User Guide for CHOLMOD: a sparse Cholesky factorization and

modification package

Timothy A. Davis
DrTimothyAldenDavis@gmail.com, http://www.suitesparse.com

VERSION 2.1.2, April 25, 2013

Abstract

CHOLMOD' is a set of routines for factorizing sparse symmetric positive definite matrices
of the form A or AAT, updating/downdating a sparse Cholesky factorization, solving linear
systems, updating/downdating the solution to the triangular system Lx = b, and many other
sparse matrix functions for both symmetric and unsymmetric matrices. Its supernodal Cholesky
factorization relies on LAPACK and the Level-3 BLAS, and obtains a substantial fraction of the
peak performance of the BLAS. Both real and complex matrices are supported. It also includes
a non-supernodal LDLT factorization method that can factorize symmetric indefinite matrices
if all of their leading submatrices are well-conditioned (D is diagonal). CHOLMOD is written
in ANSI/ISO C, with both C and MATLAB interfaces. This code works on Microsoft Windows
and many versions of Unix and Linux.

CHOLMOD Copyright(©2005-2013 by Timothy A. Davis. Portions are also copyrighted by
William W. Hager (the Modify Module), and the University of Florida (the Partition and Core
Modules). All Rights Reserved. Some of CHOLMOD’s Modules are distributed under the GNU
General Public License, and others under the GNU Lesser General Public License. Refer to each
Module for details. CHOLMOD is also available under other licenses that permit its use in propri-
etary applications; contact the authors for details. See http://www.suitesparse.com for the code
and all documentation, including this User Guide.

!CHOLMOD is short for CHOLesky MODification, since a key feature of the package is its ability to up-
date/downdate a sparse Cholesky factorization

Contents

1

2

Overview

Primary routines and data structures

Simple example program

Installation of the C-callable library

Using CHOLMOD in MATLAB

analyze: order and analyze oL Lo
bisect: find a node separator
chol2: same as chol Lo e
cholmod2: supernodal backslash,
cholmod demo: a short demo program
cholmod make: compile CHOLMOD in MATLAB
etree2: same as etree e e e
graph_demo: graph partitioning demoo
lchol: LLT factorization
1dlchol: LDLT factorization
ldlsolve: solve using an LDLT factorization
1dlsplit: split an LDLT factorization.
ldlupdate: update/downdate an LDLT factorization
mread: read a sparse or dense matrix from a Matrix Market file
mwrite: write a sparse or densematrix to a Matrix Market file.
metis: order with METIS
nesdis: order with CHOLMOD nested dissection
resymbol: re-do symbolic factorization
sdmult: sparse matrix times dense matrix
spsym: determine symmetry L Lo L Lo
Sparse2: SamMe aS SPATSE e e e e e e e e e e e e e e e
symbfact2: same as symbfact 0000000

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22

Installation for use in MATLAB
cholmod make: compiling CHOLMOD in MATLAB

6.1

Integer and floating-point types, and notation used

The CHOLMOD Modules, objects, and functions
8.1 Core Module: basic data structures and definitions

8.1.1
8.1.2
8.1.3
8.14
8.1.5

cholmod_common: parameters, statistics, and workspace
cholmod_sparse: a sparse matrix in compressed column form
cholmod factor: a symbolic or numeric factorization
cholmod dense: adense matrix
cholmod triplet: a sparse matrix in “triplet” form

10

11

14
15
15
15
16
17
17
18
19
20
20
21
21
22
23
23
24
25
26
26
27
28
29

30
30

31

8.1.6 Memory management routineso

8.1.7 cholmod version: Version control
8.2 Check Module: print/check the CHOLMOD objects
8.3 Cholesky Module: sparse Cholesky factorization
8.4 Modify Module: update/downdate a sparse Cholesky factorization
8.5 MatrixOps Module: basic sparse matrix operations
8.6 Supernodal Module: supernodal sparse Cholesky factorization
8.7 Partition Module: graph-partitioning-based orderings.

9 CHOLMOD naming convention, parameters, and return values

10 Core Module: cholmod_common object
10.1 Constant definitions L Lo
10.2 cholmod _common: parameters, statistics, and workspace
10.3 cholmod_start: start CHOLMOD
10.4 cholmod finish: finish CHOLMOD
10.5 cholmod_defaults: set default parameters.
10.6 cholmod maxrank: maximum update/downdate rank
10.7 cholmod_allocate_work: allocate workspace
10.8 cholmod free work: free workspace
10.9 cholmod_clear_flag: clear Flagarray
10.10cholmod_error: TEPOrt €rTOT« . .t e e e e e e e e
10.11cholmod _dbound: bound diagonal of L oL
10.12cholmod _hypot: sqrt(X*x+y*y)
10.13cholmod_divcomplex: complex divide L.

11 Core Module: cholmod_sparse object
11.1 cholmod_sparse: compressed-column sparse matrix
11.2 cholmod_allocate_sparse: allocate sparse matrix
11.3 cholmod _free_sparse: free sparse matrix
11.4 cholmod reallocate_sparse: reallocate sparse matrix
11.5 cholmod nnz: number of entries in sparse matrix
11.6 cholmod_speye: sparse identity matrix oL
11.7 cholmod_spzeros: sparse zero matrix
11.8 cholmod_transpose: transpose sparse matrix
11.9 cholmod ptranspose: transpose/permute sparse matrix
11.10cholmod _sort: sort columns of a sparse matrix
11.11cholmod transpose unsym: transpose/permute unsymmetric sparse matrix
11.12cholmod_transpose_sym: transpose/permute symmetric sparse matrix
11.13cholmod band: extract band of a sparse matrix
11.14cholmod_band_inplace: extract band, in place
11.15cholmod_aat: compute AAT
11.16cholmod_copy_sparse: copy sparse matrix
11.17cholmod_copy: copy (and change) sparse matrix
11.18cholmod _add: add sparse matriceso

43

45
45
48
99
99
99
99
60
60
60
61
61
61
62

11.19cholmod_sparse_xtype: change sparse xtype

12 Core Module: cholmod factor object

12.1 cholmod_factor object: a sparse Cholesky factorization
12.2 cholmod_free_factor: freefactor.
12.3 cholmod_allocate_factor: allocate factor.
12.4 cholmod_reallocate_factor: reallocate factor
12.5 cholmod change factor: change factor
12.6 cholmod _pack factor: pack the columns of a factor
12.7 cholmod_reallocate_column: reallocate one column of a factor
12.8 cholmod_factor_to_sparse: sparse matrix copy of a factor
12.9 cholmod _copy_factor: copy factoro
12.10cholmod_factor_xtype: change factor xtype

