarantees". A
weaker barrier is usually also lower-overhead than is a stronger barrier.
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CPU 1 CPU 2
A= 1;
B = 2;
<write barrier>
C = &Bj; LOAD X
D = 4; LOAD C (gets &B)

<data dependency barrier>
LOAD *C (reads B)

then ordering will be as intuitively expected, as shown
in Figure 12.9.

And thirdly, a read barrier acts as a partial order on
loads. Consider the following sequence of events, with

initial values {A = 0, B = 9}:
CPU 1 | cpu 2
A =1;
<write barrier>
B = 2;
LOAD B
LOAD A

Without intervention, CPU 2 may then choose to per-
ceive the events on CPU 1 in some effectively random
order, despite the write barrier issued by CPU 1, as shown
in Figure 12.10.

If, however, a read barrier were to be placed between
the load of B and the load of A on CPU 2, again with
initial valuesof {A = 0, B = 9}:

CPU 1 | cpu 2

A =1;

<write barrier>

B = 2;
LOAD B
<read barrier>
LOAD A

then the partial ordering imposed by CPU 1’s write
barrier will be perceived correctly by CPU 2, as shown in
Figure 12.11.

To illustrate this more completely, consider what could
happen if the code contained a load of A either side of the
read barrier, once again with the same initial values of {A

=0, B = 9}:
CPU 1 | cpu 2
A =1;
<write barrier>
B = 2;
LOAD B

LOAD A (1°5%)
<read barrier>
LOAD A (2°)

Even though the two loads of A both occur after the
load of B, they may both come up with different values,
as shown in Figure 12.12.

Of course, it may well be that CPU 1’s update to A
becomes perceptible to CPU 2 before the read barrier
completes, as shown in Figure 12.13.

The guarantee is that the second load will always come
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> FEvents perceptible
to rest of system

~<+—— At this point the write barrier

requires all stores prior to the
barrier to be committed before
further stores may be take place.

Sequence in which stores are committed to the
memory system by CPU 1

Figure 12.7: Write Barrier Ordering Semantics

Sequence of update
1 > B=2 — — Y->8 of pgrception on
: CPU
CPU 1 A=1 — C->&Y
WWWWWWWWWWWWWWWW
‘ C=&B
> D=4 > C—>&B >
CPU2
Apparently incorrect —» B->7 >
perception of B (!)
The load of X holds —* X->9 >
up the maintenance
of coherence of B — B->2

Figure 12.8: Data Dependency Barrier Omitted

up with A == 1 if the load of B came up with B ==
No such guarantee exists for the first load of A; that may
come up with either A == QorA ==

12.2.10.8 Read Memory Barriers vs. Load Specula-
tion

Many CPUs speculate with loads: that is, they see that
they will need to load an item from memory, and they
find a time where they’re not using the bus for any other
loads, and then do the load in advance — even though
they haven’t actually got to that point in the instruction
execution flow yet. Later on, this potentially permits the
actual load instruction to complete immediately because
the CPU already has the value on hand.

It may turn out that the CPU didn’t actually need the
value (perhaps because a branch circumvented the load)
in which case it can discard the value or just cache it for
later use. For example, consider the following:

CPU 1 | CPU 2
LOAD B
DIVIDE
DIVIDE
LOAD A

On some CPUs, divide instructions can take a long time
to complete, which means that CPU 2’s bus might go idle
during that time. CPU 2 might therefore speculatively
load A before the divides complete. In the (hopefully)
unlikely event of an exception from one of the dividees,
this speculative load will have been wasted, but in the
(again, hopefully) common case, overlapping the load
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: > B=2 [— — Y->8
CPU 1 A=1 — C—>&Y
WWWWWWWWWWWWWWWW
‘ C=&B
= D=4 = C—>&B >
CPU 2
X->9 >
Makes sure all effects —» ddddddddddddddddd
prior to the store of C
are perceptible to — B->2 >
subsequent loads
Figure 12.9: Data Dependency Barrier Supplied
> A=1 — A-—>0
(:PU 1 WWWWWWWWWWWWWWWW B_>9
B-—>2
CPU2
A—>0
A—>1

Figure 12.10: Read Barrier Needed

with the divides will permit the load to complete more
quickly, as illustrated by Figure 12.14.

Placing a read barrier or a data dependency barrier just
before the second load:

CPU 1 | CPU 2
LOAD B
DIVIDE
DIVIDE
<read barrier>
LOAD A

will force any value speculatively obtained to be recon-
sidered to an extent dependent on the type of barrier used.
If there was no change made to the speculated memory
location, then the speculated value will just be used, as
shown in Figure 12.15. On the other hand, if there was
an update or invalidation to A from some other CPU, then
the speculation will be cancelled and the value of A will
be reloaded, as shown in Figure 12.16.

12.2.11 Locking Constraints

As noted earlier, locking primitives contain implicit mem-
ory barriers. These implicit memory barriers provide the
following guarantees:

1. LOCK operation guarantee:

* Memory operations issued after the LOCK will
be completed after the LOCK operation has
completed.

* Memory operations issued before the LOCK
may be completed after the LOCK operation
has completed.

2. UNLOCK operation guarantee:

* Memory operations issued before the UN-
LOCK will be completed before the UNLOCK
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> A=1 — A-—>0
CPU 1 WWWWWWWWWWWWWWWW — B—>9
= B=2
B-—>2 -
CPU 2
At this point the read —™ IYTYTIYrYrYrrrrrrr
barrier causes all effects
prior to the storage of B A—>1 >
to be perceptible to CPU 2
Figure 12.11: Read Barrier Supplied
> A=1 — A-—>0
CPU 1 WWWWWWNWWWWWWWWW — B—>9
B=2
= B->2 >
CPU 2
A—>0 > 1st

At this point the read —»
barrier causes all effects
prior to the storage of B
to be perceptible to CPU 2

rrrrrrrrrxrrrrrrrr

2nd

Figure 12.12: Read Barrier Supplied, Double Load

operation has completed.

* Memory operations issued after the UNLOCK
may be completed before the UNLOCK opera-
tion has completed.

3. LOCK vs LOCK guarantee:

* All LOCK operations issued before another
LOCK operation will be completed before that
LOCK operation.

4. LOCK vs UNLOCK guarantee:

* All LOCK operations issued before an UN-
LOCK operation will be completed before the
UNLOCK operation.

* All UNLOCK operations issued before a
LOCK operation will be completed before the
LOCK operation.

5. Failed conditional LOCK guarantee:

¢ Certain variants of the LOCK operation may
fail, either due to being unable to get the lock
immediately, or due to receiving an unblocked
signal or exception whilst asleep waiting for
the lock to become available. Failed locks do
not imply any sort of barrier.

12.2.12 Memory-Barrier Examples
12.2.12.1 Locking Examples

LOCK Followed by UNLOCK: A LOCK followed by
an UNLOCK may not be assumed to be a full memory
barrier because it is possible for an access preceding the
LOCK to happen after the LOCK, and an access following
the UNLOCK to happen before the UNLOCK, and the
two accesses can themselves then cross. For example, the
following:
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= A=1 — A-—>0
CPU 1 WWWWWWWWWWWWWWWW — B-—>9
= B=2
B—>2 -
CPU2
A—>1 > 1st
rYrrrrrrrrrrrrrrrr
A—>1 = 2nd
Figure 12.13: Read Barrier Supplied, Take Two
—» B->2 -
CPU 2
DIVIDE
The CPU being busy doing a —® — A-—>0

division speculates on the
LOAD of A

Once the divisions are complete —%

the CPU can then perform the
LOAD with immediate effect

¢
D I&

Figure 12.14: Speculative Load

*A = a;
LOCK

UNLOCK
*B = b;

Sw N

might well execute in the following order:

LOCK

*B = b;
*A = a;
UNLOCK

W RN

Again, always remember that both LOCK and UN-
LOCK are permitted to let preceding operations “bleed
in” to the critical section.

Quick Quiz 12.11: What sequence of LOCK-
UNLOCK operations would act as a full memory barrier?
]

Quick Quiz 12.12: What (if any) CPUs have memory-
barrier instructions from which these semi-permeable
locking primitives might be constructed?

LOCK-Based Critical Sections: Although a LOCK-
UNLOCK pair does not act as a full memory barrier,

these operations do affect memory ordering.
Consider the following code:

1 A = a;
2 *xB = Db;
3 LOCK

4 xC = c;
5 xD = d;
6 UNLOCK
7 *xE = e;
8 xF = £;

This could legitimately execute in the following order,
where pairs of operations on the same line indicate that
the CPU executed those operations concurrently:

3 LOCK

1 xA = a; *F = f;
7 *xE = e;

4 xC = ¢c; «D = d;
2 *xB = Db;

6 UNLOCK

Quick Quiz 12.13: Given that operations grouped in
curly braces are executed concurrently, which of the rows
of Table 12.2 are legitimate reorderings of the assignments
to variables “A” through “F” and the LOCK/UNLOCK
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— B->2 -
CPU 2
DIVIDE
The CPU being busy doing a —® — A-—>0 |
division speculates on the
LOAD of A
DIV]IDE
rYrrrrrrrrrrr
Figure 12.15: Speculative Load and Barrier
— B->2 >
CPU 2
DIVIDE
The CPU being busy doing a —® — A-—>0 |
division speculates on the
LOAD of A
DIEDE
rrrrrrrrrrrrrrrrr
The speculation is discarded —
and an updated value is
retrieved
Figure 12.16: Speculative Load Cancelled by Barrier
# | Ordering: legitimate or not? CPU 1 | CPU 2
1 | #A; #B; LOCK; #C; #D; UNLOCK; +E; *F; A= a; E =e;
2 | %A; {#B; LOCK;} +C; #D; UNLOCK; +E; *F; LOCK M; | LOCK Q;
3 | (+F; #A;] #B; LOCK; #C; #D; UNLOCK; +E; B=Db; | F=1£;
4 | «A; *B; {LOCK; #C;} #D; {UNLOCK; =E;} *F; c = i G =gi )
5 *B; LOCK; =*C; =*D; =*A; UNLOCK; =*E; «F; UNLSCE 1;1’ ENI:OEK Qi
6 | »A; *B; *C; LOCK; +D; UNLOCK; #E; +F; o o
7 *A; *B; LOCK; =C; UNLOCK; =D; =»E; xF; 3 . .
8 {*B; *A; LOCK;} {*D; =C;} {UNLOCK; «F; «E;} Table 12.3: Order]ng With Mu]tlple Locks
9 *B; LOCK; =C; =D; UNLOCK; {*F; *A;} *E;

Table 12.2: Lock-Based Critical Sections

operations? (The order in the code is A, B, LOCK, C, D,
UNLOCK, E, F.) Why or why not? i

Ordering with Multiple Locks: Code containing mul-
tiple locks still sees ordering constraints from those locks,
but one must be careful to keep track of which lock is
which. For example, consider the code shown in Ta-
ble 12.3, which uses a pair of locks named “M” and “Q”.

In this example, there are no guarantees as to what
order the assignments to variables “A” through “H” will
appear in, other than the constraints imposed by the locks

themselves, as described in the previous section.
Quick Quiz 12.14: What are the constraints for Ta-
ble 12.37 1

Ordering with Multiple CPUs on One Lock: Sup-
pose, instead of the two different locks as shown in Ta-
ble 12.3, both CPUs acquire the same lock, as shown in
Table 12.4?

In this case, either CPU 1 acquires M before CPU 2
does, or vice versa. In the first case, the assignments
to A, B, and C must precede those to F, G, and H. On
the other hand, if CPU 2 acquires the lock first, then the
assignments to E, F, and G must precede those to B, C,
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CPU 1 | CPU 2

A = a; E =¢e;

LOCK M;
B = b; F = f;
C=c; G = g;

UNLOCK M; UNLOCK M;
D = d; H = h;

Table 12.4: Ordering With Multiple CPUs on One Lock

and D.

12.2.13 The Effects of the CPU Cache

The perceived ordering of memory operations is affected
by the caches that lie between the CPUs and memory, as
well as by the cache coherence protocol that maintains
memory consistency and ordering. From a software view-
point, these caches are for all intents and purposes part of
memory. Memory barriers can be thought of as acting on
the vertical dotted line in Figure 12.17, ensuring that the
CPU presents its values to memory in the proper order, as
well as ensuring that it sees changes made by other CPUs
in the proper order.

Although the caches can “hide” a given CPU’s memory
accesses from the rest of the system, the cache-coherence
protocol ensures that all other CPUs see any effects of
these hidden accesses, migrating and invalidating cache-
lines as required. Furthermore, the CPU core may execute
instructions in any order, restricted only by the require-
ment that program causality and memory ordering appear
to be maintained. Some of these instructions may gener-
ate memory accesses that must be queued in the CPU’s
memory access queue, but execution may nonetheless
continue until the CPU either fills up its internal resources
or until it must wait for some queued memory access to
complete.

12.2.13.1 Cache Coherency

Although cache-coherence protocols guarantee that a
given CPU sees its own accesses in order, and that all
CPUs agree on the order of modifications to a single
variable contained within a single cache line, there is no
guarantee that modifications to different variables will be
seen in the same order by all CPUs — although some com-
puter systems do make some such guarantees, portable
software cannot rely on them.

To see why reordering can occur, consider the two-CPU
system shown in Figure 12.18, in which each CPU has a
split cache. This system has the following properties:
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1. An odd-numbered cache line may be in cache A,
cache C, in memory, or some combination of the
above.

2. An even-numbered cache line may be in cache B,
cache D, in memory, or some combination of the
above.

3. While the CPU core is interrogating one of its
caches,” its other cache is not necessarily quiescent.
This other cache may instead be responding to an
invalidation request, writing back a dirty cache line,
processing elements in the CPU’s memory-access
queue, and so on.

4. Each cache has queues of operations that need to
be applied to that cache in order to maintain the
required coherence and ordering properties.

5. These queues are not necessarily flushed by loads
from or stores to cache lines affected by entries in
those queues.

In short, if cache A is busy, but cache B is idle, then
CPU 1’s stores to odd-numbered cache lines may be de-
layed compared to CPU 2’s stores to even-numbered
cache lines. In not-so-extreme cases, CPU 2 may see
CPU 1’s operations out of order.

Much more detail on memory ordering in hardware and
software may be found in Appendix C.

12.2.14 Where Are
Needed?

Memory barriers are only required where there’s a possi-
bility of interaction between two CPUs or between a CPU
and a device. If it can be guaranteed that there won’t be
any such interaction in any particular piece of code, then
memory barriers are unnecessary in that piece of code.

Note that these are the minimum guarantees. Different
architectures may give more substantial guarantees, as
discussed in Appendix C, but they may not be relied upon
outside of code specifically designed to run only on the
corresponding architecture.

However, primitives that implement atomic operations,
such as locking primitives and atomic data-structure ma-
nipulation and traversal primitives, will normally include
any needed memory barriers in their definitions. However,

Memory Barriers

9 But note that in “superscalar” systems, the CPU might well be ac-
cessing both halves of its cache at once, and might in fact be performing
multiple concurrent accesses to each of the halves.
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~———— Memory ——— >

CPU Memory CPU
Core = Access = (Cache [e—
Queue > Memory
Cache
Coherency
Mechanism
CPU Memory CPU > Device
Core = Access = (Cache [e—
Queue
Figure 12.17: Memory Architecture
CPU1 [
Memory
System
CPU2 (=
Figure 12.18: Split Caches
there are some exceptions, such as atomic_inc () in 12.3 Non-Blocking Synchroniza-

the Linux kernel, so be sure to review the documenta-

tion

tion, and, if possible, the actual implementations, for your

software environment.

One final word of advice: use of raw memory-barrier

12.3.1 Simple NBS

12.3.2 Hazard Pointers

@ @ @ combination of hazard pointers and RCU to elimi-

nate memory barriers?

primitives should be a last resort. It is almost always better

to use an existing primitive that takes care of memory

barriers.

12.3.3 Atomic Data Structures

Queues and stacks — avoiding full-race non-blocking

properties often yields great simplifications.
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12.3.4 “Macho” NBS

Cite Herlihy and his crowd.
Describe constraints (X-freedom, linearizability, ...)
and show examples breaking them.
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Chapter 13

Ease of Use

“Creating a perfect API is like committing the perfect
crime. There are at least fifty things that can go wrong,
and if you are a genius, you might be able to anticipate
twenty-five of them.”

13.1 Rusty Scale for API Design

1. It is impossible to get wrong. dwim ()
2. The compiler or linker won’t let you get it wrong.

. The compiler or linker will warn you if you get it
wrong.

The simplest use is the correct one.
. The name tells you how to use it.
. Do it right or it will always break at runtime.

. Follow common convention and you will get it right.
malloc ()

. Read the documentation and you will get it right.
. Read the implementation and you will get it right.

10. Read the right mailing-list archive and you will get

it right.

11. Read the right mailing-list archive and you will get

it wrong.

12.
The non-CONFIG_PREEMPT implementation of
rcu_read_lock ().

DEC Alpha wmb instruction.

Read the implementation and you will get it wrong.

. Read the documentation and you will get it wrong.
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14. Follow common convention and you will get it

wrong. printf() (failing to check for error return).

15. Do it right and it will break at runtime.

16. The name tells you how not to use it.

17. The obvious use is wrong. smp_mb ().

18. The compiler or linker will warn you if you get it

right.

19. The compiler or linker won’t let you get it right.

20. It is impossible to get right. gets ().

13.2 Shaving the Mandelbrot Set

The set of useful programs resembles the Mandelbrot set
(shown in Figure 13.1) in that it does not have a clear-
cut smooth boundary — if it did, the halting problem
would be solvable. But we need APIs that real people
can use, not ones that require a Ph.D. dissertation be
completed for each and every potential use. So, we “shave
the Mandelbrot set”,! restricting the use of the API to an
easily described subset of the full set of potential uses.

Such shaving may seem counterproductive. After all,
if an algorithm works, why shouldn’t it be used?

To see why at least some shaving is absolutely neces-
sary, consider a locking design that avoids deadlock, but
in perhaps the worst possible way. This design uses a
circular doubly linked list, which contains one element
for each thread in the system along with a header element.
When a new thread is spawned, the parent thread must
insert a new element into this list, which requires some
sort of synchronization.

! Due to Josh Triplett.
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Figure 13.1: Mandelbrot Set (Courtesy of Wikipedia)

One way to protect the list is to use a global lock.
However, this might be a bottleneck if threads were being
created and deleted frequently.?> Another approach would
be to use a hash table and to lock the individual hash
buckets, but this can perform poorly when scanning the
list in order.

A third approach is to lock the individual list elements,
and to require the locks for both the predecessor and
successor to be held during the insertion. Since both
locks must be acquired, we need to decide which order to
acquire them in. Two conventional approaches would be
to acquire the locks in address order, or to acquire them
in the order that they appear in the list, so that the header
is always acquired first when it is one of the two elements
being locked. However, both of these methods require
special checks and branches.

The to-be-shaven solution is to unconditionally acquire
the locks in list order. But what about deadlock?

Deadlock cannot occur.

To see this, number the elements in the list starting
with zero for the header up to N for the last element in
the list (the one preceding the header, given that the list
is circular). Similarly, number the threads from zero to
N — 1. If each thread attempts to lock some consecutive
pair of elements, at least one of the threads is guaranteed
to be able to acquire both locks.

Why?

Because there are not enough threads to reach all the

2 Those of you with strong operating-system backgrounds, please
suspend disbelief. If you are unable to suspend disbelief, send us a
better example.
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way around the list. Suppose thread 0 acquires element 0’s
lock. To be blocked, some other thread must have already
acquired element 1’s lock, so let us assume that thread 1
has done so. Similarly, for thread 1 to be blocked, some
other thread must have acquired element 2’s lock, and so
on, up through thread N — 1, who acquires element N — 1’s
lock. For thread N — 1 to be blocked, some other thread
must have acquired element N’s lock. But there are no
more threads, and so thread N — 1 cannot be blocked.
Therefore, deadlock cannot occur.

So why should we prohibit use of this delightful little
algorithm?

The fact is that if you really want to use it, we cannot
stop you. We can, however, recommend against such
code being included in any project that we care about.

But, before you use this algorithm, please think through
the following Quick Quiz.

Quick Quiz 13.1: Can a similar algorithm be used
when deleting elements? H

The fact is that this algorithm is extremely specialized
(it only works on certain sized lists), and also quite fragile.
Any bug that accidentally failed to add a node to the list
could result in deadlock. In fact, simply adding the node
a bit too late could result in deadlock.

In addition, the other algorithms described above are
“good and sufficient”. For example, simply acquiring the
locks in address order is fairly simple and quick, while
allowing the use of lists of any size. Just be careful of the
special cases presented by empty lists and lists containing
only one element!

Quick Quiz 13.2: Yetch! What ever possessed some-
one to come up with an algorithm that deserves to be
shaved as much as this one does??? B

In summary, we do not use algorithms simply because
they happen to work. We instead restrict ourselves to
algorithms that are useful enough to make it worthwhile
learning about them. The more difficult and complex
the algorithm, the more generally useful it must be in
order for the pain of learning it and fixing its bugs to be
worthwhile.

Quick Quiz 13.3: Give an exception to this rule. ll

Exceptions aside, we must continue to shave the soft-
ware “Mandelbrot set” so that our programs remain main-
tainable, as shown in Figure 13.2.



13.2. SHAVING THE MANDELBROT SET 163

Figure 13.2: Shaving the Mandelbrot Set
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Chapter 14

Time Management

Scheduling ticks

Tickless operation

Timers

Current time, monotonic operation

The many ways in which time can appear to go back-
wards

Causality, the only real time in SMP (or distributed)
systems
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Chapter 15

Conflicting Visions of the Future

This chapter presents some conflicting visions of the
future of parallel programming. It is not clear which of
these will come to pass, in fact, it is not clear that any of
them will. They are nevertheless important because each
vision has its devoted adherents, and if enough people
believe in something fervently enough, you will need to
deal with at least the shadow of that thing’s existence in
the form of its influence on the thoughts, words, and deeds
of its adherents. Besides which, it is entirely possible that
one or more of these visions will actually come to pass.
But most are bogus. Tell which is which and you’ll be
rich [Spi77]!

Therefore, the following sections give an overview of
transactional memory, shared-memory parallel functional
programming, and process-based parallel functional pro-
gramming. But first, a cautionary tale on prognostication
taken from the early 2000s.

15.1 The Future of CPU Technol-
ogy Ain’t What it Used to Be

Years past always seem so simple and innocent when
viewed through the lens of many years of experience.
And the early 2000s were for the most part innocent of
the impending failure of Moore’s Law to continue deliver-
ing the then-traditional increases in CPU clock frequency.
Oh, there were the occasional warnings about the lim-
its of technology, but such warnings had be sounded for
decades. With that in mind, consider the following sce-
narios:

1. Uniprocessor Uber Alles (Figure 15.1),
2. Multithreaded Mania (Figure 15.2),

3. More of the Same (Figure 15.3), and
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Figure 15.1: Uniprocessor Uber Alles

4. Crash Dummies Slamming into the Memory Wall
(Figure 15.4).

Each of these scenarios are covered in the following
sections, first with a quote from a 2004 source [McKO04].

15.1.1 Uniprocessor Uber Alles

In this scenario, the combination of Moore’s-
Law increases in CPU clock rate and continued
progress in horizontally scaled computing ren-
der SMMP systems irrelevant. This scenario is
therefore dubbed “Uniprocessor Uber Alles”,
literally, uniprocessors above all else.

These uniprocessor systems would be subject
only to instruction overhead, since memory bar-
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Figure 15.2: Multithreaded Mania
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Figure 15.4: Crash Dummies Slamming into the Memory
Wall Mania

Unlikely indeed! But the larger software community
was reluctant to accept the fact that they would need to
embrace parallelism, and so it was some time before this
community concluded that the “free lunch” of Moore’s-
Law-induced CPU core-clock frequency increases was
well and truly finished. Never forget: belief is an emotion,
not necessarily the result of a rational technical thought
process!

15.1.2 Multithreaded Mania

A less-extreme variant of Uniprocessor Uber
Alles features uniprocessors with hardware mul-
tithreading, and in fact multithreaded CPUs are

(e T 2000 now standard for many desktop and laptop com-

Figure 15.3: More of the Same

riers, cache thrashing, and contention do not
affect single-CPU systems. In this scenario,
RCU is useful only for niche applications, such
as interacting with NMIs. It is not clear that
an operating system lacking RCU would see
the need to adopt it, although operating systems
that already implement RCU might continue to
do so.

However, recent progress with multithreaded
CPUs seems to indicate that this scenario is
quite unlikely.

puter systems. The most aggressively multi-
threaded CPUs share all levels of cache hier-
archy, thereby eliminating CPU-to-CPU mem-
ory latency, in turn greatly reducing the perfor-
mance penalty for traditional synchronization
mechanisms. However, a multithreaded CPU
would still incur overhead due to contention
and to pipeline stalls caused by memory barri-
ers. Furthermore, because all hardware threads
share all levels of cache, the cache available to
a given hardware thread is a fraction of what
it would be on an equivalent single-threaded
CPU, which can degrade performance for ap-
plications with large cache footprints. There is
also some possibility that the restricted amount
of cache available will cause RCU-based algo-



15.1. THE FUTURE OF CPU TECHNOLOGY AIN’T WHAT IT USED TO BE 169

rithms to incur performance penalties due to
their grace-period-induced additional memory
consumption. Investigating this possibility is
future work.

However, in order to avoid such performance
degradation, a number of multithreaded CPUs
and multi-CPU chips partition at least some of
the levels of cache on a per-hardware-thread
basis. This increases the amount of cache avail-
able to each hardware thread, but re-introduces
memory latency for cachelines that are passed
from one hardware thread to another.

And we all know how this story has played out, with
multiple multi-threaded cores on a single die plugged into
a single socket. The question then becomes whether or
not future shared-memory systems will always fit into a
single socket.

15.1.3 More of the Same

The More-of-the-Same scenario assumes that
the memory-latency ratios will remain roughly
where they are today.

This scenario actually represents a change,
since to have more of the same, interconnect
performance must begin keeping up with the
Moore’s-Law increases in core CPU perfor-
mance. In this scenario, overhead due to
pipeline stalls, memory latency, and contention
remains significant, and RCU retains the high
level of applicability that it enjoys today.

And the change has been the ever-increasing levels of
integration that Moore’s Law is still providing. But longer
term, which will it be? More CPUs per die? Or more /O,
cache, and memory?

Servers seem to be choosing the former, while em-
bedded systems on a chip (SoCs) continue choosing the
latter.

15.1.4 Crash Dummies Slamming into the
Memory Wall

If the memory-latency trends shown in Fig-
ure 15.5 continue, then memory latency
will continue to grow relative to instruction-
execution overhead. Systems such as Linux that
have significant use of RCU will find additional
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use of RCU to be profitable, as shown in Fig-
ure 15.6 As can be seen in this figure, if RCU
is heavily used, increasing memory-latency ra-
tios give RCU an increasing advantage over
other synchronization mechanisms. In contrast,
systems with minor use of RCU will require in-
creasingly high degrees of read intensity for use
of RCU to pay off, as shown in Figure 15.7. As
can be seen in this figure, if RCU is lightly used,
increasing memory-latency ratios put RCU at
an increasing disadvantage compared to other
synchronization mechanisms. Since Linux has
been observed with over 1,600 callbacks per
grace period under heavy load [SM04], it seems
safe to say that Linux falls into the former cate-

gory.

On the one hand, this passage failed to anticipate the
cache-warmth issues that RCU can suffer from in work-
loads with significant update intensity, in part because it
seemed unlikely that RCU would really be used in such
cases. In the event, the SLAB_ DESTROY_BY_RCU has
been pressed into service in a number of instances where
these cache-warmth issues would otherwise be problem-
atic, as has sequence locking. On the other hand, this
passage also failed to anticipate that RCU would be used
to reduce scheduling latency or for security.

In short, beware of prognostications, including those in
the remainder of this chapter.

15.2 Transactional Memory

The idea of using transactions outside of databases goes
back many decades [Lom77], with the key difference
between database and non-database transactions being
that non-database transactions drop the “D” in the “ACID”
properties defining database transactions. The idea of
supporting memory-based transactions, or “transactional
memory” (TM), in hardware is more recent [HM93], but
unfortunately, support for such transactions in commodity
hardware was not immediately forthcoming, despite other
somewhat similar proposals being put forward [SSHT93].
Not long after, Shavit and Touitou proposed a software-
only implementation of transactional memory (STM) that
was capable of running on commodity hardware, give or
take memory-ordering issues. This proposal languished
for many years, perhaps due to the fact that the research
community’s attention was absorbed by non-blocking
synchronization (see Section 12.3).

But by the turn of the century, TM started receiving
more attention [MTO1, RGO1], and by the middle of the
decade, the level of interest can only be termed “incan-
descent” [Her05, GroQ7], despite a few voices of cau-
tion [BLMO5, MMWO07].

The basic idea behind TM is to execute a section of
code atomically, so that other threads see no intermediate
state. As such, the semantics of TM could be implemented
by simply replacing each transaction with a recursively
acquirable global lock acquisition and release, albeit with
abysmal performance and scalability. Much of the com-
plexity inherent in TM implementations, whether hard-
ware or software, is efficiently detecting when concurrent
transactions can safely run in parallel. Because this detec-
tion is done dynamically, conflicting transactions can be
aborted or “rolled back”, and in some implementations,
this failure mode is visible to the programmer.

Because transaction roll-back is increasingly unlikely
as transaction size decreases, TM might become quite
attractive for small memory-based operations, such as
linked-list manipulations used for stacks, queues, hash
tables, and search trees. However, it is currently much
more difficult to make the case for large transactions, par-
ticularly those containing non-memory operations such
as I/O and process creation. The following sections look
at current challenges to the grand vision of “Transactional
Memory Everywhere” [McK09d].
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15.2.1 I/O Operations

One can execute I/O operations within a lock-based crit-
ical section, and, at least in principle, from within an
RCU read-side critical section. What happens when you
attempt to execute an I/O operation from within a transac-
tion?

The underlying problem is that transactions may be
rolled back, for example, due to conflicts. Roughly speak-
ing, this requires that all operations within any given
transaction be idempotent, so that executing the operation
twice has the same effect as executing it once. Unfortu-
nately, I/O is in general the prototypical non-idempotent
operation, making it difficult to include general I/O oper-
ations in transactions.

Here are some options for handling of I/O within trans-
actions:

1. Restrict I/O within transactions to buffered I/O with
in-memory buffers. These buffers may then be in-
cluded in the transaction in the same way that any
other memory location might be included. This
seems to be the mechanism of choice, and it does
work well in many common cases of situations such
as stream I/O and mass-storage I/O. However, spe-
cial handling is required in cases where multiple
record-oriented output streams are merged onto a sin-
gle file from multiple processes, as might be done us-
ing the “a+” option to fopen () or the O_APPEND
flag to open () . In addition, as will be seen in the
next section, common networking operations cannot
be handled via buffering.

2. Prohibit I/O within transactions, so that any attempt
to execute an I/O operation aborts the enclosing
transaction (and perhaps multiple nested transac-
tions). This approach seems to be the conventional
TM approach for unbuffered I/O, but requires that
TM interoperate with other synchronization primi-
tives that do tolerate I/0O.

3. Prohibit I/O within transactions, but enlist the com-
piler’s aid in enforcing this prohibition.

4. Permit only one special “inevitable” transac-
tion [SMSO08] to proceed at any given time, thus
allowing inevitable transactions to contain I/O oper-
ations. This works in general, but severely limits the
scalability and performance of I/O operations. Given
that scalability and performance is a first-class goal
of parallelism, this approach’s generality seems a bit
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self-limiting. Worse yet, use of inevitability to toler-
ate I/O operations seems to prohibit use of manual
transaction-abort operations.!

5. Create new hardware and protocols such that I/O op-
erations can be pulled into the transactional substrate.
In the case of input operations, the hardware would
need to correctly predict the result of the operation,
and to abort the transaction if the prediction failed.

I/O operations are a well-known weakness of TM, and
it is not clear that the problem of supporting I/O in trans-
actions has a reasonable general solution, at least if “rea-
sonable” is to include usable performance and scalability.
Nevertheless, continued time and attention to this problem
will likely produce additional progress.

15.2.2 RPC Operations

One can execute RPCs within a lock-based critical section,
as well as from within an RCU read-side critical section.
What happens when you attempt to execute an RPC from
within a transaction?

If both the RPC request and its response are to be con-
tained within the transaction, and if some part of the trans-
action depends on the result returned by the response, then
it is not possible to use the memory-buffer tricks that can
be used in the case of buffered I/O. Any attempt to take
this buffering approach would deadlock the transaction, as
the request could not be transmitted until the transaction
was guaranteed to succeed, but the transaction’s success
might not be knowable until after the response is received,
as is the case in the following example:

1 begin_trans();

2 rpc_request () ;

3 1 = rpc_response();
4 alil++;

5

end_trans () ;

The transaction’s memory footprint cannot be deter-
mined until after the RPC response is received, and until
the transaction’s memory footprint can be determined, it
is impossible to determine whether the transaction can be
allowed to commit. The only action consistent with trans-
actional semantics is therefore to unconditionally abort
the transaction, which is, to say the least, unhelpful.

Here are some options available to TM:

! This difficulty was pointed out by Michael Factor.
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1. Prohibit RPC within transactions, so that any at-
tempt to execute an RPC operation aborts the enclos-
ing transaction (and perhaps multiple nested transac-
tions). Alternatively, enlist the compiler to enforce
RPC-free transactions. This approach does works,
but will require TM to interact with other synchro-
nization primitives.

2. Permit only one special “inevitable” transac-
tion [SMSO08] to proceed at any given time, thus
allowing inevitable transactions to contain RPC op-
erations. This works in general, but severely limits
the scalability and performance of RPC operations.
Given that scalability and performance is a first-class
goal of parallelism, this approach’s generality seems
a bit self-limiting. Furthermore, use of inevitable
transactions to permit RPC operations rules out man-
ual transaction-abort operations once the RPC oper-
ation has started.

3. Identify special cases where the success of the trans-
action may be determined before the RPC response
is received, and automatically convert these to in-
evitable transactions immediately before sending the
RPC request. Of course, if several concurrent trans-
actions attempt RPC calls in this manner, it might be
necessary to roll all but one of them back, with con-
sequent degradation of performance and scalability.
This approach nevertheless might be valuable given
long-running transactions ending with an RPC. This
approach still has problems with manual transaction-
abort operations.

4. Identify special cases where the RPC response may
be moved out of the transaction, and then proceed
using techniques similar to those used for buffered
I/0.

5. Extend the transactional substrate to include the RPC
server as well as its client. This is in theory possible,
as has been demonstrated by distributed databases.
However, it is unclear whether the requisite perfor-
mance and scalability requirements can be met by
distributed-database techniques, given that memory-
based TM cannot hide such latencies behind those
of slow disk drives. Of course, given the advent of
solid-state disks, it is also unclear how much longer
databases will be permitted to hide their latencies
behind those of disks drives.

As noted in the prior section, I/O is a known weakness

of TM, and RPC is simply an especially problematic case
of I/0.

15.2.3 Memory-Mapping Operations

It is perfectly legal to execute memory-mapping
operations (including mmap (), shmat (), and
munmap () [Gro01]) within a lock-based critical section,
and, at least in principle, from within an RCU read-side
critical section. What happens when you attempt to
execute such an operation from within a transaction?
More to the point, what happens if the memory region
being remapped contains some variables participating in
the current thread’s transaction? And what if this memory
region contains variables participating in some other
thread’s transaction?

It should not be necessary to consider cases where the
TM system’s metadata is remapped, given that most lock-
ing primitives do not define the outcome of remapping
their lock variables.

Here are some memory-mapping options available to
TM:

1. Memory remapping is illegal within a transaction,
and will result in all enclosing transactions being
aborted. This does simplify things somewhat, but
also requires that TM interoperate with synchro-
nization primitives that do tolerate remapping from
within their critical sections.

2. Memory remapping is illegal within a transaction,
and the compiler is enlisted to enforce this prohibi-
tion.

3. Memory mapping is legal within a transaction, but
aborts all other transactions having variables in the
region mapped over.

4. Memory mapping is legal within a transaction, but
the mapping operation will fail if the region being
mapped overlaps with the current transaction’s foot-
print.

5. All memory-mapping operations, whether within or
outside a transaction, check the region being mapped
against the memory footprint of all transactions in
the system. If there is overlap, then the memory-
mapping operation fails.

6. The effect of memory-mapping operations that over-
lap the memory footprint of any transaction in the
system is determined by the TM conflict manager,
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which might dynamically determine whether to fail
the memory-mapping operation or abort any conflict-
ing transactions.

It is interesting to note that munmap () leaves the rel-
evant region of memory unmapped, which could have
additional interesting implications.?

15.2.4 Multithreaded Transactions

It is perfectly legal to create processes and threads while
holding a lock or, for that matter, from within an RCU
read-side critical section. Not only is it legal, but it is quite
simple, as can be seen from the following code fragment:

1 pthread_mutex_lock(...);
2 for (i = 0; 1 < ncpus; i++)
3 pthread_create (&tid[i], ...);
4 for (1 = 0; i < ncpus; 1i++)
5 pthread_join(tidf[i], ...);
6 pthread_mutex_unlock(...);
This pseudo-code fragment uses pthread_

create () to spawn one thread per CPU, then uses
pthread_join () to wait for each to complete, all un-
der the protection of pthread_mutex_lock (). The
effect is to execute a lock-based critical section in parallel,
and one could obtain a similar effect using fork () and
wait (). Of course, the critical section would need to
be quite large to justify the thread-spawning overhead,
but there are many examples of large critical sections in
production software.