13 Core Module: cholmod dense object

13.1 cholmod dense object: a dense matrix L L Lo
13.2 cholmod_allocate_dense: allocate dense matrix
13.3 cholmod free dense: free dense matrix
13.4 cholmod_ensure_dense: ensure dense matrix has a given size and type
13.5 cholmod_zeros: dense zero matrix
13.6 cholmod ones: dense matrix, allones. L.
13.7 cholmod_eye: dense identity matrix oL
13.8 cholmod_sparse_to_dense: dense matrix copy of a sparse matrix
13.9 cholmod_dense_to_sparse: sparse matrix copy of a dense matrix
13.10cholmod_copy_dense: copy dense matrix
13.11cholmod_copy_dense2: copy dense matrix (preallocated)
13.12cholmod dense xtype: change dense matrix xtype

14 Core Module: cholmod triplet object

14.1 cholmod triplet object: sparse matrix in triplet form
14.2 cholmod_allocate_triplet: allocate triplet matrix
14.3 cholmod free_triplet: free triplet matrix
14.4 cholmod_reallocate_triplet: reallocate triplet matrix
14.5 cholmod _sparse_to_triplet: triplet matrix copy of a sparse matrix
14.6 cholmod_triplet_to_sparse: sparse matrix copy of a triplet matrix
14.7 cholmod_copy_triplet: copy triplet matrix
14.8 cholmod_triplet_xtype: change triplet xtype

15 Core Module: memory management

15.1 cholmod malloc: allocate memory
15.2 cholmod_calloc: allocate and clear memory
15.3 cholmod free: free memory L
15.4 cholmod_realloc: reallocate memory
15.5 cholmod_reallocmultiple: reallocate memory

73
73
76
76
76
77
79
79
80
80
80

82
82
82
82
83
84
84
84
85
85
85
86
86

87
87
88
88
89
89
89
90
90

16 Core Module: version control
16.1 cholmod_version: return current CHOLMOD version

17 Check Module routines
17.1 cholmod_check_common: check Common object
17.2 cholmod print_common: print Common object
17.3 cholmod _check_sparse: check sparse matrix
17.4 cholmod_print_sparse: print sparse matrix
17.5 cholmod_check _dense: check dense matrix
17.6 cholmod_print_dense: print dense matrix
17.7 cholmod_check_factor: check factor
17.8 cholmod print_factor: print factor L.
17.9 cholmod_check_triplet: check triplet matrix
17.10cholmod_print_triplet: print triplet matrix
17.11cholmod_check_subset: check subset
17.12cholmod_print_subset: print subset L.
17.13cholmod_check_perm: check permutation.
17.14cholmod_print_perm: print permutation L
17.15cholmod_check_parent: check elimination tree
17.16cholmod _print_parent: print elimination tree.
17.17cholmod read triplet: read triplet matrix from file
17.18cholmod _read_sparse: read sparse matrix from file
17.19cholmod read dense: read dense matrix from fileo
17.20cholmod_read matrix: read a matrix from file
17.21cholmod write_sparse: write a sparse matrix toafile
17.22cholmod_write_dense: write a dense matrix toafile

18 Cholesky Module routines
18.1 cholmod_analyze: symbolic factorization
18.2 cholmod_factorize: numeric factorization
18.3 cholmod_analyze_ p: symbolic factorization, given permutation
18.4 cholmod factorize_p: numeric factorization, given permutation
18.5 cholmod_solve: solve a linear system
18.6 cholmod_spsolve: solve a linear system
18.7 cholmod_solve2: solve a linear system, reusing workspace
18.8 cholmod etree: find elimination tree L.
18.9 cholmod_rowcolcounts: nonzeros counts of a factor
18.10cholmod_analyze_ordering: analyze a permutation
18.11cholmod _amd: interface to AMD
18.12cholmod_colamd: interface to COLAMD
18.13cholmod _rowfac: row-oriented Cholesky factorization
18.14cholmod _rowfac mask: row-oriented Cholesky factorization
18.15cholmod_row_subtree: pattern of row of afactor
18.16cholmod_row_lsubtree: pattern of row of a factor
18.17cholmod _resymbol: re-do symbolic factorization

94
94

95
95
95
96
96
97
97
98
98
99
99
100
100
101
101
102
102
103
104
105
105
106
106

18.18cholmod _resymbol noperm: re-do symbolic factorization 120

18.19cholmod_postorder: tree postorder L 120
18.20cholmod rcond: reciprocal condition numbero oo 121
19 Modify Module routines 122
19.1 cholmod updown: update/downdate 122
19.2 cholmod_updown _solve: update/downdate 123
19.3 cholmod_updown mark: update/downdate 123
19.4 cholmod_updown mask: update/downdate 123
19.5 cholmod rowadd: add row to factor Lo 124
19.6 cholmod_rowadd_solve: add row to factor L. 124
19.7 cholmod rowdel: delete row from factor L. 125
19.8 cholmod_rowdel _solve: delete row from factor 125
19.9 cholmod rowadd mark: add row to factor 126
19.10cholmod_rowdel mark: delete row from factor 126
20 MatrixOps Module routines 128
20.1 cholmod drop: drop small entries L Lo 128
20.2 cholmod norm dense: dense matrix norm 128
20.3 cholmod norm_sparse: sparse matrix norm 128
20.4 cholmod _scale: scale sparse matrix 129
20.5 cholmod_sdmult: sparse-times-dense matrix 130
20.6 cholmod_ssmult: sparse-times-sparse matrix 130
20.7 cholmod_submatrix: sparse submatrix Lo 131
20.8 cholmod horzcat: horizontal concatenation 132
20.9 cholmod_vertcat: vertical concatenation L. 132
20.10cholmod_symmetry: compute the symmetry of a matrix 133
21 Supernodal Module routines 135
21.1 cholmod_super_symbolic: supernodal symbolic factorization 135
21.2 cholmod_super numeric: supernodal numeric factorization 136
21.3 cholmod_super_lsolve: supernodal forward solve. 137
21.4 cholmod_super_ltsolve: supernodal backsolve 137
22 Partition Module routines 138
22.1 cholmod nested dissection: nested dissection ordering 138
22.2 cholmod metis: interface to METIS nested dissection 139
22.3 cholmod_camd: interface to CAMD 140
22.4 cholmod_ccolamd: interface to CCOLAMD 141
22.5 cholmod csymamd: interface to CSYMAMD 141
22.6 cholmod bisect: graph bisector L. 142
22.7 cholmod metis bisector: interface to METIS node bisector 142
22.8 cholmod_collapse_septree: prune a separator tree 143

1 Overview

CHOLMOD is a set of ANSI C routines for solving systems of linear equations, Ax = b, when A
is sparse and symmetric positive definite, and x and b can be either sparse or dense.? Complex
matrices are supported, in two different formats. CHOLMOD includes high-performance left-
looking supernodal factorization and solve methods [21], based on LAPACK [3] and the BLAS [12].
After a matrix is factorized, its factors can be updated or downdated using the techniques described
by Davis and Hager in [8, 9, 10]. Many additional sparse matrix operations are provided, for both
symmetric and unsymmetric matrices (square or rectangular), including sparse matrix multiply,
add, transpose, permutation, scaling, norm, concatenation, sub-matrix access, and converting to
alternate data structures. Interfaces to many ordering methods are provided, including minimum
degree (AMD [1, 2], COLAMD [6, 7]), constrained minimum degree (CSYMAMD, CCOLAMD,
CAMD), and graph-partitioning-based nested dissection (METIS [18]). Most of its operations are
available within MATLAB via mexFunction interfaces.