What might TM do about thread spawning within a
transaction?

1. Declare pthread_create () to be illegal within
transactions, resulting in transaction abort (preferred)
or undefined behavior. Alternatively, enlist the com-
piler to enforce pthread_create () -free trans-
actions.

2. Permit pthread_create() to be executed
within a transaction, but only the parent thread will
be considered to be part of the transaction. This
approach seems to be reasonably compatible with
existing and posited TM implementations, but seems
to be a trap for the unwary. This approach raises
further questions, such as how to handle conflicting
child-thread accesses.

2 This difference between mapping and unmapping was noted by
Josh Triplett.
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3. Convert the pthread_create ()s to function
calls. This approach is also an attractive nuisance, as
it does not handle the not-uncommon cases where
the child threads communicate with one another. In
addition, it does not permit parallel execution of the
body of the transaction.

4. Extend the transaction to cover the parent and all
child threads. This approach raises interesting ques-
tions about the nature of conflicting accesses, given
that the parent and children are presumably permit-
ted to conflict with each other, but not with other
threads. It also raises interesting questions as to
what should happen if the parent thread does not
wait for its children before committing the transac-
tion. Even more interesting, what happens if the
parent conditionally executes pthread_join ()
based on the values of variables participating in the
transaction? The answers to these questions are rea-
sonably straightforward in the case of locking. The
answers for TM are left as an exercise for the reader.

Given that parallel execution of transactions is com-
monplace in the database world, it is perhaps surprising
that current TM proposals do not provide for it. On the
other hand, the example above is a fairly sophisticated
use of locking that is not normally found in simple text-
book examples, so perhaps its omission is to be expected.
That said, there are rumors that some TM researchers
are investigating fork/join parallelism within transactions,
so perhaps this topic will soon be addressed more thor-
oughly.

15.2.5 Extra-Transactional Accesses

Within a lock-based critical section, it is perfectly legal
to manipulate variables that are concurrently accessed or
even modified outside that lock’s critical section, with one
common example being statistical counters. The same
thing is possible within RCU read-side critical sections,
and is in fact the common case.

Given mechanisms such as the so-called “dirty reads
that are prevalent in production database systems, it is not
surprising that extra-transactional accesses have received
serious attention from the proponents of TM, with the
concepts of weak and strong atomicity [BLMO6] being
but one case in point.

Here are some extra-transactional options available to
TM:

tL)
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1. Conflicts due to extra-transactional accesses always
abort transactions. This is strong atomicity.

2. Conflicts due to extra-transactional accesses are ig-
nored, so only conflicts among transactions can abort
transactions. This is weak atomicity.

3. Transactions are permitted to carry out non-
transactional operations in special cases, such as
when allocating memory or interacting with lock-
based critical sections.

4. Produce hardware extensions that permit some op-
erations (for example, addition) to be carried out
concurrently on a single variable by multiple trans-
actions.

It appears that transactions were conceived as stand-
ing alone, with no interaction required with any other
synchronization mechanism. If so, it is no surprise that
much confusion and complexity arises when combining
transactions with non-transactional accesses. But unless
transactions are to be confined to small updates to iso-
lated data structures, or alternatively to be confined to
new programs that do not interact with the huge body of
existing parallel code, then transactions absolutely must
be so combined if they are to have large-scale practical
impact in the near term.

15.2.6 Time Delays

An important special case of interaction with extra-
transactional accesses involves explicit time delays within
a transaction. Of course, the idea of a time delay within
a transaction flies in the face of TM’s atomicity property,
but one can argue that this sort of thing is what weak
atomicity is all about. Furthermore, correct interaction
with memory-mapped I/O sometimes requires carefully
controlled timing, and applications often use time delays
for varied purposes.

So, what can TM do about time delays within transac-
tions?

1. Ignore time delays within transactions. This has
an appearance of elegance, but like too many other
“elegant” solutions, fails to survive first contact with
legacy code. Such code, which might well have
important time delays in critical sections, would fail
upon being transactionalized.

2. Abort transactions upon encountering a time-delay
operation. This is attractive, but it is unfortunately

not always possible to automatically detect a time-
delay operation. Is that tight loop computing some-
thing important, or is it instead waiting for time to
elapse?

3. Enlist the compiler to prohibit time delays within
transactions.

4. Let the time delays execute normally. Unfortunately,
some TM implementations publish modifications
only at commit time, which would in many cases
defeat the purpose of the time delay.

It is not clear that there is a single correct answer. TM
implementations featuring weak atomicity that publish
changes immediately within the transaction (rolling these
changes back upon abort) might be reasonably well served
by the last alternative. Even in this case, the code at the
other end of the transaction may require a substantial
redesign to tolerate aborted transactions.

15.2.7 Locking

It is commonplace to acquire locks while holding other
locks, which works quite well, at least as long as the
usual well-known software-engineering techniques are
employed to avoid deadlock. It is not unusual to acquire
locks from within RCU read-side critical sections, which
eases deadlock concerns because RCU read-side primi-
tives cannot participated in lock-based deadlock cycles.
But happens when you attempt to acquire a lock from
within a transaction?

In theory, the answer is trivial: simply manipulate the
data structure representing the lock as part of the trans-
action, and everything works out perfectly. In practice, a
number of non-obvious complications [VGS08] can arise,
depending on implementation details of the TM system.
These complications can be resolved, but at the cost of a
45% increase in overhead for locks acquired outside of
transactions and a 300% increase in overhead for locks
acquired within transactions. Although these overheads
might be acceptable for transactional programs contain-
ing small amounts of locking, they are often completely
unacceptable for production-quality lock-based programs
wishing to use the occasional transaction.

1. Use only locking-friendly TM implementations. Un-
fortunately, the locking-unfriendly implementations
have some attractive properties, including low over-
head for successful transactions and the ability to
accommodate extremely large transactions.
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2. Use TM only “in the small” when introducing TM
to lock-based programs, thereby accommodating the
limitations of locking-friendly TM implementations.

3. Set aside locking-based legacy systems entirely, re-
implementing everything in terms of transactions.
This approach has no shortage of advocates, but this
requires that all the issues described in this series be
resolved. During the time it takes to resolve these
issues, competing synchronization mechanisms will
of course also have the opportunity to improve.

4. Use TM strictly as an optimization in lock-based
systems, as was done by the TxLinux [RHPT07]
group. This approach seems sound, but leaves the
locking design constraints (such as the need to avoid
deadlock) firmly in place.

5. Strive to reduce the overhead imposed on locking
primitives.

The fact that there could possibly a problem interfacing
TM and locking came as a surprise to many, which under-
scores the need to try out new mechanisms and primitives
in real-world production software. Fortunately, the ad-
vent of open source means that a huge quantity of such
software is now freely available to everyone, including
researchers.

15.2.8 Reader-Writer Locking

It is commonplace to read-acquire reader-writer locks
while holding other locks, which just works, at least as
long as the usual well-known software-engineering tech-
niques are employed to avoid deadlock. Read-acquiring
reader-writer locks from within RCU read-side critical
sections also works, and doing so eases deadlock concerns
because RCU read-side primitives cannot participated in
lock-based deadlock cycles. But what happens when you
attempt to read-acquire a reader-writer lock from within a
transaction?

Unfortunately, the straightforward approach to read-
acquiring the traditional counter-based reader-writer lock
within a transaction defeats the purpose of the reader-
writer lock. To see this, consider a pair of transactions
concurrently attempting to read-acquire the same reader-
writer lock. Because read-acquisition involves modifying
the reader-writer lock’s data structures, a conflict will
result, which will roll back one of the two transactions.
This behavior is completely inconsistent with the reader-
writer lock’s goal of allowing concurrent readers.
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Here are some options available to TM:

1. Use per-CPU or per-thread reader-writer lock-
ing [HW92], which allows a given CPU (or thread,
respectively) to manipulate only local data when
read-acquiring the lock. This would avoid the con-
flict between the two transactions concurrently read-
acquiring the lock, permitting both to proceed, as in-
tended. Unfortunately, (1) the write-acquisition over-
head of per-CPU/thread locking can be extremely
high, (2) the memory overhead of per-CPU/thread
locking can be prohibitive, and (3) this transforma-
tion is available only when you have access to the
source code in question. Other more-recent scalable
reader-writer locks [LLO09] might avoid some or
all of these problems.

2. Use TM only “in the small” when introducing
TM to lock-based programs, thereby avoiding read-
acquiring reader-writer locks from within transac-
tions.

3. Set aside locking-based legacy systems entirely, re-
implementing everything in terms of transactions.
This approach has no shortage of advocates, but this
requires that all the issues described in this series be
resolved. During the time it takes to resolve these
issues, competing synchronization mechanisms will
of course also have the opportunity to improve.

4. Use TM strictly as an optimization in lock-based sys-
tems, as was done by the TxLinux [RHP*07] group.
This approach seems sound, but leaves the locking
design constraints (such as the need to avoid dead-
lock) firmly in place. Furthermore, this approach can
result in unnecessary transaction rollbacks when mul-
tiple transactions attempt to read-acquire the same
lock.

Of course, there might well be other non-obvious issues
surrounding combining TM with reader-writer locking,
as there in fact were with exclusive locking.

15.2.9 Persistence

There are many different types of locking primitives.
One interesting distinction is persistence, in other words,
whether the lock can exist independently of the address
space of the process using the lock.

Non-persistent locks include pthread_mutex_
lock (), pthread_rwlock_rdlock (), and most
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kernel-level locking primitives. If the memory locations
instantiating a non-persistent lock’s data structures dis-
appear, so does the lock. For typical use of pthread_
mutex_lock (), this means that when the process exits,
all of its locks vanish. This property can be exploited in
order to trivialize lock cleanup at program shutdown time,
but makes it more difficult for unrelated applications to
share locks, as such sharing requires the applications to
share memory.

Persistent locks help avoid the need to share memory
among unrelated applications. Persistent locking APIs in-
clude the flock family, 1ockf (), System V semaphores,
or the O_CREAT flag to open () . These persistent APIs
can be used to protect large-scale operations spanning
runs of multiple applications, and, in the case of O_
CREAT even surviving operating-system reboot. If need
be, locks can span multiple computer systems via dis-
tributed lock managers.

Persistent locks can be used by any application, in-
cluding applications written using multiple languages and
software environments. In fact, a persistent lock might
well be acquired by an application written in C and re-
leased by an application written in Python.

How could a similar persistent functionality be pro-
vided for TM?

1. Restrict persistent transactions to special-purpose
environments designed to support them, for example,
SQL. This clearly works, given the decades-long
history of database systems, but does not provide
the same degree of flexibility provided by persistent
locks.

2. Use snapshot facilities provided by some storage de-
vices and/or filesystems. Unfortunately, this does not
handle network communication, nor does it handle
I/O to devices that do not provide snapshot capabili-
ties, for example, memory sticks.

3. Build a time machine.

Of course, the fact that it is called transactional memory
should give us pause, as the name itself conflicts with
the concept of a persistent transaction. It is nevertheless
worthwhile to consider this possibility as an important
test case probing the inherent limitations of transactional
memory.

15.2.10 Dynamic Linking and Loading

Both lock-based critical sections and RCU read-side criti-
cal sections can legitimately contain code that invokes dy-

namically linked and loaded functions, including C/C++
shared libraries and Java class libraries. Of course, the
code contained in these libraries is by definition unknow-
able at compile time. So, what happens if a dynamically
loaded function is invoked within a transaction?

This question has two parts: (a) how do you dynam-
ically link and load a function within a transaction and
(b) what do you do about the unknowable nature of the
code within this function? To be fair, item (b) poses some
challenges for locking and RCU as well, at least in the-
ory. For example, the dynamically linked function might
introduce a deadlock for locking or might (erroneously)
introduce a quiescent state into an RCU read-side critical
section. The difference is that while the class of opera-
tions permitted in locking and RCU critical sections is
well-understood, there appears to still be considerable
uncertainty in the case of TM. In fact, different implemen-
tations of TM seem to have different restrictions.

So what can TM do about dynamically linked and
loaded library functions? Options for part (a), the ac-
tual loading of the code, include the following:

1. Treat the dynamic linking and loading in a manner
similar to a page fault, so that the function is loaded
and linked, possibly aborting the transaction in the
process. If the transaction is aborted, the retry will
find the function already present, and the transaction
can thus be expected to proceed normally.

2. Disallow dynamic linking and loading of functions
from within transactions.

Options for part (b), the inability to detect TM-
unfriendly operations in a not-yet-loaded function, possi-
bilities include the following:

1. Just execute the code: if there are any TM-unfriendly
operations in the function, simply abort the transac-
tion. Unfortunately, this approach makes it impos-
sible for the compiler to determine whether a given
group of transactions may be safely composed. One
way to permit composability regardless is inevitable
transactions, however, current implementations per-
mit only a single inevitable transaction to proceed
at any given time, which can severely limit perfor-
mance and scalability. Inevitable transactions also
seem to rule out use of manual transaction-abort
operations.

2. Decorate the function declarations indicating which
functions are TM-friendly. These decorations can



15.2. TRANSACTIONAL MEMORY

then be enforced by the compiler’s type system.
Of course, for many languages, this requires lan-
guage extensions to be proposed, standardized, and
implemented, with the corresponding time delays.
That said, the standardization effort is already in
progress [ATS09].

3. As above, disallow dynamic linking and loading of
functions from within transactions.

I/0O operations are of course a known weakness of TM,
and dynamic linking and loading can be thought of as yet
another special case of I/0O. Nevertheless, the proponents
of TM must either solve this problem, or resign them-
selves to a world where TM is but one tool of several in
the parallel programmer’s toolbox. (To be fair, a number
of TM proponents have long since resigned themselves to
a world containing more than just TM.)

15.2.11 Debugging

The usual debugging operations such as breakpoints
work normally within lock-based critical sections and
from RCU read-side critical sections. However,
in initial transactional-memory hardware implementa-
tions [DLMNOQ9] an exception within a transaction will
abort that transaction, which in turn means that break-
points abort all enclosing transactions
So how can transactions be debugged?

1. Use software emulation techniques within transac-
tions containing breakpoints. Of course, it might
be necessary to emulate all transactions any time a
breakpoint is set within the scope of any transaction.
If the runtime system is unable to determine whether
or not a given breakpoint is within the scope of a
transaction, then it might be necessary to emulate all
transactions just to be on the safe side. However, this
approach might impose significant overhead, which
might in turn obscure the bug being pursued.

2. Use only hardware TM implementations that are
capable of handling breakpoint exceptions. Unfortu-
nately, as of this writing (September 2008), all such
implementations are strictly research prototypes.

3. Use only software TM implementations, which are
(very roughly speaking) more tolerant of exceptions
than are the simpler of the hardware TM implemen-
tations. Of course, software TM tends to have higher
overhead than hardware TM, so this approach may
not be acceptable in all situations.
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4. Program more carefully, so as to avoid having bugs
in the transactions in the first place. As soon as you
figure out how to do this, please do let everyone
know the secret!

There is some reason to believe that transactional mem-
ory will deliver productivity improvements compared to
other synchronization mechanisms, but it does seem quite
possible that these improvements could easily be lost if
traditional debugging techniques cannot be applied to
transactions. This seems especially true if transactional
memory is to be used by novices on large transactions. In
contrast, macho “top-gun” programmers might be able to
dispense with such debugging aids, especially for small
transactions.

Therefore, if transactional memory is to deliver on its
productivity promises to novice programmers, the debug-
ging problem does need to be solved.

15.2.12 The exec() System Call

One can execute an exec () system call while holding
a lock, and also from within an RCU read-side critical
section. The exact semantics depends on the type of
primitive.

In the case of non-persistent primitives (including
pthread_mutex_lock (), pthread_rwlock_
rdlock (), and RCU), if the exec () succeeds, the
whole address space vanishes, along with any locks being
held. Of course, if the exec () fails, the address space
still lives, so any associated locks would also still live. A
bit strange perhaps, but reasonably well defined.

On the other hand, persistent primitives (including the
flock family, Lockf (), System V semaphores, and the
O_CREAT flag to open () ) would survive regardless of
whether the exec () succeeded or failed, so that the
exec ()ed program might well release them.

Quick Quiz 15.1: What about non-persistent primi-
tives represented by data structures in mmap () regions of
memory? What happens when their is an exec () within
a critical section of such a primitive? ll

What happens when you attempt to execute an exec ()
system call from within a transaction?

1. Disallow exec () within transactions, so that the
enclosing transactions abort upon encountering the
exec (). This is well defined, but clearly requires
non-TM synchronization primitives for use in con-
junction with exec ().
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2. Disallow exec () within transactions, with the com-
piler enforcing this prohibition. There is a draft
specification for TM in C++ that takes this ap-
proach, allowing functions to be decorated with
the transaction_safe and transaction_
unsafe attributes.? This approach has some advan-
tages over aborting the transaction at runtime, but
again requires non-TM synchronization primitives
for use in conjunction with exec ().

3. Treat the transaction in a manner similar to non-
persistent Locking primitives, so that the transac-
tion survives if exec() fails, and silently commits
if the exec () succeeds. The case were some of
the variables affected by the transaction reside in
mmap () ed memory (and thus could survive a suc-
cessful exec () system call) is left as an exercise
for the reader.

4. Abort the transaction (and the exec () system call)
if the exec () system call would have succeeded,
but allow the transaction to continue if the exec ()
system call would fail. This is in some sense the
“correct” approach, but it would require considerable
work for a rather unsatisfying result.

The exec () system call is perhaps the strangest ex-
ample of an obstacle to universal TM applicability, as it
is not completely clear what approach makes sense, and
some might argue that this is merely a reflection of the
perils of interacting with execs in real life. That said, the
two options prohibiting exec () within transactions are
perhaps the most logical of the group.

15.2.13 RCU

Because read-copy update (RCU) finds its main use in
the Linux kernel, one might be forgiven for assuming that
there had been no academic work on combining RCU and
TM. However, the TxLinux group from the University of
Texas at Austin had no choice [RHP™07]. The fact that
they applied TM to the Linux 2.6 kernel, which uses RCU,
forced them to integrate TM and RCU, with TM taking
the place of locking for RCU updates. Unfortunately,
although the paper does state that the RCU implemen-
tation’s locks (e.g., rcu_ctrlblk.lock) were con-
verted to transactions, it is silent about what happened to
locks used in RCU-based updates (e.g., dcache_lock).

3 Thanks to Mark Moir for pointing me at this spec, and to Michael
Wong for having pointed me at an earlier revision some time back.

It is important to note that RCU permits readers and
updaters to run concurrently, further permitting RCU read-
ers to access data that is in the act of being updated. Of
course, this property of RCU, whatever its performance,
scalability, and real-time-response benefits might be, flies
in the face of the underlying atomicity properties of TM.

So how should TM-based updates interact with concur-
rent RCU readers? Some possibilities are as follows:

1. RCU readers abort concurrent conflicting TM up-
dates. This is in fact the approach taken by the
TxLinux project. This approach does preserve RCU
semantics, and also preserves RCU’s read-side per-
formance, scalability, and real-time-response prop-
erties, but it does have the unfortunate side-effect of
unnecessarily aborting conflicting updates. In the
worst case, a long sequence of RCU readers could
potentially starve all updaters, which could in theory
result in system hangs. In addition, not all TM im-
plementations offer the strong atomicity required to
implement this approach.

2. RCU readers that run concurrently with conflicting
TM updates get old (pre-transaction) values from any
conflicting RCU loads. This preserves RCU seman-
tics and performance, and also prevents RCU-update
starvation. However, not all TM implementations
can provide timely access to old values of variables
that have been tentatively updated by an in-flight
transaction. In particular, log-based TM implementa-
tions that maintain old values in the log (thus making
for excellent TM commit performance) are not likely
to be happy with this approach. Perhaps the rcu__
dereference () primitive can be leveraged to
permit RCU to access the old values within a greater
range of TM implementations, though performance
might still be an issue.

3. If an RCU reader executes an access that conflicts
with an in-flight transaction, then that RCU access is
delayed until the conflicting transaction either com-
mits or aborts. This approach preserves RCU se-
mantics, but not RCU’s performance or real-time
response, particularly in presence of long-running
transactions. In addition, not all TM implementa-
tions are capable of delaying conflicting accesses.
That said, this approach seems eminently reasonable
for hardware TM implementations that support only
small transactions.

4. RCU readers are converted to transactions. This ap-
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proach pretty much guarantees that RCU is compati-
ble with any TM implementation, but it also imposes
TM’s rollbacks on RCU read-side critical sections,
destroying RCU’s real-time response guarantees, and
also degrading RCU’s read-side performance. Fur-
thermore, this approach is infeasible in cases where
any of the RCU read-side critical sections contains
operations that the TM implementation in question
is incapable of handling.

5. Many update-side uses of RCU modify a single
pointer to publish a new data structure. In some these
cases, RCU can safely be permitted to see a trans-
actional pointer update that is subsequently rolled
back, as long as the transaction respects memory
ordering and as long as the roll-back process uses
call_rcu/() to free up the corresponding struc-
ture. Unfortunately, not all TM implementations
respect memory barriers within a transaction. Ap-
parently, the thought is that because transactions are
supposed to be atomic, the ordering of the accesses
within the transaction is not supposed to matter.

6. Prohibit use of TM in RCU updates. This is guaran-
teed to work, but seems a bit restrictive.

It seems likely that additional approaches will be un-
covered, especially given the advent of user-level RCU
implementations.*

15.2.14 Discussion

The obstacles to universal TM adoption lead to the fol-
lowing conclusions:

1. One interesting property of TM is the fact that trans-
actions are subject to rollback and retry. This prop-
erty underlies TM’s difficulties with irreversible op-
erations, including unbuffered /O, RPCs, memory-
mapping operations, time delays, and the exec ()
system call. This property also has the unfortunate
consequence of introducing all the complexities in-
herent in the possibility of failure into synchroniza-
tion primitives, often in a developer-visible manner.

2. Another interesting property of TM, noted by Sh-
peisman et al. [SATG'09], is that TM intertwines
the synchronization with the data it protects. This

4 Kudos to the TxLinux group, Maged Michael, and Josh Triplett for
coming up with a number of the above alternatives.

property underlies TM’s issues with I/O, memory-
mapping operations, extra-transactional accesses,
and debugging breakpoints. In contrast, conven-
tional synchronization primitives, including locking
and RCU, maintain a clear separation between the
synchronization primitives and the data that they
protect.

3. One of the stated goals of many workers in the TM
area is to ease parallelization of large sequential pro-
grams. As such, individual transactions are com-
monly expected to execute serially, which might
do much to explain TM’s issues with multithreaded
transactions.

What should TM researchers and developers do about
all of this?

One approach is to focus on TM in the small, focusing
on situations where hardware assist potentially provides
substantial advantages over other synchronization primi-
tives. This is in fact the approach Sun took with its Rock
research CPU [DLMNO9]. Some TM researchers seem to
agree with this approach, while others have much higher
hopes for TM.

Of course, it is quite possible that TM will be able to
take on larger problems, and this section lists a few of the
issues that must be resolved if TM is to achieve this lofty
goal.

Of course, everyone involved should treat this as a
learning experience. It would seem that TM researchers
have great deal to learn from practitioners who have suc-
cessfully built large software systems using traditional
synchronization primitives.

And vice versa.

15.3 Shared-Memory Parallel

Functional Programming

15.4 Process-Based Parallel Func-

tional Programming
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Appendix A

Important Questions

The following sections discuss some important ques-
tions relating to SMP programming. Each section also
shows how to avoid having to worry about the correspond-
ing question, which can be extremely important if your
goal is to simply get your SMP code working as quickly
and painlessly as possible — which is an excellent goal,
by the way!

Although the answers to these questions are often quite
a bit less intuitive than they would be in a single-threaded
setting, with a bit of work, they are not that difficult to
understand. If you managed to master recursion, there is
nothing in here that should pose an overwhelming chal-
lenge.

A.1 What Does “After’’ Mean?

“After” is an intuitive, but surprisingly difficult concept.
An important non-intuitive issue is that code can be de-
layed at any point for any amount of time. Consider
a producing and a consuming thread that communicate
using a global struct with a timestamp “t” and integer
fields “a”, “b”, and “c”. The producer loops recording
the current time (in seconds since 1970 in decimal), then
updating the values of “a”, “b”, and “c”, as shown in
Figure A.1. The consumer code loops, also recording the
current time, but also copying the producer’s timestamp
along with the fields “a”, “b”, and “c”, as shown in Fig-
ure A.2. At the end of the run, the consumer outputs a list
of anomalous recordings, e.g., where time has appeared
to go backwards.

Quick Quiz A.1: What SMP coding errors can you
see in these examples? See t ime . c for full code.

One might intuitively expect that the difference be-
tween the producer and consumer timestamps would be
quite small, as it should not take much time for the pro-
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1 /x WARNING: BUGGY CODE. =/
2 void *producer (void *ignored)

3 {

4 int 1 = 0;

5

6 producer_ready = 1;

7 while (!goflag)

8 sched_yield();

9 while (goflag) {
10 ss.t = dgettimeofday();
11 ss.a = ss.c + 1;

12 ss.b = ss.a + 1;

13 ss.c = ss.b + 1;

14 i++;

15 }

16 printf ("producer exiting: %d samples\n", 1i);
17 producer_done = 1;

18 return (NULL);

19 }

Figure A.1: “After” Producer Function

ducer to record the timestamps or the values. An excerpt
of some sample output on a dual-core 1GHz x86 is shown
in Table A.1. Here, the “seq” column is the number of
times through the loop, the “time” column is the time of
the anomaly in seconds, the “delta” column is the num-
ber of seconds the consumer’s timestamp follows that of
the producer (where a negative value indicates that the
consumer has collected its timestamp before the producer
did), and the columns labelled “a”, “b”, and “c” show
the amount that these variables increased since the prior
snapshot collected by the consumer.

seq time (seconds) delta a b c
17563: 1152396.251585 (-16.928) 27 27 27
18004: 1152396.252581 (-12.875) 24 24 24
18163: 1152396.252955 (-19.073) 18 18 18
18765: 1152396.254449  (-148.773) 216 216 216
19863: 1152396.256960 (-6.914) 18 18 18
21644: 1152396.260959 (-5.960) 18 18 18
23408: 1152396.264957 (-20.027) 15 15 15

Table A.1: “After” Program Sample Output


time.c
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Why is time going backwards? The number in paren-
theses is the difference in microseconds, with a large
number exceeding 10 microseconds, and one exceeding
even 100 microseconds! Please note that this CPU can
potentially execute about more than 100,000 instructions
in that time.

1 /x WARNING: BUGGY CODE. x/ One possible reason is given by the following sequence
2 void xconsumer (void *ignored)
3 of events:

4 struct snapshot_consumer curssc;
5 int i =0; 1. Consumer obtains timestamp (Figure A.2, line 13).
6 int j = 0;
7
8

consumer ready = 1; 2. Consumer is preempted.
9  while (ss.t == 0.0) { . .

10 sched_yield(); 3. An arbitrary amount of time passes.

11 }

12 while (goflag) { 4. Producer obtains timestamp (Figure A.1, line 10).

13 curssc.tc = dgettimeofday();

. cursse.t = 9s.t; 5. Consumer starts running again, and picks up the
curssc.a = sS.a; . N .

16 curssc.b = ss.b; producer’s timestamp (Figure A.2, line 14).

17 curssc.c = Ss.C;

12 curssc.seduence = cursed; In this scenario, the producer’s timestamp might be an
curssc.iserror = 0; . . .

20 if ((curssc.t > curssc.tc) || arbitrary amount of time after the consumer’s timestamp.

21 modgreater (ssc[i].a, curssc.a) || How do you avoid agonizing over the meaning of “after”

22 modgreater (ssc[i].b, curssc.b) || . 9

23 modgreater (ssc[i].c, curssc.c) || 1n your SMP code?

24 modgreater (curssc.a, sscl[i].a + maxdelta) || Slmply use SMP primitives as designed.

25 modgreater (curssc.b, sscl[i].b + maxdelta) || . . . .

26 modgreater (curssc.c, sscli].c + maxdelta)) { In this example, the easiest fix is to use locking, for

27 it example, acquire a lock in the producer before line 10

28 curssc.iserror = 1; . . . . . .

29 } else if (ssc[i].iserror) in Figure A.1 and in the consumer before line 13 in Fig-

gg i+[’_fi' ure A.2. This lock must also be released after line 13 in
sSsCl1 = cursscy . . . .

32 curseqtt; Figure A.1 and after line 17 in Figure A.2. These locks

;31 ifb 1 ; 1 >= NSNAPS) cause the code segments in line 10-13 of Figure A.1 and

reak; . . . .
35 ) in line 13-17 of Figure A.2 to exclude each other, in other

gg printf (f'consumef) exited, collected %d items of %d\n"words, to run atomically with respect to each other. This
i, curseq);

38 if (ssc[0].iserror) is represented in Figure A.3: the locking prevents any of
39 printf("0/%d: %.6f %.6f (%.3f) 3d %d ¥d\n", the boxes of code from overlapping in time, so that the
40 ssc[0] .sequence, ssc[j]l.t, sscl[]j].tc, N . .
a1 (sscl3].tc - ssc[3].t) = 1000000, consumer’s timestamp must be collected after the prior
?é o (5 SSCFjJ -ar Séc[)l'] -b, sscl3].c); producer’s timestamp. The segments of code in each box
or (J = 0; J <= 1; J++ . . .. .
44 if (ssc[j].iserror) in this figure are termed “critical sections”; only one such
45 printf("%d: %.6f (%.3f) %d %d %d\n", critical section may be executing at a given time.
46 ssc[j].sequence, . .. . . .
a7 sscl3].t, (sscl3].tc - ssci(3].t) « 1000000, This addition of locking results in output as shown in
a8 ssc(jl.a - sscl] - 1l.a, Figure A.2. Here there are no instances of time going
49 sscl[j].b - ssc[j - 1].b, . .
50 sscli].c - ssclj - 1].c); backwards, instead, there are only cases with more than
2; } consumer_done = 1; 1,000 counts different between consecutive reads by the
consumer.
. . seq time (seconds) delta a b c
Figure A.2: “After” Consumer Function 58507:  1156521.556296  (3.815) 1485 1485 1485

403927: 1156523.446636  (2.146) 2583 2583 2583

Table A.2: Locked “After” Program Sample Output

Quick Quiz A.2: How could there be such a large gap
between successive consumer reads? See t imelocked.
¢ for full code. l


timelocked.c
timelocked.c

A.1. WHAT DOES “AFTER” MEAN?

Time
Producer

ss.t
ss.
ss.
ss.

dgettimeofday () ;
ss.c + 1;
ss.a + 1;
ss.b + 1;

Qoo

Consumer

curssc.tc = gettimeofday () ;
curssc.t ss.t;
curssc.a ss.a;
curssc.b ss.b;
curssc.c ss.c;

Producer

ss.t
ss.
ss.
ss.

dgettimeofday () ;
ss.c + 1;
ss.a + 1;
ss.b + 1;

Q0w

Figure A.3: Effect of Locking on Snapshot Collection

In summary, if you acquire an exclusive lock, you know
that anything you do while holding that lock will appear
to happen after anything done by any prior holder of that
lock. No need to worry about which CPU did or did not
execute a memory barrier, no need to worry about the
CPU or compiler reordering operations — life is simple.
Of course, the fact that this locking prevents these two
pieces of code from running concurrently might limit
the program’s ability to gain increased performance on
multiprocessors, possibly resulting in a “safe but slow” sit-
uation. Chapter 5 describes ways of gaining performance
and scalability in many situations.

However, in most cases, if you find yourself worrying
about what happens before or after a given piece of code,
you should take this as a hint to make better use of the
standard primitives. Let these primitives do the worrying
for you.
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Appendix B

Synchronization Primitives

All but the simplest parallel programs require synchro-
nization primitives. This appendix gives a quick overview
of a set of primitives based loosely on those in the Linux
kernel.

Why Linux? Because it is one of the well-known,
largest, and easily obtained bodies of parallel code avail-
able. We believe that reading code is, if anything, more
important to learning than is writing code, so by using
examples similar to real code in the Linux kernel, we are
enabling you to use Linux to continue your learning as
you progress beyond the confines of this book.

Why based loosely rather than following the Linux ker-
nel API exactly? First, the Linux API changes with time,
o any attempt to track it exactly would likely end in total
frustration for all involved. Second, many of the mem-
bers of the Linux kernel API are specialized for use in a
production-quality operating-system kernel. This special-
ization introduces complexities that, though absolutely
necessary in the Linux kernel itself, are often more trouble
than they are worth in the “toy” programs that we will be
using to demonstrate SMP and realtime design principles
and practices. For example, properly checking for error
conditions such as memory exhaustion is a “must” in the
Linux kernel, however, in “toy” programs it is perfectly
acceptable to simply abort () the program, correct the
problem, and rerun.

Finally, it should be possible to implement a
trivial mapping layer between this API and most
production-level APIs. A pthreads implementa-
tion is available (CodeSamples/api-pthreads/
api-pthreads.h), and a Linux-kernel-module API
would not be difficult to create.

Quick Quiz B.1: Give an example of a parallel pro-
gram that could be written without synchronization primi-
tives. l

The following sections describe commonly used classes
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of synchronization primitives. @ @ @ More esoteric prim-
itives will be introduced in later revision.

Section B.1 covers organization/initialization primi-
tives; Section B.2 presents thread creation, destruction,
and control primitives; Section B.3 presents locking prim-
itives; Section B.4 presents per-thread and per-CPU vari-
able primitives; and Section B.5 gives an overview of the
relative performance of the various primitives.

B.1 Organization and Initialization

@@@ currently include ../api.h, and there is only
pthreads. Expand and complete once the CodeSamples
structure settles down.

B.1.1

You must invoke smp_init () before invoking any
other primitives.

smp_init():

B.2 Thread Creation, Destruction,
and Control

This API focuses on “threads”, which are a locus of con-
trol.! Each such thread has an identifier of type thread_
id_t, and no two threads running at a given time will
have the same identifier. Threads share everything ex-
cept for per-thread local state,> which includes program
counter and stack.

The thread API is shown in Figure B.1, and members
are described in the following sections.

! There are many other names for similar software constructs, in-
cluding “process”, “task™, “fiber”, “event”, and so on. Similar design
principles apply to all of them.

2 How is that for a circular definition?


CodeSamples/api-pthreads/api-pthreads.h
CodeSamples/api-pthreads/api-pthreads.h
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int smp_thread_id(void)
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thread_id_t create_thread(void * (xfunc) (void ), void xarg)

for_each_thread(t)
for_each_running_thread(t)

void xwait_thread(thread_id_t tid)
void wait_all_threads (void)

Figure B.1: Thread API

B.2.1 create_thread()

The create_thread () primitive creates a new thread,
starting the new thread’s execution at the function
func specified by create_thread()’s first argu-
ment, and passing it the argument specified by create_
thread()’s second argument. This newly created
thread will terminate when it returns from the starting
function specified by func. The create_thread ()
primitive returns the thread_id_t corresponding to
the newly created child thread.

This primitive will abort the program if more than NR_
THREADS threads are created, counting the one implic-
itly created by running the program. NR_THREADS is
a compile-time constant that may be modified, though
some systems may have an upper bound for the allowable
number of threads.

B.2.2 smp_thread_id()

Because the thread_id_t returned from create_
thread() is system-dependent, the smp_thread_
id () primitive returns a thread index corresponding to
the thread making the request. This index is guaranteed
to be less than the maximum number of threads that have
been in existence since the program started, and is there-
fore useful for bitmasks, array indices, and the like.

B.2.3 for_each_thread()

The for_each_thread () macro loops through all
threads that exist, including all threads that would exist
if created. This macro is useful for handling per-thread
variables as will be seen in Section B.4.

B.2.4 for_each_running_thread()

The for_each_running_thread () macro loops
through only those threads that currently exist. It is the
caller’s responsibility to synchronize with thread creation
and deletion if required.

B.2.5 wait_thread()

The wait_thread () primitive waits for completion
of the thread specified by the thread_id_t passed to
it. This in no way interferes with the execution of the
specified thread; instead, it merely waits for it. Note that
wait_thread () returns the value that was returned by
the corresponding thread.

B.2.6 wait_all_threads()

The wait_all_threads () primitive waits for com-
pletion of all currently running threads. It is the caller’s
responsibility to synchronize with thread creation and
deletion if required. However, this primitive is normally
used to clean up and the end of a run, so such synchro-
nization is normally not needed.

B.2.7 Example Usage

Figure B.2 shows an example hello-world-like child
thread. As noted earlier, each thread is allocated its own
stack, so each thread has its own private arg argument
and myarg variable. Each child simply prints its argu-
ment and its smp_thread_id () before exiting. Note
that the ret urn statement on line 7 terminates the thread,
returning a NULL to whoever invokes wait_thread ()
on this thread.

myarg, smp_thread_id());
return NULL;

1 void xthread_test (void =xarg)

2

3 int myarg = (int)arg;

4

5 printf ("child thread %d: smp_thread_id() = %d\n",
6

7

8

Figure B.2: Example Child Thread

The parent program is shown in Figure B.3. It invokes
smp_init () toinitialize the threading system on line 6,
parses arguments on lines 7-14, and announces its pres-
ence on line 15. It creates the specified number of child



B.4. PER-THREAD VARIABLES

threads on lines 16-17, and waits for them to complete
on line 18. Note that wait_all_ threads () discards
the threads return values, as in this case they are all NULL,
which is not very interesting.