CHOLMOD also includes a non-supernodal LDL” factorization method that can factorize
symmetric indefinite matrices if all of their leading submatrices are well-conditioned (D is diagonal).

A pair of articles on CHOLMOD has been submitted to the ACM Transactions on Mathematical
Softare: [4, 11].

CHOLMOD 1.0 replaces chol (the sparse case), symbfact, and etree in MATLAB 7.2 (R2006a),
and is used for x=A\b when A is symmetric positive definite [14]. It will replace sparse in a future
version of MATLAB.

The C-callable CHOLMOD library consists of 133 user-callable routines and one include file.
Each routine comes in two versions, one for int integers and another for long. Many of the routines
can support either real or complex matrices, simply by passing a matrix of the appropriate type.

Nick Gould, Yifan Hu, and Jennifer Scott have independently tested CHOLMOD'’s performance,
comparing it with nearly a dozen or so other solvers [17, 16]. Its performance was quite competitive.

2Some support is provided for symmetric indefinite matrices.

2 Primary routines and data structures

Five primary CHOLMOD routines are required to factorize A or AAT and solve the related system
Ax =b or AATx = b, for either the real or complex cases:

1.

2.

5.

cholmod_start: This must be the first call to CHOLMOD.

cholmod_analyze: Finds a fill-reducing ordering, and performs the symbolic factorization,
either simplicial (non-supernodal) or supernodal.

. cholmod_factorize: Numerical factorization, either simplicial or supernodal, LLT or LDLT

using either the symbolic factorization from cholmod_analyze or the numerical factorization
from a prior call to cholmod _factorize.

. cholmod_solve: Solves Ax = b, or many other related systems, where x and b are dense

matrices. The cholmod_spsolve routine handles the sparse case. Any mixture of real and
complex A and b are allowed.

cholmod_finish: This must be the last call to CHOLMOD.

Additional routines are also required to create and destroy the matrices A, x, b, and the LLT
or LDLT factorization. CHOLMOD has five kinds of data structures, referred to as objects and
implemented as pointers to struct’s:

1.

cholmod_common: parameter settings, statistics, and workspace used internally by CHOLMOD.
See Section 10 for details.

cholmod_sparse: a sparse matrix in compressed-column form, either pattern-only, real, com-
)))
plex, or “zomplex.” In its basic form, the matrix A contains:

e A->p, an integer array of size A->ncol+1.
e A->i an integer array of size A->nzmax.

e A->x, a double array of size A->nzmax or twice that for the complex case. This is
compatible with the Fortran and ANSI C99 complex data type.

e A->z a double array of size A->nzmax if A is zomplex. A zomplex matrix has a z
array, thus the name. This is compatible with the MATLAB representation of complex
matrices.

For all four types of matrices, the row indices of entries of column j are located in A->i
[A->p [j] ... A->p [j+1]1-1]. For a real matrix, the corresponding numerical values are
in A->x at the same location. For a complex matrix, the entry whose row index is A->i
[p] is contained in A->x [2xp] (the real part) and A->x [2*p+1] (the imaginary part). For
a zomplex matrix, the real part is in A->x [p] and imaginary part is in A->z [p]. See
Section 11 for more details.

cholmod_factor: A symbolic or numeric factorization, either real, complex, or zomplex. It
can be either an LLT or LDLT factorization, and either simplicial or supernodal. You will
normally not need to examine its contents. See Section 12 for more details.

4. cholmod_dense: A dense matrix, either real, complex or zomplex, in column-major order.
This differs from the row-major convention used in C. A dense matrix X contains

e X->x, a double array of size X->nzmax or twice that for the complex case.

e X->z a double array of size X->nzmax if X is zomplex.

For a real dense matrix x;; is X->x [i+]j*d] where d = X->d is the leading dimension of X.
For a complex dense matrix, the real part of x;; is X->x [2*(i+j*d)] and the imaginary part
is X->x [2x(i+j*d)+1]. For a zomplex dense matrix, the real part of x;; is X->x [i+]j*d]
and the imaginary part is X->z [i+j*d]. Real and complex dense matrices can be passed to
LAPACK and the BLAS. See Section 13 for more details.

5. cholmod triplet: CHOLMOD’s sparse matrix (cholmod sparse) is the primary input for
nearly all CHOLMOD routines, but it can be difficult for the user to construct. A simpler
method of creating a sparse matrix is to first create a cholmod _triplet matrix, and then
convert it to a cholmod_sparse matrix via the cholmod _triplet_to_sparse routine. In its
basic form, the triplet matrix T contains

e T->i and T->j, integer arrays of size T->nzmax.
e T->x, a double array of size T->nzmax or twice that for the complex case.

e T->z, a double array of size T->nzmax if T is zomplex.

The kth entry in the data structure has row index T->i [k] and column index T->j [k].
For a real triplet matrix, its numerical value is T->x [k]. For a complex triplet matrix, its
real part is T->x [2*k] and its imaginary part is T->x [2*k+1]. For a zomplex matrix, the
real part is T->x [k] and imaginary part is T->z [k]. The entries can be in any order, and
duplicates are permitted. See Section 14 for more details.

Each of the five objects has a routine in CHOLMOD to create and destroy it. CHOLMOD
provides many other operations on these objects as well. A few of the most important ones are
illustrated in the sample program in the next section.