1 int main(int argc, char =*argv[])

2 {

3 int 1i;

4 int nkids = 1;

5

6 smp_init ();

7 if (argc > 1) {

8 nkids = strtoul (argv[1l], NULL, O0);

9 if (nkids > NR_THREADS) {

10 fprintf (stderr, "nkids=%d too big, max=%d\n",
11 nkids, NR_THREADS) ;

12 usage (argv[0]);

13 }

14 }

15 printf ("Parent spawning %d threads.\n", nkids);
16 for (i = 0; 1 < nkids; i++)

17 create_thread (thread_test, (void *)1i);

18 wait_all_threads();
19 printf ("All threads completed.\n", nkids);
20 exit (0);

Figure B.3: Example Parent Thread

B.3 Locking

The locking API is shown in Figure B.4, each API element
being described in the following sections.

void spin_lock_init (spinlock_t =*sp);
void spin_lock (spinlock_t =*sp);

int spin_trylock (spinlock_t =sp);
void spin_unlock (spinlock_t #sp);

Figure B.4: Locking API

B.3.1

The spin_lock_init () primitive initializes the spec-
ified spinlock_t variable, and must be invoked before
this variable is passed to any other spinlock primitive.

spin_lock_init()

B.3.2

The spin_lock () primitive acquires the specified spin-
lock, if necessary, waiting until the spinlock becomes
available. In some environments, such as pthreads, this
waiting will involve “spinning”, while in others, such as
the Linux kernel, it will involve blocking.

spin_lock()
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The key point is that only one thread may hold a spin-
lock at any given time.

B.3.3

The spin_trylock () primitive acquires the specified
spinlock, but only if it is immediately available. It returns
true if it was able to acquire the spinlock and false
otherwise.

spin_trylock()

B.3.4 spin_unlock()

The spin_unlock () primitive releases the specified
spinlock, allowing other threads to acquire it.
@ @ @ likely need to add reader-writer locking.

B.3.5 Example Usage

A spinlock named mutex may be used to protect a vari-
able counter as follows:

spin_lock (&mutex) ;
counter++;
spin_unlock (&mutex) ;

Quick Quiz B.2: What problems could occur if the
variable counter were incremented without the protec-
tion of mutex? M

However, the spin_lock () and spin_unlock ()
primitives do have performance consequences, as will be
seen in Section B.5.

B.4 Per-Thread Variables

Figure B.5 shows the per-thread-variable API. This API
provides the per-thread equivalent of global variables.
Although this API is, strictly speaking, not necessary, it
can greatly simply coding.

DEFINE_PER_THREAD (type, name)

DECLARE_PER_THREAD (type, name)

per_thread(name, thread)

__get_thread_var (name)
init_per_thread(name, v)

Figure B.5: Per-Thread-Variable API

Quick Quiz B.3: How could you work around the
lack of a per-thread-variable API on systems that do not
provide it? Il
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B.4.1 DEFINE_PER_THREAD()

The DEFINE_PER_THREAD () primitive defines a per-
thread variable. Unfortunately, it is not possible to pro-
vide an initializer in the way permitted by the Linux ker-
nel’s DEFINE_PER_THREAD () primitive, but there is
an init_per_thread () primitive that permits easy
runtime initialization.

B.4.2 DECLARE_PER _THREAD()

The DECLARE_PER_THREAD () primitive is a declara-
tion in the C sense, as opposed to a definition. Thus, a
DECLARE_PER_THREAD () primitive may be used to
access a per-thread variable defined in some other file.

B.4.3 per_thread()

The per_thread () primitive accesses the specified
thread’s variable.

B.4.4 _ get_thread_var()

The _ _get_thread_var () primitive accesses the
current thread’s variable.

B.4.5 init_per_thread()

The init_per_thread () primitive sets all threads’
instances of the specified variable to the specified value.

B.4.6 Usage Example

Suppose that we have a counter that is incremented very
frequently but read out quite rarely. As will become clear
in Section B.5, it is helpful to implement such a counter
using a per-CPU variable. Such a variable can be defined
as follows:

DEFINE_PER_THREAD (int, counter);

The counter must be initialized as follows:

init_per_thread(counter, 0);

A thread can increment its instance of this counter as
follows:

__get_thread_var (counter) ++;

APPENDIX B. SYNCHRONIZATION PRIMITIVES

The value of the counter is then the sum of its instances.
A snapshot of the value of the counter can thus be col-
lected as follows:

for_each_thread (i)
sum += per_thread(counter, 1i);

Again, it is possible to gain a similar effect using other
mechanisms, but per-thread variables combine conve-
nience and high performance.

B.5 Performance

It is instructive to compare the performance of the locked
increment shown in Section B.3 to that of per-thread vari-
ables (see Section B.4), as well as to conventional incre-
ment (as in “counter++").

@ @ @ need parable on cache thrashing.

@@ @ more here using performance results from a
modest multiprocessor.

@@ @ Also work in something about critical-section
size? Or put later?

The difference in performance is quite large, to put it
mildly. The purpose of this book is to help you write
SMP programs, perhaps with realtime response, while
avoiding such performance pitfalls. The next section
starts this process by describing some of the reasons for
this performance shortfall.
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Why Memory Barriers?

So what possessed CPU designers to cause them to in-
flict memory barriers on poor unsuspecting SMP software
designers?

In short, because reordering memory references allows
much better performance, and so memory barriers are
needed to force ordering in things like synchronization
primitives whose correct operation depends on ordered
memory references.

Getting a more detailed answer to this question requires
a good understanding of how CPU caches work, and
especially what is required to make caches really work
well. The following sections:

1. present the structure of a cache,

2. describe how cache-coherency protocols ensure that
CPUs agree on the value of each location in memory,
and, finally,

. outline how store buffers and invalidate queues help
caches and cache-coherency protocols achieve high
performance.

We will see that memory barriers are a necessary evil that
is required to enable good performance and scalability,
an evil that stems from the fact that CPUs are orders of
magnitude faster than are both the interconnects between
them and the memory they are attempting to access.

C.1 Cache Structure

Modern CPUs are much faster than are modern memory
systems. A 2006 CPU might be capable of executing ten
instructions per nanosecond, but will require many tens of
nanoseconds to fetch a data item from main memory. This
disparity in speed — more than two orders of magnitude
— has resulted in the multi-megabyte caches found on
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modern CPUs. These caches are associated with the CPUs
as shown in Figure C.1, and can typically be accessed in
a few cycles.!

CPUO CPU 1

Cache Cache

Interconnect

Memory

Figure C.1: Modern Computer System Cache Structure

Data flows among the CPUs’ caches and memory in
fixed-length blocks called “cache lines”, which are nor-
mally a power of two in size, ranging from 16 to 256
bytes. When a given data item is first accessed by a given
CPU, it will be absent from that CPU’s cache, mean-
ing that a “cache miss” (or, more specifically, a “startup”
or “warmup” cache miss) has occurred. The cache miss
means that the CPU will have to wait (or be “stalled”) for
hundreds of cycles while the item is fetched from memory.
However, the item will be loaded into that CPU’s cache,
so that subsequent accesses will find it in the cache and
therefore run at full speed.

11t is standard practice to use multiple levels of cache, with a small
level-one cache close to the CPU with single-cycle access time, and a
larger level-two cache with a longer access time, perhaps roughly ten
clock cycles. Higher-performance CPUs often have three or even four
levels of cache.
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Way 0 Way 1

0x0 0x12345000

O0x1 0x12345100

0x2 0x12345200

0x3 0x12345300

0x4 0x12345400

0x5 0x12345500

0x6 0x12345600

0x7 0x12345700

0x8 0x12345800

0x9 0x12345900

OxA 0x12345A00

0xB 0x12345B00

0xC| 0x12345C00

0xD 0x12345D00

0xE 0x12345E00 0x43210E00
OxF

Figure C.2: CPU Cache Structure

After some time, the CPU’s cache will fill, and subse-
quent misses will likely need to eject an item from the
cache in order to make room for the newly fetched item.
Such a cache miss is termed a “capacity miss”, because it
is caused by the cache’s limited capacity. However, most
caches can be forced to eject an old item to make room
for a new item even when they are not yet full. This is due
to the fact that large caches are implemented as hardware
hash tables with fixed-size hash buckets (or “sets”, as
CPU designers call them) and no chaining, as shown in
Figure C.2.

This cache has sixteen “sets” and two “ways” for a
total of 32 “lines”, each entry containing a single 256-byte

“cache line”, which is a 256-byte-aligned block of memory.

This cache line size is a little on the large size, but makes
the hexadecimal arithmetic much simpler. In hardware
parlance, this is a two-way set-associative cache, and is
analogous to a software hash table with sixteen buckets,
where each bucket’s hash chain is limited to at most two
elements. The size (32 cache lines in this case) and the
associativity (two in this case) are collectively called the
cache’s “geometry”. Since this cache is implemented in
hardware, the hash function is extremely simple: extract
four bits from the memory address.

In Figure C.2, each box corresponds to a cache entry,
which can contain a 256-byte cache line. However, a
cache entry can be empty, as indicated by the empty boxes
in the figure. The rest of the boxes are flagged with the
memory address of the cache line that they contain. Since
the cache lines must be 256-byte aligned, the low eight
bits of each address are zero, and the choice of hardware
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hash function means that the next-higher four bits match
the hash line number.

The situation depicted in the figure might arise if the
program’s code were located at address 0x43210E00
through 0x43210EFF, and this program accessed data
sequentially from 0x12345000 through 0x12345EFF. Sup-
pose that the program were now to access location
0x12345F00. This location hashes to line OxF, and both
ways of this line are empty, so the corresponding 256-
byte line can be accommodated. If the program were to
access location 0x1233000, which hashes to line 0x0, the
corresponding 256-byte cache line can be accommodated
in way 1. However, if the program were to access location
0x1233E00, which hashes to line OXE, one of the existing
lines must be ejected from the cache to make room for the
new cache line. If this ejected line were accessed later, a
cache miss would result. Such a cache miss is termed an
“associativity miss”.

Thus far, we have been considering only cases where
a CPU reads a data item. What happens when it does
a write? Because it is important that all CPUs agree on
the value of a given data item, before a given CPU writes
to that data item, it must first cause it to be removed,
or “invalidated”, from other CPUs’ caches. Once this
invalidation has completed, the CPU may safely modify
the data item. If the data item was present in this CPU’s
cache, but was read-only, this process is termed a “write
miss”. Once a given CPU has completed invalidating a
given data item from other CPUs’ caches, that CPU may
repeatedly write (and read) that data item.

Later, if one of the other CPUs attempts to access the
data item, it will incur a cache miss, this time because
the first CPU invalidated the item in order to write to
it. This type of cache miss is termed a “communication
miss”, since it is usually due to several CPUs using the
data items to communicate (for example, a lock is a data
item that is used to communicate among CPUs using a
mutual-exclusion algorithm).

Clearly, much care must be taken to ensure that all
CPUs maintain a coherent view of the data. With all this
fetching, invalidating, and writing, it is easy to imagine
data being lost or (perhaps worse) different CPUs having
conflicting values for the same data item in their respec-
tive caches. These problems are prevented by “cache-
coherency protocols”, described in the next section.
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C.2 Cache-Coherence Protocols

Cache-coherency protocols manage cache-line states so
as to prevent inconsistent or lost data. These protocols
can be quite complex, with many tens of states,? but for
our purposes we need only concern ourselves with the
four-state MESI cache-coherence protocol.

C.2.1 MESI States

MESI stands for “modified”, “exclusive”, “shared”, and
“invalid”, the four states a given cache line can take on
using this protocol. Caches using this protocol therefore
maintain a two-bit state “tag” on each cache line in addi-
tion to that line’s physical address and data.

A line in the “modified” state has been subject to a
recent memory store from the corresponding CPU, and
the corresponding memory is guaranteed not to appear
in any other CPU’s cache. Cache lines in the “modified”
state can thus be said to be “owned” by the CPU. Because
this cache holds the only up-to-date copy of the data, this
cache is ultimately responsible for either writing it back
to memory or handing it off to some other cache, and
must do so before reusing this line to hold other data.

The “exclusive” state is very similar to the “modified”
state, the single exception being that the cache line has
not yet been modified by the corresponding CPU, which
in turn means that the copy of the cache line’s data that
resides in memory is up-to-date. However, since the CPU
can store to this line at any time, without consulting other
CPUgs, a line in the “exclusive” state can still be said to be
owned by the corresponding CPU. That said, because the
corresponding value in memory is up to date, this cache
can discard this data without writing it back to memory
or handing it off to some other CPU.

A line in the “shared” state might be replicated in at
least one other CPU’s cache, so that this CPU is not
permitted to store to the line without first consulting with
other CPUs. As with the “exclusive” state, because the
corresponding value in memory is up to date, this cache
can discard this data without writing it back to memory
or handing it off to some other CPU.

A line in the “invalid” state is empty, in other words,
it holds no data. When new data enters the cache, it is
placed into a cache line that was in the “invalid” state if
possible. This approach is preferred because replacing a

2 See Culler et al. [CSG99] pages 670 and 671 for the nine-state
and 26-state diagrams for SGI Origin2000 and Sequent (now IBM)
NUMA-Q, respectively. Both diagrams are significantly simpler than
real life.
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line in any other state could result in an expensive cache
miss should the replaced line be referenced in the future.

Since all CPUs must maintain a coherent view of the
data carried in the cache lines, the cache-coherence proto-
col provides messages that coordinate the movement of
cache lines through the system.

C.2.2 MESI Protocol Messages

Many of the transitions described in the previous section
require communication among the CPUs. If the CPUs are
on a single shared bus, the following messages suffice:

* Read: The “read” message contains the physical
address of the cache line to be read.

* Read Response: The “read response” message con-
tains the data requested by an earlier “read” message.
This “read response” message might be supplied ei-
ther by memory or by one of the other caches. For
example, if one of the caches has the desired data
in “modified” state, that cache must supply the “read
response” message.

Invalidate: The “invalidate” message contains the
physical address of the cache line to be invalidated.
All other caches must remove the corresponding data
from their caches and respond.

Invalidate Acknowledge: A CPU receiving an “in-
validate” message must respond with an “invalidate
acknowledge” message after removing the specified
data from its cache.

Read Invalidate: The “read invalidate” message con-
tains the physical address of the cache line to be
read, while at the same time directing other caches
to remove the data. Hence, it is a combination of a
“read” and an “invalidate”, as indicated by its name.
A “read invalidate” message requires both a “read
response” and a set of “invalidate acknowledge” mes-
sages in reply.

Writeback: The “writeback” message contains both
the address and the data to be written back to mem-
ory (and perhaps “snooped” into other CPUs’ caches
along the way). This message permits caches to eject
lines in the “modified” state as needed to make room
for other data.

Interestingly enough, a shared-memory multiprocessor
system really is a message-passing computer under the
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covers. This means that clusters of SMP machines that
use distributed shared memory are using message passing
to implement shared memory at two different levels of
the system architecture.

Quick Quiz C.1: What happens if two CPUs attempt
to invalidate the same cache line concurrently? l

Quick Quiz C.2: When an “invalidate” message ap-
pears in a large multiprocessor, every CPU must give an
“invalidate acknowledge” response. Wouldn’t the result-
ing “storm” of “invalidate acknowledge” responses totally
saturate the system bus? Hll

Quick Quiz C.3: If SMP machines are really using
message passing anyway, why bother with SMP at all? i

C.2.3 MESI State Diagram

A given cache line’s state changes as protocol messages
are sent and received, as shown in Figure C.3.

Figure C.3: MESI Cache-Coherency State Diagram

The transition arcs in this figure are as follows:

e Transition (a): A cache line is written back to mem-
ory, but the CPU retains it in its cache and further
retains the right to modify it. This transition requires
a “writeback” message.

e Transition (b): The CPU writes to the cache line that
it already had exclusive access to. This transition
does not require any messages to be sent or received.

¢ Transition (c): The CPU receives a “read invalidate”
message for a cache line that it has modified. The
CPU must invalidate its local copy, then respond
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with both a “read response” and an “invalidate ac-
knowledge” message, both sending the data to the
requesting CPU and indicating that it no longer has
a local copy.

Transition (d): The CPU does an atomic read-
modify-write operation on a data item that was not
present in its cache. It transmits a “read invalidate”,
receiving the data via a “read response”. The CPU
can complete the transition once it has also received
a full set of “invalidate acknowledge” responses.

Transition (e): The CPU does an atomic read-
modify-write operation on a data item that was pre-
viously read-only in its cache. It must transmit “in-
validate” messages, and must wait for a full set of
“invalidate acknowledge” responses before complet-
ing the transition.

Transition (f): Some other CPU reads the cache line,
and it is supplied from this CPU’s cache, which re-
tains a read-only copy, possibly also writing it back
to memory. This transition is initiated by the recep-
tion of a “read” message, and this CPU responds
with a “read response” message containing the re-
quested data.

Transition (g): Some other CPU reads a data item
in this cache line, and it is supplied either from this
CPU’s cache or from memory. In either case, this
CPU retains a read-only copy. This transition is
initiated by the reception of a “read” message, and
this CPU responds with a “read response” message
containing the requested data.

Transition (h): This CPU realizes that it will soon
need to write to some data item in this cache line,
and thus transmits an “invalidate” message. The
CPU cannot complete the transition until it receives
a full set of “invalidate acknowledge” responses. Al-
ternatively, all other CPUs eject this cache line from
their caches via “writeback” messages (presumably
to make room for other cache lines), so that this CPU
is the last CPU caching it.

Transition (i): Some other CPU does an atomic read-
modify-write operation on a data item in a cache line
held only in this CPU’s cache, so this CPU invali-
dates it from its cache. This transition is initiated
by the reception of a “read invalidate” message, and
this CPU responds with both a “read response” and
an “invalidate acknowledge” message.



C.3. STORES RESULT IN UNNECESSARY STALLS

e Transition (j): This CPU does a store to a data item
in a cache line that was not in its cache, and thus
transmits a “read invalidate” message. The CPU can-
not complete the transition until it receives the “read
response” and a full set of “invalidate acknowledge”
messages. The cache line will presumably transition
to “modified” state via transition (b) as soon as the
actual store completes.

Transition (k): This CPU loads a data item in a cache
line that was not in its cache. The CPU transmits a
“read” message, and completes the transition upon
receiving the corresponding “read response”.

Transition (1): Some other CPU does a store to a
data item in this cache line, but holds this cache
line in read-only state due to its being held in other
CPUSs’ caches (such as the current CPU’s cache).
This transition is initiated by the reception of an
“invalidate” message, and this CPU responds with an
“invalidate acknowledge” message.

Quick Quiz C.4: How does the hardware handle the
delayed transitions described above? H

C.2.4 MESI Protocol Example

Let’s now look at this from the perspective of a cache
line’s worth of data, initially residing in memory at ad-
dress 0, as it travels through the various single-line direct-
mapped caches in a four-CPU system. Table C.1 shows
this flow of data, with the first column showing the se-
quence of operations, the second the CPU performing the
operation, the third the operation being performed, the
next four the state of each CPU’s cache line (memory ad-
dress followed by MESI state), and the final two columns
whether the corresponding memory contents are up to
date (“V”) or not (“I”).

Initially, the CPU cache lines in which the data would
reside are in the “invalid” state, and the data is valid in
memory. When CPU 0 loads the data at address 0, it
enters the “shared” state in CPU 0’s cache, and is still
valid in memory. CPU 3 also loads the data at address 0,
so that it is in the “shared” state in both CPUs’ caches,
and is still valid in memory. Next CPU 0 loads some
other cache line (at address 8), which forces the data at
address 0 out of its cache via an invalidation, replacing it
with the data at address 8. CPU 2 now does a load from
address 0, but this CPU realizes that it will soon need
to store to it, and so it uses a “read invalidate” message
in order to gain an exclusive copy, invalidating it from
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CPU 3’s cache (though the copy in memory remains up to
date). Next CPU 2 does its anticipated store, changing the
state to “modified”. The copy of the data in memory is
now out of date. CPU 1 does an atomic increment, using
a “read invalidate” to snoop the data from CPU 2’s cache
and invalidate it, so that the copy in CPU 1’s cache is in
the “modified” state (and the copy in memory remains out
of date). Finally, CPU 1 reads the cache line at address 8,
which uses a “writeback” message to push address 0’s
data back out to memory.

Note that we end with data in some of the CPU’s
caches.

Quick Quiz C.5: What sequence of operations would
put the CPUs’ caches all back into the “invalid” state? Il

C.3 Stores Result in Unnecessary
Stalls

Although the cache structure shown in Figure C.1 pro-
vides good performance for repeated reads and writes
from a given CPU to a given item of data, its performance
for the first write to a given cache line is quite poor. To
see this, consider Figure C.4, which shows a timeline of
a write by CPU 0 to a cacheline held in CPU 1’s cache.
Since CPU 0 must wait for the cache line to arrive before
it can write to it, CPU 0 must stall for an extended period
of time.?

But there is no real reason to force CPU O to stall for
so long — after all, regardless of what data happens to be
in the cache line that CPU 1 sends it, CPU 0 is going to
unconditionally overwrite it.

C.3.1 Store Buffers

One way to prevent this unnecessary stalling of writes is
to add “store buffers” between each CPU and its cache,
as shown in Figure C.5. With the addition of these store
buffers, CPU 0 can simply record its write in its store
buffer and continue executing. When the cache line does
finally make its way from CPU 1 to CPU 0, the data will
be moved from the store buffer to the cache line.
However, there are complications that must be ad-
dressed, which are covered in the next two sections.

3 The time required to transfer a cache line from one CPU’s cache to
another’s is typically a few orders of magnitude more than that required
to execute a simple register-to-register instruction.
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CPU Cache Memory
Sequence # | CPU # | Operation 0 [ 1 [ 2 [ 3 0 ‘ 8
0 Initial State -/l -/1 -/l -/1 V|V
1 0 Load 0/s | -1 -1 ST || VIV
2 3 Load 0/s | -1 ST [ OS|| V]| V
3 0 Invalidation || 8/S | -/I ST | 0S| V]V
4 2 RMW 8/S | -1 OE | -1 || V]|V
5 2 Store S | M | OM | N1 I v
6 1 Atomic Inc 8/S | OM | -1 -/1 I \Y%
7 1 Writeback 8/S | 8/S -1 ST ||V V
Table C.1: Cache Coherence Example
CPUO CPU 1
Write CPUO CPU 1
A :
Invalidate I i
Y Y
Store Store
Buffer Buffer
=
@ Y Y
Acknowledgement
Cache Cache
Y Interconnect
V v Memory

Figure C.4: Writes See Unnecessary Stalls

C.3.2 Store Forwarding

To see the first complication, a violation of self-
consistency, consider the following code with variables
“a” and “b” both initially zero, and with the cache line
containing variable “a” initially owned by CPU 1 and that
containing “b” initially owned by CPU 0:

1 a=1;
2 b =a+ 1;
3 assert (b == 2);

One would not expect the assertion to fail. However, if
one were foolish enough to use the very simple architec-
ture shown in Figure C.5, one would be surprised. Such
a system could potentially see the following sequence of
events:

1. CPU O starts executing the a = 1.

Figure C.5: Caches With Store Buffers

CPU 0 looks “a” up in the cache, and finds that it is
missing.

CPU 0 therefore sends a “read invalidate” message
in order to get exclusive ownership of the cache line

containing “a”.

CPU 0 records the store to “a” in its store buffer.

CPU 1 receives the “read invalidate” message, and
responds by transmitting the cache line and remov-
ing that cacheline from its cache.

CPU O starts executing theb = a + 1.

. CPU 0 receives the cache line from CPU 1, which

still has a value of zero for “a”.
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8. CPU 0 loads “a” from its cache, finding the value
Zero.

9. CPU 0 applies the entry from its store queue to the

newly arrived cache line, setting the value of “a” in
its cache to one.

10. CPU 0 adds one to the value zero loaded for “a”
above, and stores it into the cache line containing “b”
(which we will assume is already owned by CPU 0).

11. CPU O executes assert (b == 2), which fails.

[IP%1]

The problem is that we have two copies of “a”, one in
the cache and the other in the store buffer.

This example breaks a very important guarantee,
namely that each CPU will always see its own opera-
tions as if they happened in program order. Breaking
this guarantee is violently counter-intuitive to software
types, so much so that the hardware guys took pity and
implemented “store forwarding”, where each CPU refers
to (or “snoops”) its store buffer as well as its cache when
performing loads, as shown in Figure C.6. In other words,
a given CPU’s stores are directly forwarded to its subse-
quent loads, without having to pass through the cache.

CPUO CPU 1
A A
Y Y
- Store - Store
»| Buffer »| Buffer
Y Y
Cache Cache

Interconnect

Memory

Figure C.6: Caches With Store Forwarding

With store forwarding in place, item 8 in the above
sequence would have found the correct value of 1 for “a”
in the store buffer, so that the final value of “b” would
have been 2, as one would hope.
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C.3.3 Store Buffers and Memory Barriers

To see the second complication, a violation of global
memory ordering, consider the following code sequences
with variables “a” and “b” initially zero:

void foo (void)
{

a=1;

b =1;
}

void bar (void)
{
while (b == 0) continue;
1

assert (a = ) ;

1
2
3
4
5
6
7
8
9
0
1

1
11}
Suppose CPU 0 executes foo() and CPU 1 executes

bar(). Suppose further that the cache line containing “a”
resides only in CPU 1’s cache, and that the cache line
containing “b” is owned by CPU 0. Then the sequence of

operations might be as follows:

1. CPU 0 executes a = 1. The cache line is not in
CPU 0’s cache, so CPU 0 places the new value of
“a” in its store buffer and transmits a “read invalidate”
message.

2. CPU 1 executes while (b == 0) continue,
but the cache line containing “b” is not in its cache.
It therefore transmits a “read” message.

3. CPU O executes b = 1. It already owns this cache
line (in other words, the cache line is already in either
the “modified” or the “exclusive” state), so it stores
the new value of “b” in its cache line.

4. CPU 0 receives the “read” message, and transmits
the cache line containing the now-updated value of
“b” to CPU 1, also marking the line as “shared” in its
own cache.

5. CPU 1 receives the cache line containing “b” and
installs it in its cache.

6. CPU 1 can now  finish  executing
while (b == 0) continue, and since
it finds that the value of “b” is 1, it proceeds to the
next statement.

7. CPU 1 executes the assert (a == 1), and, since
CPU 1 is working with the old value of “a”, this
assertion fails.
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8. CPU 1 receives the “read invalidate” message, and
transmits the cache line containing “a” to CPU 0 and
invalidates this cache line from its own cache. But it
is too late.

[P L]

9. CPU 0 receives the cache line containing “a” and
applies the buffered store just in time to fall victim
to CPU 1’s failed assertion.

Quick Quiz C.6: In step 1 above, why does CPU 0
need to issue a “read invalidate” rather than a simple
“invalidate”? W

The hardware designers cannot help directly here, since
the CPUs have no idea which variables are related, let
alone how they might be related. Therefore, the hardware
designers provide memory-barrier instructions to allow
the software to tell the CPU about such relations. The
program fragment must be updated to contain the memory
barrier:

1 void foo (void)
2 A

3 a=1;

4 smp_mb () ;

5 b =1;
6}

7
8

void bar (void)
9 {
10 while (b == 0)
11 assert (a == 1);
12 }

continue;

The memory barrier smp_mb () will cause the CPU
to flush its store buffer before applying each subsequent
store to its variable’s cache line. The CPU could either
simply stall until the store buffer was empty before pro-
ceeding, or it could use the store buffer to hold subsequent
stores until all of the prior entries in the store buffer had
been applied.

With this latter approach the sequence of operations
might be as follows:

1. CPU O executes a = 1. The cache line is not in
CPU 0’s cache, so CPU 0 places the new value of
“a” in its store buffer and transmits a “read invalidate”
message.

2. CPU 1 executes while (b == 0) continue,
but the cache line containing “b” is not in its cache.
It therefore transmits a “read” message.

3. CPU 0 executes smp_mb (), and marks all current
store-buffer entries (namely, the a = 1).

10.

11.

12.

13.

14.

15.

. CPUOexecutesb =

. CPU 0 receives the cache line containing “a
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1. It already owns this cache
line (in other words, the cache line is already in
either the “modified” or the “exclusive” state), but
there is a marked entry in the store buffer. Therefore,
rather than store the new value of “b” in the cache
line, it instead places it in the store buffer (but in an
unmarked entry).

. CPU 0 receives the “read” message, and transmits

the cache line containing the original value of “b” to
CPU 1. It also marks its own copy of this cache line
as “shared”.

. CPU 1 receives the cache line containing “b” and

installs it in its cache.

. CPU 1 can now load the value of “b”, but since it

finds that the value of “b” is still 0, it repeats the
while statement. The new value of “b” is safely
hidden in CPU 0’s store buffer.

. CPU 1 receives the “read invalidate” message, and

transmits the cache line containing “a” to CPU 0 and
invalidates this cache line from its own cache.

[TPeL)

and
applies the buffered store, placing this line into the
“modified” state.

Since the store to “a” was the only entry in the store
buffer that was marked by the smp_mb (), CPU 0
can also store the new value of “b” — except for
the fact that the cache line containing “b” is now in
“shared” state.

CPU 0 therefore sends an “invalidate” message to
CPU 1.

CPU 1 receives the “invalidate” message, invalidates
the cache line containing “b” from its cache, and
sends an “acknowledgement” message to CPU 0.

CPU 1 executes while (b == 0) continue,
but the cache line containing “b” is not in its cache.
It therefore transmits a “read” message to CPU 0.

CPU O receives the “acknowledgement” message,
and puts the cache line containing “b” into the “ex-
clusive” state. CPU 0 now stores the new value of
“b” into the cache line.

CPU 0 receives the “read” message, and transmits
the cache line containing the new value of “b” to
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CPU 1. It also marks its own copy of this cache line
as “shared”.

16. CPU 1 receives the cache line containing “b” and
installs it in its cache.

17. CPU 1 can now load the value of “b”, and since it
finds that the value of “b” is 1, it exits the while
loop and proceeds to the next statement.

18. CPU 1 executes the assert (a == 1), but the
cache line containing “a” is no longer in its cache.
Once it gets this cache from CPU 0, it will be work-
ing with the up-to-date value of ““a”, and the assertion

therefore passes.

As you can see, this process involves no small amount
of bookkeeping. Even something intuitively simple, like
“load the value of a” can involve lots of complex steps in
silicon.

C.4 Store Sequences Result in Un-
necessary Stalls

Unfortunately, each store buffer must be relatively small,
which means that a CPU executing a modest sequence
of stores can fill its store buffer (for example, if all of
them result in cache misses). At that point, the CPU must
once again wait for invalidations to complete in order
to drain its store buffer before it can continue executing.
This same situation can arise immediately after a memory
barrier, when all subsequent store instructions must wait
for invalidations to complete, regardless of whether or not
these stores result in cache misses.

This situation can be improved by making invalidate
acknowledge messages arrive more quickly. One way of
accomplishing this is to use per-CPU queues of invalidate
messages, or “invalidate queues”.

C.4.1 Invalidate Queues

One reason that invalidate acknowledge messages can
take so long is that they must ensure that the correspond-
ing cache line is actually invalidated, and this invalidation
can be delayed if the cache is busy, for example, if the
CPU is intensively loading and storing data, all of which
resides in the cache. In addition, if a large number of
invalidate messages arrive in a short time period, a given
CPU might fall behind in processing them, thus possibly
stalling all the other CPUs.

However, the CPU need not actually invalidate the
cache line before sending the acknowledgement. It could
instead queue the invalidate message with the understand-
ing that the message will be processed before the CPU
sends any further messages regarding that cache line.

C.4.2 Invalidate Queues and Invalidate Ac-
knowledge

Figure C.7 shows a system with invalidate queues. A
CPU with an invalidate queue may acknowledge an in-
validate message as soon as it is placed in the queue,
instead of having to wait until the corresponding line is
actually invalidated. Of course, the CPU must refer to its
invalidate queue when preparing to transmit invalidation
messages — if an entry for the corresponding cache line
is in the invalidate queue, the CPU cannot immediately
transmit the invalidate message; it must instead wait until
the invalidate-queue entry has been processed.

CPUO CPU 1
A A
Y Y
- Store - Store
»| Buffer »| Buffer
Y Y
Cache Cache
l l
Invalidate Invalidate
Queue Queue
Interconnect
Memory

Figure C.7: Caches With Invalidate Queues

Placing an entry into the invalidate queue is essentially
a promise by the CPU to process that entry before trans-
mitting any MESI protocol messages regarding that cache
line. As long as the corresponding data structures are not
highly contended, the CPU will rarely be inconvenienced
by such a promise.
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However, the fact that invalidate messages can be
buffered in the invalidate queue provides additional op-
portunity for memory-misordering, as discussed in the
next section.

C.4.3 Invalidate Queues and Memory Bar-
riers

Let us suppose that CPUs queue invalidation requests, but
respond to them immediately. This approach minimizes
the cache-invalidation latency seen by CPUs doing stores,
but can defeat memory barriers, as seen in the following
example.

Suppose the values of “a” and “b” are initially zero, that
“a” is replicated read-only (MESI “shared” state), and that
“b” is owned by CPU 0 (MESI “exclusive” or “modified”
state). Then suppose that CPU 0 executes foo () while
CPU 1 executes function bar () in the following code
fragment:

1 void foo (void)
2

3 a=1;

4 smp_mb () ;

5 b =1;
6
7
8

void bar (void)

9 {
10 while (b == 0) continue;
11 assert(a == 1);
12 }

Then the sequence of operations might be as follows:

1. CPU 0O executes a = 1. The corresponding cache
line is read-only in CPU 0’s cache, so CPU 0 places
the new value of “a” in its store buffer and trans-
mits an “invalidate” message in order to flush the
corresponding cache line from CPU 1’s cache.

2. CPU 1 executes while (b == 0) continue,
but the cache line containing “b” is not in its cache.
It therefore transmits a “read” message.

3. CPU 1 receives CPU 0’s “invalidate” message,
queues it, and immediately responds to it.

4. CPU 0 receives the response from CPU 1, and is
therefore free to proceed past the smp_mb () on
line 4 above, moving the value of “a” from its store
buffer to its cache line.
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5. CPU O executes b = 1. It already owns this cache
line (in other words, the cache line is already in either
the “modified” or the “exclusive” state), so it stores
the new value of “b” in its cache line.

6. CPU 0 receives the “read” message, and transmits
the cache line containing the now-updated value of
“b” to CPU 1, also marking the line as “shared” in its
own cache.

7. CPU 1 receives the cache line containing “b” and
installs it in its cache.

8. CPU 1 can now  finish  executing
while (b == 0) continue, and since
it finds that the value of “b” is 1, it proceeds to the
next statement.

9. CPU 1 executes the assert (a == 1), and, since
the old value of “a” is still in CPU 1’s cache, this
assertion fails.

10. Despite the assertion failure, CPU 1 processes the
queued “invalidate” message, and (tardily) invali-
dates the cache line containing “a” from its own

cache.

Quick Quiz C.7: In step 1 of the first scenario in Sec-
tion C.4.3, why is an “invalidate” sent instead of a “read
invalidate” message? Doesn’t CPU 0 need the values of
the other variables that share this cache line with “a”? i

There is clearly not much point in accelerating invali-
dation responses if doing so causes memory barriers to
effectively be ignored. However, the memory-barrier in-
structions can interact with the invalidate queue, so that
when a given CPU executes a memory barrier, it marks
all the entries currently in its invalidate queue, and forces
any subsequent load to wait until all marked entries have
been applied to the CPU’s cache. Therefore, we can add
a memory barrier to function bar as follows:

1 void foo(void)

2 {

3 a=1;

4 smp_mb () ;

5 b =1;

6 }

7

8 void bar (void)

9 {
10 while (b == 0) continue;
11 smp_mb () ;
12 assert(a == 1);
13 }
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Quick Quiz C.8: Say what??? Why do we need a
memory barrier here, given that the CPU cannot possi-
bly execute the assert () until after the while loop
completes? H

With this change, the sequence of operations might be
as follows:

1. CPU 0O executes a = 1. The corresponding cache
line is read-only in CPU 0’s cache, so CPU 0 places
the new value of “a” in its store buffer and trans-
mits an “invalidate” message in order to flush the
corresponding cache line from CPU 1°s cache.

2. CPU 1 executes while (b == 0) continue,
but the cache line containing “b” is not in its cache.
It therefore transmits a “read” message.

3. CPU 1 receives CPU 0’s “invalidate” message,
queues it, and immediately responds to it.

4. CPU O receives the response from CPU 1, and is
therefore free to proceed past the smp_mb () on
line 4 above, moving the value of “a” from its store
buffer to its cache line.

5. CPU O executes b = 1. It already owns this cache
line (in other words, the cache line is already in either
the “modified” or the “exclusive” state), so it stores
the new value of “b” in its cache line.

6. CPU 0 receives the “read” message, and transmits
the cache line containing the now-updated value of
“b” to CPU 1, also marking the line as “shared” in its
own cache.

7. CPU 1 receives the cache line containing “b” and
installs it in its cache.

8. CPU 1 can now  finish  executing
while (b == 0) continue, and since
it finds that the value of “b” is 1, it proceeds to the
next statement, which is now a memory barrier.

9. CPU 1 must now stall until it processes all pre-
existing messages in its invalidation queue.

10. CPU 1 now processes the queued “invalidate” mes-

sage, and invalidates the cache line containing “a
from its own cache.

11. CPU 1 executes the assert (a == 1), and, since
the cache line containing “a” is no longer in CPU 1’s

cache, it transmits a “read” message.
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12. CPU 0 responds to this “read” message with the
cache line containing the new value of “a”.