3 Simple example program

#include "cholmod.h"
int main (void)

{

cholmod_sparse *A ;
cholmod_dense *x, *b, *r ;
cholmod_factor *L ;
double one [2] = {1,0}, m1 [2] = {-1,0} ; /* basic scalars */
cholmod_common c ;
cholmod_start (&c) ; /* start CHOLMOD */
A = cholmod_read_sparse (stdin, &c) ; /* read in a matrix */
cholmod_print_sparse (A, "A", &c) ; /* print the matrix */
if (A == NULL || A->stype == 0) /* A must be symmetric */
{

cholmod_free_sparse (&A, &c) ;

cholmod_finish (&c) ;

return (0) ;
}
b = cholmod_ones (A->nrow, 1, A->xtype, &c) ; /* b = ones(n,1) */
L = cholmod_analyze (A, &c) ; /* analyze */
cholmod_factorize (A, L, &c) ; /* factorize */
x = cholmod_solve (CHOLMOD_A, L, b, &c) ; /* solve Ax=b */
r = cholmod_copy_dense (b, &c) ; /*r =b *x/
cholmod_sdmult (A, O, ml, one, X, r, &c) ; /* r = r-Ax */
printf ("norm(b-Ax) ¥%8.1le\n",

cholmod_norm_dense (r, 0, &c)) ; /* print norm(r) */
cholmod_free_factor (&L, &c) ; /* free matrices */
cholmod_free_sparse (&A, &c) ;
cholmod_free_dense (&r, &c) ;
cholmod_free_dense (&x, &c) ;
cholmod_free_dense (&b, &c) ;
cholmod_finish (&c) ; /* finish CHOLMOD */
return (0) ;
}

Purpose: The Demo/cholmod_simple.c program illustrates the basic usage of CHOLMOD. It
reads a triplet matrix from a file (in Matrix Market format), converts it into a sparse matrix, creates
a linear system, solves it, and prints the norm of the residual.

See the CHOLMOD/Demo/cholmod_demo.c program for a more elaborate example, and
CHOLMOD/Demo/cholmod_1_demo.c for its long integer version.

10

4 Installation of the C-callable library

CHOLMOD requires a suite of external packages, many of which are distributed along with
CHOLMOD, but three of which are not. Those included with CHOLMOD are:

e AMD: an approximate minimum degree ordering algorithm, by Tim Davis, Patrick Amestoy,
and lain Duff [1, 2].

e COLAMD: an approximate column minimum degree ordering algorithm, by Tim Davis, Stefan
Larimore, John Gilbert, and Esmond Ng [6, 7].

e CCOLAMD: a constrained approximate column minimum degree ordering algorithm, by Tim
Davis and Siva Rajamanickam, based directly on COLAMD. This package is not required if
CHOLMOD is compiled with the ~-DNCAMD flag.

e CAMD: a constrained approximate minimum degree ordering algorithm, by Tim Davis and
Yanqging Chen, based directly on AMD. This package is not required if CHOLMOD is compiled
with the -DNCAMD flag.

e SuiteSparse_config: a single place where all sparse matrix packages authored or co-authored
by Davis are configured. Also includes a version of the xerbla routine for the BLAS.

Three other packages are required for optimal performance:

e METIS 4.0.1: a graph partitioning package by George Karypis, Univ. of Minnesota. Not
needed if ~-DNPARTITION is used. See http://www-users.cs.umn.edu/~karypis/metis.

e BLAS: the Basic Linear Algebra Subprograms. Not needed if ~-DNSUPERNODAL is used. See
http://www.netlib.org for the reference BLAS (not meant for production use). For Kazushige
Goto’s optimized BLAS (highly recommended for CHOLMOD) see
http://www.tacc.utexas.edu/~kgoto/ or http://www.cs.utexas.edu/users/flame/goto/. I rec-
ommend that you avoid the Intel MKL BLAS; one recent version returns NaN’s, where both
the Goto BLAS and the standard Fortran reference BLAS return the correct answer. See
CHOLMOD/README for more information.

e LAPACK: the Basic Linear Algebra Subprograms. Not needed if -DNSUPERNODAL is used. See
http://www.netlib.org.

e CUDA BLAS: CHOLMOD can exploit an NVIDIA GPU by using the CUDA BLAS for large
supernodes. This feature is new to CHOLMOD v2.0.0.

You must first obtain and install METIS, LAPACK, and the BLAS. Next edit the system-
dependent configurations in the SuiteSparse_config/SuiteSparse_config.mk file. Sample config-
urations are provided for Linux, Macintosh, Sun Solaris, SGI IRIX, IBM AIX, and the DEC/Compaq
Alpha. The most important configuration is the location of the BLAS, LAPACK, and METIS pack-
ages, since in its default configuration CHOLMOD cannot be compiled without them.

Here are the various parameters that you can control in your SuiteSparse_config/SuiteSparse_config.mk
file:

e CC = your C compiler, such as cc.

11

CF = optimization flags, such as -0.

RANLIB = your system’s ranlib program, if needed.

ARCHIVE = the command to create a library (such as ar).

RM = the command to delete a file.

MV = the command to rename a file.

F77 = the command to compile a Fortran program (optional).
F77TFLAGS = the Fortran compiler flags (optional).

F77LIB = the Fortran libraries (optional).

LIB = basic libraries, such as -1m.

BLAS = your BLAS library.

LAPACK = your LAPACK library.

XERBLA = a library containing the BLAS xerbla routine, if required.
METIS_PATH = the path to your copy of the METIS 4.0.1 source code.
METIS = your METIS library.

GPU_CONFIG = configuration settings specific to the CUDA BLAS. To enable the CUDA

BLAS, use GPU_CONFIG = -DGPU_BLAS -I$(GPU_BLAS _PACK)/include, and set GPU_BLAS_PATH
= to your CUDA library installation path. Then include $ (GPU_CONFIG) as one of the settings

for CHOLMOD_CONFIG. See the SuiteSparse_config.mk file for details.

CHOLMOD_CONFIG = configuration settings specific to CHOLMOD.

CHOLMOD'’s specific settings are given by the CHOLMOD_CONFIG string:

-DNCHECK: do not include the Check module. License: GNU LGPL.
-DNCHOLESKY: do not include the Cholesky module. License: GNU LGPL.

-DNPARTITION: do not include the interface to METIS in the Partition module. License: GNU
LGPL.

-DCAMD: do not include the interfaces to CAMD, CCOLAMD, and CSYMAMD in the Parti-
tion module. License: GNU LGPL.

-DNGPL: do not include any GNU GPL Modules in the CHOLMOD library.
-DNMATRIXOPS: do not include the MatrixOps module. License: GNU GPL.
-DNMODIFY: do not include the Modify module. License: GNU GPL.

-DNSUPERNODAL: do not include the Supernodal module. License: GNU GPL.

12

e -DNPRINT: do not print anything.

e -D’LONGBLAS=long’ or -DLONGBLAS="1long long’ defines the integers used by LAPACK and
the BLAS (defaults to int).

e -DNSUNPERF: for Solaris only. If defined, do not use the Sun Performance Library.

e -DNLARGEFILE: CHOLMOD now assumes support for large files (2GB or larger). If this
causes problems, you can compile CHOLMOD with -DNLARGEFILE. To use large files,
you should #include "cholmod.h" (or at least #include "cholmod_io64.h") before any
other #include statements, in your application that uses CHOLMOD. You may need to use
fopen64 to create a file pointer to pass to CHOLMOD, if you are using a non-gcc compiler.

Type make in the CHOLMOD directory. The AMD, COLAMD, CAMD, CCOLAMD, and CHOLMOD
libraries will be compiled, as will the C version of the null-output xerbla routine in case you need
it. No Fortran compiler is required in this case. A short demo program will be compiled and
tested on a few matrices. The residuals should all be small. Compare your output with the
CHOLMOD/Demo/make . out file.

CHOLMOD is now ready for use in your own applications. You must link your programs with
the CHOLMOD/Lib/libcholmod.a, AMD/Lib/libamd.a, COLAMD/libcolamd.a, LAPACK, and BLAS
libraries, as well as the xerbla library if you need it (SuiteSparse config/xerlib/libcerbla.a
for the C version or
SuiteSparse_config/xerlib/libxerbla.a for the Fortran version). Unless you use ~-DNPARTITION,
you must also link with metis-4.0/1libmetis.a. Unless -DNCAMD is present at compile time, you
must link with CAMD/1libcamd.a, and CCOLAMD/libccolamd.a. Your compiler needs to know the
location of the CHOLMOD Include directory, so that it can find the cholmod.h include file, by
adding the ~ICHOLMOD/Include to your C compiler options (modified appropriately to reflect the
location of your copy of CHOLMOD).

13

5 Using CHOLMOD in MATLAB

CHOLMOD includes a set of m-files and mexFunctions in the CHOLMOD/MATLAB directory.
The following functions are provided:

analyze order and analyze a matrix

bisect find a node separator

chol?2 same as chol

cholmod2 same as x=A\Db if A is symmetric positive definite

cholmod_demo

a short demo program

cholmod make compiles CHOLMOD for use in MATLAB
etree2 same as etree

graph_demo graph partitioning demo

1lchol LxL’ factorization

ldlchol LxDxL’ factorization

1dl normest estimate norm(A-L*D*L’)

ldlsolve x = L’\(D\(L\b))

1ldlsplit split the output of 1dlchol into L and D
ldlupdate update/downdate an LxD*L’ factorization
metis interface to METIS _NodeND ordering

mread read a sparse or dense Matrix Market file
mwrite write a sparse or dense Matrix Market file
nesdis CHOLMOD’s nested dissection ordering
resymbol recomputes the symbolic factorization
sdmult S*F where S is sparse and F is dense
Spsym determine symmetry

sparse?2 same as sparse

symbfact2 same as symbfact

Each function is described in the next sections.

14

5.1 analyze: order and analyze

5.2 bisect: find a node separator

5.3 chol2: same as chol

15

5.4

cholmod2: supernodal backslash

16

5.5 cholmod demo: a short demo program

5.6 cholmod make: compile CHOLMOD in MATLAB

17

5.7

etree2: same as etree

18

5.8 graph demo: graph partitioning demo

19

5.9

5.10

1chol: LL'" factorization

1dlchol: LDLT factorization

20

5.11 1dlsolve: solve using an LDL" factorization

5.12 1dlsplit: split an LDL" factorization

21

5.13 1dlupdate: update/downdate an LDL' factorization

22

5.14 mread: read a sparse or dense matrix from a Matrix Market file

5.15 mwrite: write a sparse or densematrix to a Matrix Market file

23

5.16

metis: order with METIS

24

5.17 nesdis: order with CHOLMOD nested dissection

25

5.18 resymbol: re-do symbolic factorization

5.19 sdmult: sparse matrix times dense matrix

26

5.20

spsym: determine symmetry

27

5.21

sparse2: sarme as sparse

28

5.22

symbfact2: same as symbfact

29

6 Installation for use in MATLAB

If you wish to use METIS within CHOLMOD, you should first obtain a copy of METIS 4.0.1. See
http://www-users.cs.umn.edu/~karypis/metis. Place your copy of the metis-4.0 directory (folder,
for Windows users) in the same directory that contains your copy of the CHOLMOD directory. If you
do not have METIS, however, you can still use CHOLMOD. Some of the CHOLMOD functions
will not be available (metis, bisect, and nesdis), and you may experience higher fill-in for large
matrices (particularly those arising in 3D finite-element problems) when using analyze, chol2,
cholmod2, 1chol, and 1dlchol. There are two methods for compiling CHOLMOD for use in
MATLAB; both are described below.

6.1 cholmod make: compiling CHOLMOD in MATLAB

This is the preferred method, since it allows METIS to be reconfigured to use the MATLAB
memory-management functions instead of malloc and free; this avoids the issue of METIS termi-
nating MATLAB if it runs out of memory. It is also simpler for Windows users, who do not have
the make command (unless you obtain a copy of Cygwin).

Start MATLAB, cd to the CHOLMOD/MATLAB directory, and type cholmod make in the MATLAB
command window. This will compile the MATLAB interfaces for AMD, COLAMD, CAMD, CCO-
LAMD, METIS, and CHOLMOD. If you do not have METIS, type cholmod make(’’). If your
copy of METIS is in another location, type cholmod make (’path’) where path is the pathname
of your copy of the metis-4.0 directory.

When METIS is compiled malloc, free, calloc, and realloc are redefined to the MATLAB-
equivalents (mxMalloc, ...). These memory-management functions safely terminate a mexFunction
if they fail, and will free all memory allocated by the mexFunction. Thus, METIS will safely
abort without terminating MATLAB, if it runs out of memory. The cholmod_make handles this
redefinition without making any changes to your METIS source code.

30

7 Integer and floating-point types, and notation used

CHOLMOD supports both int and long integers. CHOLMOD routines with the prefix cholmod_
use int integers, cholmod_1_ routines use long. All floating-point values are double.

The long integer is redefinable, via SuiteSparse_config.h. That file defines a C preprocessor
token SuiteSparse_long which is long on all systems except for Windows-64, in which case it is
defined as __int64. The intent is that with suitable compile-time switches, int is a 32-bit integer
and SuiteSparse_long is a 64-bit integer. The term long is used to describe the latter integer
throughout this document (except in the prototypes).

Two kinds of complex matrices are supported: complex and zomplex. A complex matrix is held
in a manner that is compatible with the Fortran and ANSI C99 complex data type. A complex
array of size n is a double array x of size 2*n, with the real and imaginary parts interleaved (the
real part comes first, as a double, followed the imaginary part, also as a double. Thus, the real
part of the kth entry is x[2*k] and the imaginary part is x[2*k+1].

A zomplex matrix of size n stores its real part in one double array of size n called x and its
imaginary part in another double array of size n called z (thus the name “zomplex”). This also how
MATLAB stores its complex matrices. The real part of the kth entry is x[k] and the imaginary
part is z[k].

Unlike UMFPACK, the same routine name in CHOLMOD is used for pattern-only, real, complex,
and zomplex matrices. For example, the statement

C = cholmod_copy_sparse (A, &Common) ;

creates a copy of a pattern, real, complex, or zomplex sparse matrix A. The xtype (pattern, real,
complex, or zomplex) of the resulting sparse matrix C is the same as A (a pattern-only sparse matrix
contains no floating-point values). In the above case, C and A use int integers. For long integers,
the statement would become:

C = cholmod_1_copy_sparse (A, &Common) ;

The last parameter of all CHOLMOD routines is always &Common, a pointer to the cholmod_common
object, which contains parameters, statistics, and workspace used throughout CHOLMOD.