13. CPU 1 receives this cache line, which contains a
value of 1 for “a”, so that the assertion does not
trigger.

With much passing of MESI messages, the CPUs arrive
at the correct answer. This section illustrates why CPU
designers must be extremely careful with their cache-
coherence optimizations.

C.5 Read and Write Memory Bar-
riers

In the previous section, memory barriers were used to
mark entries in both the store buffer and the invalidate
queue. But in our code fragment, foo () had no reason
to do anything with the invalidate queue, and bar ()
similarly had no reason to do anything with the store
queue.

Many CPU architectures therefore provide weaker
memory-barrier instructions that do only one or the other
of these two. Roughly speaking, a “read memory barrier”
marks only the invalidate queue and a “write memory
barrier” marks only the store buffer, while a full-fledged
memory barrier does both.

The effect of this is that a read memory barrier orders
only loads on the CPU that executes it, so that all loads
preceding the read memory barrier will appear to have
completed before any load following the read memory
barrier. Similarly, a write memory barrier orders only
stores, again on the CPU that executes it, and again so
that all stores preceding the write memory barrier will
appear to have completed before any store following the
write memory barrier. A full-fledged memory barrier
orders both loads and stores, but again only on the CPU
executing the memory barrier.

If we update foo and bar to use read and write mem-
ory barriers, they appear as follows:



200

1 void foo(void)
2 A

3 a=1;

4 smp_wmb () ;

5 b =1;
6
7
8

void bar (void)

9 {

10 while (b == 0) continue;
11 smp_rmb () ;

12 assert(a == 1);

13 }

Some computers have even more flavors of memory
barriers, but understanding these three variants will pro-
vide a good introduction to memory barriers in general.

C.6 Example Memory-Barrier Se-
quences

This section presents some seductive but subtly broken
uses of memory barriers. Although many of them will
work most of the time, and some will work all the time
on some specific CPUs, these uses must be avoided if the
goal is to produce code that works reliably on all CPUs.
To help us better see the subtle breakage, we first need to
focus on an ordering-hostile architecture.

C.6.1 Ordering-Hostile Architecture

Paul has come across a number of ordering-hostile com-
puter systems, but the nature of the hostility has always
been extremely subtle, and understanding it has required
detailed knowledge of the specific hardware. Rather than
picking on a specific hardware vendor, and as a presum-
ably attractive alternative to dragging the reader through
detailed technical specifications, let us instead design a
mythical but maximally memory-ordering-hostile com-
puter architecture.*

This hardware must obey the following ordering con-
straints [McKO05a, McKO05b]:

1. Each CPU will always perceive its own memory
accesses as occurring in program order.

4 Readers preferring a detailed look at real hardware architectures are
encouraged to consult CPU vendors’ manuals [SW95, Adv02, Int02b,
IBM94, LSHO02, SPA94, Int04b, IntO4a, IntO4c], Gharachorloo’s disser-
tation [Gha95], or Peter Sewell’s work [Sew].
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2. CPUs will reorder a given operation with a store
only if the two operations are referencing different
locations.

3. All of a given CPU’s loads preceding a read memory
barrier (smp__rmb () ) will be perceived by all CPUs
to precede any loads following that read memory
barrier.

4. All of a given CPU’s stores preceding a write mem-
ory barrier (smp_wmb () ) will be perceived by all
CPUs to precede any stores following that write
memory barrier.

5. All of a given CPU’s accesses (loads and stores)
preceding a full memory barrier (smp_mb () ) will
be perceived by all CPUs to precede any accesses
following that memory barrier.

Quick Quiz C.9: Does the guarantee that each CPU
sees its own memory accesses in order also guarantee that
each user-level thread will see its own memory accesses
in order? Why or why not? l

Imagine a large non-uniform cache architecture
(NUCA) system that, in order to provide fair allocation of
interconnect bandwidth to CPUs in a given node, provided
per-CPU queues in each node’s interconnect interface, as
shown in Figure C.8. Although a given CPU’s accesses
are ordered as specified by memory barriers executed by
that CPU, however, the relative order of a given pair of
CPUs’ accesses could be severely reordered, as we will
see.’

C.6.2 Example 1

Table C.2 shows three code fragments, executed concur-
rently by CPUs 0, 1, and 2. Each of “a”, “b”, and “c” are
initially zero.

Suppose CPU 0 recently experienced many cache
misses, so that its message queue is full, but that CPU 1
has been running exclusively within the cache, so that its
message queue is empty. Then CPU 0’s assignment to
“a” and “b” will appear in Node 0’s cache immediately
(and thus be visible to CPU 1), but will be blocked behind
CPU 0’s prior traffic. In contrast, CPU 1’s assignment

to “c” will sail through CPU 1’s previously empty queue.

5 Any real hardware architect or designer will no doubt be loudly
calling for Ralph on the porcelain intercom, as they just might be just a
bit upset about the prospect of working out which queue should handle a
message involving a cache line that both CPUs accessed, to say nothing
of the many races that this example poses. All I can say is “Give me a
better example”.
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CPUO | CPU 1 CPU 2
a = 1;
smp_wnmb () ;| while (b == 0);
b =1; c=1; z = c;
smp_rmb () ;
X = ay
assert (z == [ x == 1);
Table C.2: Memory Barrier Example 1
o NodeO ‘ o Nodei ~ (and thus be visible to CPU 1), but will be blocked behind
‘[ cPuo | [cput |: [ cPu2 | [ cpus | CPU 0’s prior traffic. In contrast, CPU 1’s assignment
i [ : i [ : to “b” will sail through CPU 1’s previously empty queue.
Cache ‘ Cache Therefore, 'CPU 2 might well see CPU I’s assignrpent to
: : “b” before it sees CPU 0’s assignment to “a”, causing the
I I } f I I assertion to fire, despite the memory barriers.
CPUO | [ CPUT |: | cPu2 | [ CPU3 .
' |Message| |Message| " |Message| |Message| In theory, portable code shouldnoFrely on'thl's example
Queue Queue |: Queue Queue | code fragment, however, as before, in practice it actually
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr does work on most mainstream computer systems.
Interconnect
Memory C.6.4 Example 3

Figure C.8: Example Ordering-Hostile Architecture

Therefore, CPU 2 might well see CPU 1’s assignment to
“c” before it sees CPU 0’s assignment to “a”, causing the
assertion to fire, despite the memory barriers.

In theory, portable code cannot rely on this example
code sequence, however, in practice it actually does work
on all mainstream computer systems.

Quick Quiz C.10: Could this code be fixed by in-
serting a memory barrier between CPU 1’s “while” and
assignment to “c”? Why or why not? ll

C.6.3 Example 2

Table C.3 shows three code fragments, executed concur-
rently by CPUs 0, 1, and 2. Both “a” and “b” are initially
Zero.

Again, suppose CPU 0 recently experienced many
cache misses, so that its message queue is full, but that
CPU 1 has been running exclusively within the cache, so
that its message queue is empty. Then CPU 0’s assign-

[T L)

ment to “a” will appear in Node 0’s cache immediately

Table C.4 shows three code fragments, executed concur-
rently by CPUs 0, 1, and 2. All variables are initially
zero.

Note that neither CPU 1 nor CPU 2 can proceed to
line 5 until they see CPU (’s assignment to “b” on line 3.
Once CPU 1 and 2 have executed their memory barriers on
line 4, they are both guaranteed to see all assignments by
CPU 0 preceding its memory barrier on line 2. Similarly,
CPU 0’s memory barrier on line 8 pairs with those of
CPUs 1 and 2 on line 4, so that CPU 0 will not execute
the assignment to “¢” on line 9 until after its assignment
to “a” is visible to both of the other CPUs. Therefore,
CPU 2’s assertion on line 9 is guaranteed not to fire.

Quick Quiz C.11: Suppose that lines 3-5 for CPUs 1
and 2 in Table C.4 are in an interrupt handler, and that the
CPU 2’s line 9 is run at process level. What changes, if
any, are required to enable the code to work correctly, in
other words, to prevent the assertion from firing? ll

Quick Quiz C.12: If CPU 2 executed an
assert (e==0] | c==1) in the example in Table C.4,
would this assert ever trigger? l

The Linux kernel’s synchronize_rcu () primitive
uses an algorithm similar to that shown in this example.
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CPU 0 CPU 1 | CPU 2
a = 1; | while (a == 0);
smp_mb () ; y = b;
b =1; smp_rmb () ;
X = a;
assert (y == [ x == 1);
Table C.3: Memory Barrier Example 2
| CPU 0 | CPU | | CPU 2
1 a = 1;
2 smb_wmb () ;
3 b =1; while (b == 0); while (b == 0)
4 smp_mb () ; smp_mb () ;
5 c = 1; d=1;
6 | while (c == 0);
7 while (d == 0);
8 smp_mb () ;
9 e = 1; assert(e == 0 || a == 1);

Table C.4: Memory Barrier Example 3

C.7 Memory-Barrier Instructions

For Specific CPUs

Each CPU has its own peculiar memory-barrier instruc-
tions, which can make portability a challenge, as indicated
by Table C.5. In fact, many software environments, in-
cluding pthreads and Java, simply prohibit direct use of
memory barriers, restricting the programmer to mutual-
exclusion primitives that incorporate them to the extent
that they are required. In the table, the first four columns
indicate whether a given CPU allows the four possible
combinations of loads and stores to be reordered. The
next two columns indicate whether a given CPU allows
loads and stores to be reordered with atomic instructions.

The seventh column, data-dependent reads reordered,
requires some explanation, which is undertaken in the
following section covering Alpha CPUs. The short ver-
sion is that Alpha requires memory barriers for readers
as well as updaters of linked data structures. Yes, this
does mean that Alpha can in effect fetch the data pointed
to before it fetches the pointer itself, strange but true.
Please see: http://www.openvms .compaqg.com/
wizard/wiz_2637.html if you think that I am just
making this up. The benefit of this extremely weak mem-
ory model is that Alpha can use simpler cache hardware,
which in turn permitted higher clock frequency in Alpha’s
heyday.

The last column indicates whether a given CPU has a
incoherent instruction cache and pipeline. Such CPUs

require special instructions be executed for self-modifying
code.

Parenthesized CPU names indicate modes that are ar-
chitecturally allowed, but rarely used in practice.

The common "just say no" approach to memory barri-
ers can be eminently reasonable where it applies, but there
are environments, such as the Linux kernel, where direct
use of memory barriers is required. Therefore, Linux pro-
vides a carefully chosen least-common-denominator set
of memory-barrier primitives, which are as follows:

e smp_mb (): “memory barrier” that orders both
loads and stores. This means that loads and stores
preceding the memory barrier will be committed to
memory before any loads and stores following the
memory barrier.

e smp_rmb (): “read memory barrier” that orders

only loads.

e smp_wmb () : “write memory barrier” that orders

only stores.

* smp_read_barrier_depends () that forces
subsequent operations that depend on prior oper-
ations to be ordered. This primitive is a no-op on all
platforms except Alpha.

mmiowb () that forces ordering on MMIO writes
that are guarded by global spinlocks. This primitive
is a no-op on all platforms on which the memory bar-
riers in spinlocks already enforce MMIO ordering.


http://www.openvms.compaq.com/wizard/wiz_2637.html
http://www.openvms.compaq.com/wizard/wiz_2637.html
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The platforms with a non-no-op mmiowb () defini-
tion include some (but not all) IA64, FRV, MIPS,
and SH systems. This primitive is relatively new, so
relatively few drivers take advantage of it.

The smp_mb (), smp_rmb (), and smp_wmb () prim-
itives also force the compiler to eschew any op-
timizations that would have the effect of reorder-
ing memory optimizations across the barriers. The
smp_read_barrier_depends () primitive has a
similar effect, but only on Alpha CPUs. See Section 12.2
for more information on use of these primitives.These
primitives generate code only in SMP kernels, however,
each also has a UP version (mb (), rmb (), wmb (), and
read_barrier_depends (), respectively) that gen-
erate a memory barrier even in UP kernels. The smp__
versions should be used in most cases. However, these
latter primitives are useful when writing drivers, because
MMIO accesses must remain ordered even in UP kernels.
In absence of memory-barrier instructions, both CPUs
and compilers would happily rearrange these accesses,
which at best would make the device act strangely, and
could crash your kernel or, in some cases, even damage
your hardware.

So most kernel programmers need not worry about the
memory-barrier peculiarities of each and every CPU, as
long as they stick to these interfaces. If you are work-
ing deep in a given CPU’s architecture-specific code, of
course, all bets are off.

Furthermore, all of Linux’s locking primitives (spin-
locks, reader-writer locks, semaphores, RCU, ...) include
any needed barrier primitives. So if you are working with
code that uses these primitives, you don’t even need to
worry about Linux’s memory-ordering primitives.

That said, deep knowledge of each CPU’s memory-
consistency model can be very helpful when debugging,
to say nothing of when writing architecture-specific code
or synchronization primitives.

Besides, they say that a little knowledge is a very dan-
gerous thing. Just imagine the damage you could do with
a lot of knowledge! For those who wish to understand
more about individual CPUs’ memory consistency mod-
els, the next sections describes those of the most popular
and prominent CPUs. Although nothing can replace actu-
ally reading a given CPU’s documentation, these sections
give a good overview.



1 struct el xinsert (long key, long data)

2 {

3 struct el *p;

4 p = kmalloc(sizeof (xp), GFP_ATOMIC) ;
5 spin_lock (&mutex) ;

6 p->next = head.next;

7 p->key = key;

8 p->data = data;

9 smp_wmb () ;
10 head.next = p;
11 spin_unlock (&mutex) ;
12 }
13
14 struct el xsearch(long key)
15 {
16 struct el xp;
17 p = head.next;
18 while (p != &head) {
19 /% BUG ON ALPHA!!! */
20 if (p->key == key) {
21 return (p);
22 }
23 p = p->next;
24 bi
25 return (NULL);
26 }

Figure C.9: Insert and Lock-Free Search

C.7.1 Alpha

It may seem strange to say much of anything about a CPU
whose end of life has been announced, but Alpha is inter-
esting because, with the weakest memory ordering model,
it reorders memory operations the most aggressively. It
therefore has defined the Linux-kernel memory-ordering
primitives, which must work on all CPUs, including Al-
pha. Understanding Alpha is therefore surprisingly im-
portant to the Linux kernel hacker.

The difference between Alpha and the other CPUs
is illustrated by the code shown in Figure C.9. This
smp_wmb () on line 9 of this figure guarantees that the
element initialization in lines 6-8 is executed before the
element is added to the list on line 10, so that the lock-free
search will work correctly. That is, it makes this guarantee
on all CPUs except Alpha.

Alpha has extremely weak memory ordering such that
the code on line 20 of Figure C.9 could see the old garbage
values that were present before the initialization on lines
6-8.

Figure C.10 shows how this can happen on an aggres-
sively parallel machine with partitioned caches, so that
alternating caches lines are processed by the different par-
titions of the caches. Assume that the list header head
will be processed by cache bank 0, and that the new ele-
ment will be processed by cache bank 1. On Alpha, the
smp_wmb () will guarantee that the cache invalidates
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Figure C.10: Why smp_read_barrier_depends() is Re-
quired

performed by lines 6-8 of Figure C.9 will reach the inter-
connect before that of line 10 does, but makes absolutely
no guarantee about the order in which the new values
will reach the reading CPU’s core. For example, it is
possible that the reading CPU’s cache bank 1 is very busy,
but cache bank 0 is idle. This could result in the cache
invalidates for the new element being delayed, so that the
reading CPU gets the new value for the pointer, but sees
the old cached values for the new element. See the Web
site called out earlier for more information, or, again, if
you think that I am just making all this up.®

One could place an smp_rmb () primitive between
the pointer fetch and dereference. However, this imposes
unneeded overhead on systems (such as 1386, [A64, PPC,
and SPARC) that respect data dependencies on the read
side. A smp_read_barrier_depends () primitive
has been added to the Linux 2.6 kernel to eliminate over-
head on these systems. This primitive may be used as
shown on line 19 of Figure C.11.

It is also possible to implement a software barrier that
could be used in place of smp_wmb (), which would
force all reading CPUs to see the writing CPU’s writes in
order. However, this approach was deemed by the Linux
community to impose excessive overhead on extremely
weakly ordered CPUs such as Alpha. This software bar-
rier could be implemented by sending inter-processor in-
terrupts (IPIs) to all other CPUs. Upon receipt of such an
IPI, a CPU would execute a memory-barrier instruction,

6 Of course, the astute reader will have already recognized that
Alpha is nowhere near as mean and nasty as it could be, the (thankfully)
mythical architecture in Section C.6.1 being a case in point.
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1 struct el xinsert (long key, long data)
2 {

3 struct el xp;

4 p = kmalloc (sizeof (xp), GFP_ATOMIC) ;
5 spin_lock (&mutex) ;

6 p->next = head.next;

7 p->key = key;

8 p->data = data;

9 smp_wmb () ;
10 head.next = p;
11 spin_unlock (&mutex) ;
12 }
13

14 struct el xsearch(long key)

16 struct el xp;

17 p = head.next;

18 while (p != &head) {

19 smp_read_barrier_depends () ;
20 if (p->key == key) {
21 return (p);

22 }

23 p = p->next;

24 Vi

25 return (NULL);

26 }

Figure C.11: Safe Insert and Lock-Free Search

implementing a memory-barrier shootdown. Additional
logic is required to avoid deadlocks. Of course, CPUs that
respect data dependencies would define such a barrier to
simply be smp_wmb () . Perhaps this decision should be
revisited in the future as Alpha fades off into the sunset.

The Linux memory-barrier primitives took
their names from the Alpha instructions, so
smp_mb () is mb, smp_rmb () is rmb, and

smp_wmb () is wmb. Alpha is the only CPU where
smp_read_barrier_depends () isan smp_mb ()
rather than a no-op.

Quick Quiz C.13: Why is Alpha’s smp_read_
barrier_depends () an smp_mb () rather than
smp_rmb () ? M

For more detail on Alpha, see the reference man-
ual [SW95].

C.7.2 AMD64

AMDG64 is compatible with x86, and has recently updated
its memory model [Adv07] to enforce the tighter ordering
that actual implementations have provided for some time.
The AMD64 implementation of the Linux smp_mb ()
primitive is mfence, smp_rmb () is lfence, and
smp_wnb () is sfence. In theory, these might be re-
laxed, but any such relaxation must take SSE and 3DNOW
instructions into account.

C.7.3 ARMv7-A/R

The ARM family of CPUs is extremely popular in em-
bedded applications, particularly for power-constrained
applications such as cellphones. There have nevertheless
been multiprocessor implementations of ARM for more
than five years. Its memory model is similar to that of
Power (see Section C.7.6, but ARM uses a different set
of memory-barrier instructions [ARM10]:

1. DMB (data memory barrier) causes the specified type
of operations to appear to have completed before
any subsequent operations of the same type. The
“type” of operations can be all operations or can be
restricted to only writes (similar to the Alpha wmb
and the POWER eieio instructions). In addition,
ARM allows cache coherence to have one of three
scopes: single processor, a subset of the processors
(“inner”) and global (“outer”).