The xtype of a CHOLMOD object (sparse matrix, triplet matrix, dense matrix, or factorization)
determines whether it is pattern-only, real, complex, or zomplex.

The names of the int versions are primarily used in this document. To obtain the name of the
long version of the same routine, simply replace cholmod_ with cholmod 1_.

MATLAB matrix notation is used throughout this document and in the comments in the
CHOLMOD code itself. If you are not familiar with MATLAB, here is a short introduction to
the notation, and a few minor variations used in CHOLMOD:

e C=A+B and C=AxB, respectively are a matrix add and multiply if both A and B are matrices of
appropriate size. If A is a scalar, then it is added to or multiplied with every entry in B.

e a:b where a and b are integers refers to the sequence a, a+1, ... b.
e [A B] and [A,B] are the horizontal concatenation of A and B.

e [A;B] is the vertical concatenation of A and B.

31

A(i,j) can refer either to a scalar or a submatrix. For example:

ACl1,1) a scalar.
AC:,) column j of A.
AG,) row i of A.

AC[1 2], [1 2]) a 2-by-2 matrix containing the 2-by-2 leading minor of A.
If p is a permutation of 1:n, and A is n-by-n, then A(p,p) corresponds to the permuted

matrix PAPT.

tril(4A) is the lower triangular part of A, including the diagonal.

tril (A,k) is the lower triangular part of A, including entries on and below the kth diagonal.
triu(A) is the upper triangular part of A, including the diagonal.

triu(A,k) is the upper triangular part of A, including entries on and above the kth diagonal.
size(A) returns the dimensions of A.

find (x) if x is a vector returns a list of indices i for which x (i) is nonzero.

A’ is the transpose of A if A is real, or the complex conjugate transpose if A is complex.

A .’ is the array transpose of A.

diag(A) is the diagonal of A if A is a matrix.

C=diag(s) is a diagonal matrix if s is a vector, with the values of s on the diagonal of C.
S=spones (A) returns a binary matrix S with the same nonzero pattern of A.

nnz (A) is the number of nonzero entries in A.

Variations to MATLAB notation used in this document:

CHOLMOD uses 0-based notation (the first entry in the matrix is A(0,0)). MATLAB is
1-based. The context is usually clear.

T is the identity matrix.

A(:,f), where £ is a set of columns, is interpreted differently in CHOLMOD, but just for the
set named f. See cholmod_transpose_unsym for details.

32

8 The CHOLMOD Modules, objects, and functions

CHOLMOD contains a total of 133 int-based routines (and the same number of long routines),
divided into a set of inter-related Modules. Each Module contains a set of related functions. The
functions are divided into two types: Primary and Secondary, to reflect how a user will typically
use CHOLMOD. Most users will find the Primary routines to be sufficient to use CHOLMOD in
their programs. Each Module exists as a sub-directory (a folder for Windows users) within the
CHOLMOD directory (or folder).

There are seven Modules that provide user-callable routines for CHOLMOD.
1. Core: basic data structures and definitions
2. Check: prints/checks each of CHOLMOD'’s objects
3. Cholesky: sparse Cholesky factorization
4. Modify: sparse Cholesky update/downdate and row-add/row-delete
5. MatrixOps: sparse matrix operators (add, multiply, norm, scale)
6. Supernodal: supernodal sparse Cholesky factorization
7. Partition: graph-partitioning-based orderings
Two additional Modules are required to compile the CHOLMOD library:
1. Include: include files for CHOLMOD and programs that use CHOLMOD
2. Lib: where the CHOLMOD library is built
Five additional Modules provide support functions and documentation:
1. Demo: simple programs that illustrate the use of CHOLMOD
2. Doc: documentation (including this document)
3. MATLAB: CHOLMOD'’s interface to MATLAB
4. Tcov: an exhaustive test coverage (requires Linux or Solaris)
5. Valgrind: runs the Tcov test under valgrind (requires Linux)

The following Modules are licensed under the GNU Lesser General Public License: Check,
Cholesky, Core, and Partition. The following Modules are licensed under the GNU General
Public License: Demo, Modify, MatrixOps, Supernodal, the MATLAB Module (not MATLARB itself!),
Tcov, and Valgrind. The files in the Include Module are licensed according to their respective
Modules. The Lib and Doc Modules need no license; the compiled binaries are licensed the same
as their source code.

33

8.1 Core Module: basic data structures and definitions

CHOLMOD includes five basic objects, defined in the Core Module. The Core Module provides
basic operations for these objects and is required by all six other CHOLMOD library Modules:

8.1.1 cholmod_common: parameters, statistics, and workspace

You must call cholmod_start before calling any other CHOLMOD routine, and you must call
cholmod finish as your last call to CHOLMOD (with the exception of cholmod print_common
and cholmod_check_common in the Check Module). Once the cholmod_common object is initial-
ized, the user may modify CHOLMOD’s parameters held in this object, and obtain statistics on
CHOLMOD'’s activity.

Primary routines for the cholmod_common object:

e cholmod_start: the first call to CHOLMOD.

e cholmod finish: the last call to CHOLMOD (frees workspace in the cholmod_common object).
Secondary routines for the cholmod_common object:

e cholmod_defaults: restores default parameters

e cholmod maxrank: determine maximum rank for update/downdate.

e cholmod_allocate_work: allocate workspace.

e cholmod_free_work: free workspace.

e cholmod_clear_flag: clear Flag array.

e cholmod_error: called when CHOLMOD encounters and error.

e cholmod_dbound: bounds the diagonal of L or D.

e cholmod_hypot: compute sqrt (x*x+y*y) accurately.

e cholmod_divcomplex: complex divide.

34

8.1.2 cholmod_sparse: a sparse matrix in compressed column form

A sparse matrix A is held in compressed column form. In the basic type (“packed,” which corre-
sponds to how MATLAB stores its sparse matrices), and nrow-by-ncol matrix with nzmax entries is
held in three arrays: p of size ncol+1, i of size nzmax, and x of size nzmax. Row indices of nonzero
entries in column j areheldini [p[j] ... pl[j+11-1], and their corresponding numerical values
are held in x [p[j] ... pl[j+1]1-1]. The first column starts at location zero (p[0]=0). There
may be no duplicate entries. Row indices in each column may be sorted or unsorted (the A->sorted
flag must be false if the columns are unsorted). The A->stype determines the storage mode: 0 if
the matrix is unsymmetric, 1 if the matrix is symmetric with just the upper triangular part stored,
and -1 if the matrix is symmetric with just the lower triangular part stored.

In “unpacked” form, an additional array nz of size ncol is used. The end of column j in i and
x is given by p[jl1+nz[j]. Columns not need be in any particular order (p[0] need not be zero),
and there may be gaps between the columns.

Primary routines for the cholmod_sparse object:

e cholmod allocate_sparse: allocate a sparse matrix

e cholmod free _sparse: free a sparse matrix
Secondary routines for the cholmod _sparse object:

e cholmod reallocate_sparse: change the size (number of entries) of a sparse matrix.
e cholmod nnz: number of nonzeros in a sparse matrix.

e cholmod_speye: sparse identity matrix.

e cholmod_spzeros: sparse zero matrix.

e cholmod transpose: transpose a sparse matrix.

e cholmod ptranspose: transpose/permute a sparse matrix.

e cholmod_transpose_unsym: transpose/permute an unsymmetric sparse matrix.
e cholmod transpose_sym: transpose/permute a symmetric sparse matrix.

e cholmod_sort: sort row indices in each column of a sparse matrix.

e cholmod band: extract a band of a sparse matrix.

e cholmod_band_inplace: remove entries not with a band.

e cholmod_aat: C = AxA’.

e cholmod copy_sparse: C = A, create an exact copy of a sparse matrix.

e cholmod_copy: C = A, with possible change of stype.

e cholmod_add: C = alpha*A + betax*B.

e cholmod_sparse_xtype: change the xtype of a sparse matrix.

35

8.1.3 cholmod factor: a symbolic or numeric factorization

A factor can be in LLT or LDLT form, and either supernodal or simplicial form. In simplicial
form, this is very much like a packed or unpacked cholmod _sparse matrix. In supernodal form,
adjacent columns with similar nonzero pattern are stored as a single block (a supernode).

Primary routine for the cholmod_factor object:
e cholmod free factor: free a factor
Secondary routines for the cholmod_factor object:

e cholmod_allocate_factor: allocate a factor. You will normally use cholmod_analyze to
create a factor.

e cholmod_reallocate_factor: change the number of entries in a factor.

e cholmod_change factor: change the type of a factor (LDLT to LLT, supernodal to simpli-
cial, etc.).

e cholmod pack_factor: pack the columns of a factor.

e cholmod reallocate_column: resize a single column of a factor.

e cholmod factor_to_sparse: create a sparse matrix copy of a factor.
e cholmod_copy_factor: create a copy of a factor.

e cholmod factor_xtype: change the xtype of a factor.

8.1.4 cholmod dense: a dense matrix
This consists of a dense array of numerical values and its dimensions.

Primary routines for the cholmod_dense object:

e cholmod_allocate_dense: allocate a dense matrix.

e cholmod_free_dense: free a dense matrix.

Secondary routines for the cholmod_dense object:

e cholmod zeros: allocate a dense matrix of all zeros.

e cholmod_ ones: allocate a dense matrix of all ones.

e cholmod_eye: allocate a dense identity matrix .

e cholmod _sparse_to_dense: create a dense matrix copy of a sparse matrix.
e cholmod_dense_to_sparse: create a sparse matrix copy of a dense matrix.
e cholmod_copy_dense: create a copy of a dense matrix.

e cholmod copy dense2: copy a dense matrix (pre-allocated).

e cholmod dense xtype: change the xtype of a dense matrix.

36

8.1.5 cholmod triplet: a sparse matrix in “triplet” form

The cholmod_sparse matrix is the basic sparse matrix used in CHOLMOD, but it can be difficult
for the user to construct. It also does not easily support the inclusion of new entries in the matrix.
The cholmod_triplet matrix is provided to address these issues. A sparse matrix in triplet form
consists of three arrays of size nzmax: i, j, and x, and a z array for the zomplex case.

Primary routines for the cholmod_triplet object:

e cholmod_allocate_triplet: allocate a triplet matrix.

e cholmod free triplet: free a triplet matrix.

e cholmod triplet_to_sparse: create a sparse matrix copy of a triplet matrix.
Secondary routines for the cholmod triplet object:

e cholmod reallocate_triplet: change the number of entries in a triplet matrix.

e cholmod_sparse_to_triplet: create a triplet matrix copy of a sparse matrix.

e cholmod_copy_triplet: create a copy of a triplet matrix.

e cholmod_triplet _xtype: change the xtype of a triplet matrix.

8.1.6 Memory management routines

By default, CHOLMOD uses the ANSI C malloc, free, calloc, and realloc routines. You may
use different routines by modifying function pointers in the cholmod_common object.

Primary routines:

e cholmod malloc: malloc wrapper.

e cholmod_free: free wrapper.
Secondary routines:

e cholmod_calloc: calloc wrapper.

e cholmod_realloc: realloc wrapper.

e cholmod realloc multiple: realloc wrapper for multiple objects.

8.1.7 cholmod_version: Version control

The cholmod_version function returns the current version of CHOLMOD.

37

8.2 Check Module: print/check the CHOLMOD objects

The Check Module contains routines that check and print the five basic objects in CHOLMOD,
and three kinds of integer vectors (a set, a permutation, and a tree). It also provides a routine to
read a sparse matrix from a file in Matrix Market format (http://www.nist.gov/MatrixMarket).
Requires the Core Module.

Primary routines:

e cholmod print_common: print the cholmod_common object, including statistics on CHOLMOD’s
behavior (fill-in, flop count, ordering methods used, and so on).

e cholmod write_sparse: write a sparse matrix to a file in Matrix Market format.
e cholmod write dense: write a sparse matrix to a file in Matrix Market format.

e cholmod read matrix: read a sparse or dense matrix from a file in Matrix Market format.

Secondary routines:

e cholmod_check_common: check the cholmod_common object

e cholmod_check_sparse: check a sparse matrix

e cholmod print_sparse: print a sparse matrix

e cholmod _check dense: check a dense matrix

e cholmod print_dense: print a dense matrix

e cholmod check factor: check a Cholesky factorization

e cholmod print_factor: print a Cholesky factorization

e cholmod_check_triplet: check a triplet matrix

e cholmod print_triplet: print a triplet matrix

e cholmod_check_subset: check a subset (integer vector in given range)
e cholmod print_subset: print a subset (integer vector in given range)
e cholmod check perm: check a permutation (an integer vector)

e cholmod print_perm: print a permutation (an integer vector)

e cholmod_check parent: check an elimination tree (an integer vector)
e cholmod print_parent: print an elimination tree (an integer vector)
e cholmod read triplet: read a triplet matrix from a file

e cholmod read _sparse: read a sparse matrix from a file

e cholmod_read_dense: read a dense matrix from a file

38

8.3

The primary routines are all that a user requires to order, analyze, and factorize a sparse symmetric
positive definite matrix A (or AAT), and to solve Ax = b (or AATx = b). The primary routines
rely on the secondary routines, the Core Module, and the AMD and COLAMD packages. They
make optional use of the Supernodal and Partition Modules, the METIS package, the CAMD
package, and the CCOLAMD package. The Cholesky Module is required by the Partition Module.