2. DSB (data synchronization barrier) causes the speci-
fied type of operations to actually complete before
any subsequent operations (of any type) are executed.
The “type” of operations is the same as that of DMB.
The DSB instruction was called DWB (drain write
buffer or data write barrier, your choice) in early
versions of the ARM architecture.

3. ISB (instruction synchronization barrier) flushes the
CPU pipeline, so that all instructions following the
ISB are fetched only after the ISB completes. For
example, if you are writing a self-modifying program
(such as a JIT), you should execute an ISB after
between generating the code and executing it.

None of these instructions exactly match the semantics
of Linux’s rmb () primitive, which must therefore be im-
plemented as a full DMB. The DMB and DSB instructions
have a recursive definition of accesses ordered before and
after the barrier, which has an effect similar to that of
POWER'’s cumulativity.

ARM also implements control dependencies, so that
if a conditional branch depends on a load, then any store
executed after that conditional branch will be ordered
after the load. However, loads following the conditional
branch will not be guaranteed to be ordered unless there
is an ISB instruction between the branch and the load.
Consider the following example:
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rl = x;

if (rl == 0)
nop () ;

y = 1;

r2 = z;

ISB();

r3 = z;

~N o 0w N

In this example, load-store control dependency order-
ing causes the load from x on line 1 to be ordered before
the store to y on line 4. However, ARM does not respect
load-load control dependencies, so that the load on line 1
might well happen after the load on line 5. On the other
hand, the combination of the conditional branch on line 2
and the ISB instruction on line 6 ensures that the load on
line 7 happens after the load on line 1. Note that inserting
an additional I SB instruction somewhere between lines 3
and 4 would enforce ordering between lines 1 and 5.

C.74 1A64

[A64 offers a weak consistency model, so that in absence
of explicit memory-barrier instructions, IA64 is within its
rights to arbitrarily reorder memory references [Int02b].
IA64 has a memory-fence instruction named m£, but also
has “half-memory fence” modifiers to loads, stores, and
to some of its atomic instructions [Int02a]. The acq mod-
ifier prevents subsequent memory-reference instructions
from being reordered before the acg, but permits prior
memory-reference instructions to be reordered after the
acq, as fancifully illustrated by Figure C.12. Similarly,
the rel modifier prevents prior memory-reference in-
structions from being reordered after the re 1, but allows
subsequent memory-reference instructions to be reordered
before the rel.

These half-memory fences are useful for critical sec-
tions, since it is safe to push operations into a critical
section, but can be fatal to allow them to bleed out. How-
ever, as one of the only CPUs with this property, IA64
defines Linux’s semantics of memory ordering associated
with lock acquisition and release.

The IA64 mf instruction is used for the smp_rmb (),
smp_mb (), and smp_wmb () primitives in the Linux
kernel. Oh, and despite rumors to the contrary, the “mf”’
mnemonic really does stand for “memory fence”.

Finally, IA64 offers a global total order for “release”
operations, including the “mf” instruction. This provides
the notion of transitivity, where if a given code fragment
sees a given access as having happened, any later code
fragment will also see that earlier access as having hap-
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Figure C.12: Half Memory Barrier

pened. Assuming, that is, that all the code fragments
involved correctly use memory barriers.

C.7.5 PA-RISC

Although the PA-RISC architecture permits full reorder-
ing of loads and stores, actual CPUs run fully or-
dered [Kan96]. This means that the Linux kernel’s
memory-ordering primitives generate no code, however,
they do use the gcc memory attribute to disable compiler
optimizations that would reorder code across the memory
barrier.

C.7.6 POWER / PowerPC

The POWER and PowerPC® CPU families have a wide
variety of memory-barrier instructions [IBM94, LSH02]:

1. sync causes all preceding operations to appear to
have completed before any subsequent operations
are started. This instruction is therefore quite expen-
sive.

2. lwsync (light-weight sync) orders loads with re-
spect to subsequent loads and stores, and also orders
stores. However, it does not order stores with re-
spect to subsequent loads. Interestingly enough, the
lwsync instruction enforces the same ordering as
does zSeries, and coincidentally, SPARC TSO.

3. eieio (enforce in-order execution of I/O, in case
you were wondering) causes all preceding cacheable
stores to appear to have completed before all subse-
quent stores. However, stores to cacheable memory
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are ordered separately from stores to non-cacheable
memory, which means that eieio will not force an
MMIO store to precede a spinlock release.

4. isync forces all preceding instructions to appear
to have completed before any subsequent instruc-
tions start execution. This means that the preceding
instructions must have progressed far enough that
any traps they might generate have either happened
or are guaranteed not to happen, and that any side-
effects of these instructions (for example, page-table
changes) are seen by the subsequent instructions.

Unfortunately, none of these instructions line up ex-
actly with Linux’s wmb () primitive, which requires all
stores to be ordered, but does not require the other high-
overhead actions of the sync instruction. But there is
no choice: ppc64 versions of wmb () and mb () are de-
fined to be the heavyweight sync instruction. However,
Linux’s smp_wmb () instruction is never used for MMIO
(since a driver must carefully order MMIOs in UP as
well as SMP kernels, after all), so it is defined to be the
lighter weight eieio instruction. This instruction may
well be unique in having a five-vowel mnemonic. The
smp_mb () instruction is also defined to be the sync in-
struction, but both smp_rmb () and rmb () are defined
to be the lighter-weight 1wsync instruction.

Power features “cumulativity”’, which can be used to
obtain transitivity. When used properly, any code see-
ing the results of an earlier code fragment will also see
the accesses that this earlier code fragment itself saw.
Much more detail is available from McKenney and Sil-
vera [MS09].

Power respects control dependencies in much the same
way that ARM does, with the exception that the Power
isync instruction is substituted for the ARM ISB in-
struction.

Many members of the POWER architecture have in-
coherent instruction caches, so that a store to memory
will not necessarily be reflected in the instruction cache.
Thankfully, few people write self-modifying code these
days, but JITs and compilers do it all the time. Fur-
thermore, recompiling a recently run program looks just
like self-modifying code from the CPU’s viewpoint. The
icbi instruction (instruction cache block invalidate) in-
validates a specified cache line from the instruction cache,
and may be used in these situations.

C.7.7 SPARC RMO, PSO, and TSO

Solaris on SPARC uses TSO (total-store order), as does
Linux when built for the “sparc” 32-bit architecture.
However, a 64-bit Linux kernel (the “sparc64” archi-
tecture) runs SPARC in RMO (relaxed-memory order)
mode [SPA94]. The SPARC architecture also offers an
intermediate PSO (partial store order). Any program that
runs in RMO will also run in either PSO or TSO, and
similarly, a program that runs in PSO will also run in
TSO. Moving a shared-memory parallel program in the
other direction may require careful insertion of memory
barriers, although, as noted earlier, programs that make
standard use of synchronization primitives need not worry
about memory barriers.

SPARC has a very flexible memory-barrier instruc-
tion [SPA94] that permits fine-grained control of order-
ing:

* StoreStore: order preceding stores before sub-
sequent stores. (This option is used by the Linux
smp_wmb () primitive.)

* LoadStore: order preceding loads before subse-
quent stores.

* StoreLoad: order preceding stores before subse-
quent loads.

* LoadLoad: order preceding loads before subse-
quent loads. (This option is used by the Linux
smp_rmb () primitive.)

e Sync: fully complete all preceding operations be-
fore starting any subsequent operations.

* MemIssue: complete preceding memory opera-
tions before subsequent memory operations, impor-
tant for some instances of memory-mapped 1/O.

* Lookaside: same as Memlssue, but only applies
to preceding stores and subsequent loads, and even
then only for stores and loads that access the same
memory location.

The Linux smp_mb () primitive uses the first four
options together, as in membar #LoadLoad |
#LoadStore | #StoreStore | #Storeload,
thus fully ordering memory operations.

So, why is membar #MemIssue needed? Because a
membar #StoreLoad could permit a subsequent load
to get its value from a write buffer, which would be disas-
trous if the write was to an MMIO register that induced
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side effects on the value to be read. In contrast, membar
#MemIssue would wait until the write buffers were
flushed before permitting the loads to execute, thereby en-
suring that the load actually gets its value from the MMIO
register. Drivers could instead use membar #Sync, but
the lighter-weight membar #MemIssue is preferred in
cases where the additional function of the more-expensive
membar #Sync are not required.

The membar #Lookaside is a lighter-weight ver-
sion of membar #MemIssue, which is useful when
writing to a given MMIO register affects the value that
will next be read from that register. However, the heavier-
weight membar #MemIssue must be used when a
write to a given MMIO register affects the value that
will next be read from some other MMIO register.

It is not clear why SPARC does not define wmb ()
to be membar #MemIssue and smb_wmb () to be
membar #StoreStore, as the current definitions
seem vulnerable to bugs in some drivers. It is quite
possible that all the SPARC CPUs that Linux runs on
implement a more conservative memory-ordering model
than the architecture would permit.

SPARC requires a flush instruction be used be-
tween the time that an instruction is stored and exe-
cuted [SPA94]. This is needed to flush any prior value for
that location from the SPARC’s instruction cache. Note
that £1ush takes an address, and will flush only that ad-
dress from the instruction cache. On SMP systems, all
CPUs’ caches are flushed, but there is no convenient way
to determine when the off-CPU flushes complete, though
there is a reference to an implementation note.

C.7.8 x86

Since the x86 CPUs provide “process ordering” so that
all CPUs agree on the order of a given CPU’s writes to
memory, the smp_wmb () primitive is a no-op for the
CPU [Int0O4b]. However, a compiler directive is required
to prevent the compiler from performing optimizations
that would result in reordering across the smp_wmb ()
primitive.

On the other hand, x86 CPUs have traditionally given
no ordering guarantees for loads, so the smp_mb () and
smp_rmb () primitives expand to lock; addl. This
atomic instruction acts as a barrier to both loads and
stores.

More recently, Intel has published a memory model for
x86 [Int07]. It turns out that Intel’s actual CPUs enforced
tighter ordering than was claimed in the previous specifi-
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cations, so this model is in effect simply mandating the
earlier de-facto behavior. Even more recently, Intel pub-
lished an updated memory model for x86 [Int11, Section
8.2], which mandates a total global order for stores, al-
though individual CPUs are still permitted to see their own
stores as having happened earlier than this total global
order would indicate. This exception to the total order-
ing is needed to allow important hardware optimizations
involving store buffers. In addition, memory ordering
obeys causality, so that if CPU 0 sees a store by CPU 1,
then CPU 0 is guaranteed to see all stores that CPU 1 saw
prior to its store. Software may use atomic operations
to override these hardware optimizations, which is one
reason that atomic operations tend to be more expensive
than their non-atomic counterparts. This total store order
is not guaranteed on older processors.

It is also important to note that atomic instructions
operating on a given memory location should all be of
the same size [Intl1, Section 8.1.2.2]. For example, if
you write a program where one CPU atomically incre-
ments a byte while another CPU executes a 4-byte atomic
increment on that same location, you are on your own.

However, note that some SSE instructions are weakly
ordered (clflush and non-temporal move instruc-
tions [Int04a]). CPUs that have SSE can use mfence for
smp_mb (), 1fence for smp_rmb (), and sfence
for smp_wmb ().

A few versions of the x86 CPU have a mode bit
that enables out-of-order stores, and for these CPUs,
smp_wmb () must also be defined to be 1ock; addl.

Although many older x86 implementations accommo-
dated self-modifying code without the need for any spe-
cial instructions, newer revisions of the x86 architecture
no longer requires x86 CPUs to be so accommodating.
Interestingly enough, this relaxation comes just in time to
inconvenience JIT implementors.

C.7.9 zSeries

The zSeries machines make up the IBM"" mainframe fam-
ily, previously known as the 360, 370, and 390 [IntO4c].
Parallelism came late to zSeries, but given that these main-
frames first shipped in the mid 1960s, this is not saying
much. The becr 15, 0 instruction is used for the Linux
smp_mb (), smp_rmb (), and smp_wmb () primitives.
It also has comparatively strong memory-ordering se-
mantics, as shown in Table C.5, which should allow the
smp_wmb () primitive to be a nop (and by the time you
read this, this change may well have happened). The table
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actually understates the situation, as the zSeries memory
model is otherwise sequentially consistent, meaning that
all CPUs will agree on the order of unrelated stores from
different CPUs.

As with most CPUs, the zSeries architecture does not
guarantee a cache-coherent instruction stream, hence, self-
modifying code must execute a serializing instruction be-
tween updating the instructions and executing them. That
said, many actual zSeries machines do in fact accommo-
date self-modifying code without serializing instructions.
The zSeries instruction set provides a large set of seri-
alizing instructions, including compare-and-swap, some
types of branches (for example, the aforementioned bcr
15, 0 instruction), and test-and-set, among others.

C.8 Are Memory Barriers For-

ever?

There have been a number of recent systems that are sig-
nificantly less aggressive about out-of-order execution
in general and re-ordering memory references in particu-
lar. Will this trend continue to the point where memory
barriers are a thing of the past?

The argument in favor would cite proposed massively
multi-threaded hardware architectures, so that each thread
would wait until memory was ready, with tens, hundreds,
or even thousands of other threads making progress in
the meantime. In such an architecture, there would be no
need for memory barriers, because a given thread would
simply wait for all outstanding operations to complete
before proceeding to the next instruction. Because there
would be potentially thousands of other threads, the CPU
would be completely utilized, so no CPU time would be
wasted.

The argument against would cite the extremely lim-
ited number of applications capable of scaling up to a
thousand threads, as well as increasingly severe realtime
requirements, which are in the tens of microseconds for
some applications. The realtime-response requirements
are difficult enough to meet as is, and would be even more
difficult to meet given the extremely low single-threaded
throughput implied by the massive multi-threaded scenar-
ios.

Another argument in favor would cite increasingly so-
phisticated latency-hiding hardware implementation tech-
niques that might well allow the CPU to provide the illu-
sion of fully sequentially consistent execution while still
providing almost all of the performance advantages of
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out-of-order execution. A counter-argument would cite
the increasingly severe power-efficiency requirements pre-
sented both by battery-operated devices and by environ-
mental responsibility.

Who is right? We have no clue, so are preparing to live
with either scenario.

C.9 Adyvice to Hardware Designers

There are any number of things that hardware designers
can do to make the lives of software people difficult. Here
is a list of a few such things that we have encountered
in the past, presented here in the hope that it might help
prevent future such problems:

1. /O devices that ignore cache coherence.

This charming misfeature can result in DMAs from
memory missing recent changes to the output buffer,
or, just as bad, cause input buffers to be overwritten
by the contents of CPU caches just after the DMA
completes. To make your system work in face of
such misbehavior, you must carefully flush the CPU
caches of any location in any DMA buffer before
presenting that buffer to the I/O device. And even
then, you need to be very careful to avoid pointer
bugs, as even a misplaced read to an input buffer can
result in corrupting the data input!

2. External busses that fail to transmit cache-coherence
data.

This is an even more painful variant of the above
problem, but causes groups of devices—and even
memory itself—to fail to respect cache coherence. It
is my painful duty to inform you that as embedded
systems move to multicore architectures, we will
no doubt see a fair number of such problems arise.
Hopefully these problems will clear up by the year
2015.

3. Device interrupts that ignore cache coherence.

This might sound innocent enough — after all, in-
terrupts aren’t memory references, are they? But
imagine a CPU with a split cache, one bank of which
is extremely busy, therefore holding onto the last
cacheline of the input buffer. If the corresponding
I/O-complete interrupt reaches this CPU, then that
CPU’s memory reference to the last cache line of
the buffer could return old data, again resulting in
data corruption, but in a form that will be invisible
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in a later crash dump. By the time the system gets
around to dumping the offending input buffer, the
DMA will most likely have completed.

4. Inter-processor interrupts (IPIs) that ignore cache
coherence.

This can be problematic if the IPI reaches its destina-
tion before all of the cache lines in the corresponding
message buffer have been committed to memory.

5. Context switches that get ahead of cache coherence.

If memory accesses can complete too wildly out of
order, then context switches can be quite harrowing.
If the task flits from one CPU to another before all
the memory accesses visible to the source CPU make
it to the destination CPU, then the task could easily
see the corresponding variables revert to prior values,
which can fatally confuse most algorithms.

6. Overly kind simulators and emulators.

It is difficult to write simulators or emulators that
force memory re-ordering, so software that runs just
fine in these these environments can get a nasty sur-
prise when it first runs on the real hardware. Unfor-
tunately, it is still the rule that the hardware is more
devious than are the simulators and emulators, but
we hope that this situation changes.

Again, we encourage hardware designers to avoid these
practices!



Appendix D

Read-Copy Update Implementations

This appendix describes several fully functional
production-quality RCU implementations. Understanding
of these implementations requires a thorough understand-
ing of the material in Chapters 1 and 8, as well as a
reasonably good understanding of the Linux kernel, the
latter of which may be found in several textbooks and
websites [BC05, CRKHO05, Cor08, Lov05].

If you are new to RCU implementations, you should
start with the simpler “toy” RCU implementations that
may be found in Section 8.3.5.

Section D.1 presents “Sleepable RCU”, or SRCU,
which allows SRCU readers to sleep arbitrarily. This
is a simple implementation, as production-quality RCU
implementations go, and a good place to start learning
about such implementations.

Section D.2 gives an overview of a highly scalable im-
plementation of Classic RCU, designed for SMP systems
sporting thousands of CPUs. Section D.3 takes the reader
on a code walkthrough of this same implementation (as
of late 2008).

Finally, Section D.4 provides a detailed view of the pre-
emptible RCU implementation used in real-time systems.

D.1 Sleepable RCU Implementa-
tion

Classic RCU requires that read-side critical sections obey
the same rules obeyed by the critical sections of pure
spinlocks: blocking or sleeping of any sort is strictly pro-
hibited. This has frequently been an obstacle to the use
of RCU, and Paul has received numerous requests for a
“sleepable RCU” (SRCU) that permits arbitrary sleeping
(or blocking) within RCU read-side critical sections. Paul
had previously rejected all such requests as unworkable,
since arbitrary sleeping in RCU read-side could indefi-
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Figure D.1: Sleeping While RCU Reading Considered
Harmful

nitely extend grace periods, which in turn could result
in arbitrarily large amounts of memory awaiting the end
of a grace period, which finally would result in disaster,
as fancifully depicted in Figure D.1, with the most likely
disaster being hangs due to memory exhaustion. After
all, any concurrency-control primitive that could result
in system hangs — even when used correctly — does not
deserve to exist.

However, the realtime kernels that require spinlock
critical sections be preemptible [Mol05] also require that
RCU read-side critical sections be preemptible [MSO05].
Preemptible critical sections in turn require that lock-
acquisition primitives block 