Cholesky Module: sparse Cholesky factorization

Primary routines:

cholmod_analyze: order and analyze (simplicial or supernodal).

cholmod_factorize: simplicial or supernodal Cholesky factorization.

cholmod solve: solve a linear system (simplicial or supernodal, dense x and b).

cholmod _spsolve: solve a linear system (simplicial or supernodal, sparse x and b).

Secondary routines:

cholmod_analyze_p: analyze, with user-provided permutation or f set.
cholmod _factorize_p: factorize, with user-provided permutation or f.
cholmod_analyze_ordering: analyze a permutation

cholmod_solve2: solve a linear system, reusing workspace.
cholmod_etree: find the elimination tree.

cholmod_rowcolcounts: compute the row/column counts of L.
cholmod_amd: order using AMD.

cholmod_colamd: order using COLAMD.

cholmod _rowfac: incremental simplicial factorization.

cholmod row_subtree: find the nonzero pattern of a row of L.
cholmod_row_lsubtree: find the nonzero pattern of a row of L.
cholmod_row_lsubtree: find the nonzero pattern of L~1b.

cholmod resymbol: recompute the symbolic pattern of L.

cholmod_resymbol _noperm: recompute the symbolic pattern of L, no permutation.

cholmod_postorder: postorder a tree.
cholmod _rcond: compute the reciprocal condition number estimate.

cholmod _rowfac mask: for use in LPDASA only.

39

8.4 Modify Module: update/downdate a sparse Cholesky factorization

The Modify Module contains sparse Cholesky modification routines: update, downdate, row-add,
and row-delete. It can also modify a corresponding solution to Lx = b when L is modified. This
module is most useful when applied on a Cholesky factorization computed by the Cholesky module,
but it does not actually require the Cholesky module. The Core module can create an identity
Cholesky factorization (LDLT where L = D = I) that can then be modified by these routines.
Requires the Core module. Not required by any other CHOLMOD Module.

Primary routine:
e cholmod_updown: multiple rank update/downdate

Secondary routines:
e cholmod_updown_solve: update/downdate, and modify solution to Lx = b
e cholmod updown mark: update/downdate, and modify solution to partial Lx = b
e cholmod updown mask: for use in LPDASA only.
e cholmod rowadd: add a row to an LDL' factorization
e cholmod_rowadd_solve: add a row, and update solution to Lx = b
e cholmod_rowadd mark: add a row, and update solution to partial Lx = b
e cholmod rowdel: delete a row from an LDLT factorization
e cholmod_rowdel_solve: delete a row, and downdate Lx = b

e cholmod_rowdel mark: delete a row, and downdate solution to partial Lx = b

8.5 MatrixOps Module: basic sparse matrix operations

The Matrix0Ops Module provides basic operations on sparse and dense matrices. Requires the Core
module. Not required by any other CHOLMOD module. In the descriptions below, A, B, and C:
are sparse matrices (cholmod_sparse), X and Y are dense matrices (cholmod _dense), s is a scalar
or vector, and alpha beta are scalars.

e cholmod drop: drop entries from A with absolute value > a given tolerance.
e cholmod norm dense: s = norm (X), l-norm, infinity-norm, or 2-norm

e cholmod norm sparse: s = norm (A), l-norm or infinity-norm

e cholmod_horzcat: C = [A,B]

e cholmod_scale: A = diag(s)*A, Axdiag(s), s*A or diag(s)*Axdiag(s).

e cholmod_sdmult: Y

alpha* (A*X) + betax*Y or alpha*(A’*X) + betaxY.

e cholmod_ssmult: C A*B

40

e cholmod_submatrix: C = A (i,j), where i and j are arbitrary integer vectors.
e cholmod_vertcat: C = [A ; B].

e cholmod _symmetry: determine symmetry of a matrix.

41

8.6 Supernodal Module: supernodal sparse Cholesky factorization

The Supernodal Module performs supernodal analysis, factorization, and solve. The simplest way
to use these routines is via the Cholesky Module. This Module does not provide any fill-reducing
orderings. It normally operates on matrices ordered by the Cholesky Module. It does not require
the Cholesky Module itself, however. Requires the Core Module, and two external packages:
LAPACK and the BLAS. Optionally used by the Cholesky Module. All are secondary routines
since these functions are more easily used via the Cholesky Module.

Secondary routines:
e cholmod_super_symbolic: supernodal symbolic analysis
e cholmod_super numeric: supernodal numeric factorization
e cholmod_super_lsolve: supernodal Lx = b solve

e cholmod_super_ltsolve: supernodal LTx = b solve

8.7 Partition Module: graph-partitioning-based orderings

The Partition Module provides graph partitioning and graph-partition-based orderings. It in-
cludes an interface to CAMD, CCOLAMD, and CSYMAMD, constrained minimum degree ordering
methods which order a matrix following constraints determined via nested dissection. Requires the
Core and Cholesky Modules, and two packages: METIS 4.0.1, CAMD, and CCOLAMD. Option-
ally used by the Cholesky Module. All are secondary routines since these are more easily used by
the Cholesky Module.

Note that METIS does not have a version that uses long integers. If you try to use these
routines (except the CAMD, CCOLAMD, and CSYMAMD interfaces) on a matrix that is too
large, an error code will be returned.

Secondary routines:
e cholmod nested dissection: CHOLMOD nested dissection ordering
e cholmod metis: METIS nested dissection ordering (METIS_NodeND)
e cholmod_camd: interface to CAMD ordering
e cholmod_ccolamd: interface to CCOLAMD ordering
e cholmod_csymamd: interface to CSYMAMD ordering
e cholmod bisect: graph partitioner (currently based on METIS)
e cholmod metis bisector: direct interface to METIS NodeComputeSeparator.

e cholmod_collapse_septree: pruned a separator tree from cholmod nested_dissection.

42

9 CHOLMOD naming convention, parameters, and return values

All routine names, data types, and CHOLMOD library files use the cholmod_ prefix. All macros
and other #define statements visible to the user program use the CHOLMOD prefix. The cholmod.h
file must be included in user programs that use CHOLMOD:

#include "cholmod.h"

All CHOLMOD routines (in all modules) use the following protocol for return values:

int: TRUE (1) if successful, or FALSE (0) otherwise. (exception: cholmod_divcomplex).
long: a value > 0 if successful, or -1 otherwise.

double: a value > 0 if successful, or -1 otherwise.

size_t: a value > 0 if successful, or 0 otherwise.

void *: a non-NULL pointer to newly allocated memory if successful, or NULL otherwise.

cholmod_sparse *: a non-NULL pointer to a newly allocated sparse matrix if successful, or
NULL otherwise.

cholmod_factor *: a non-NULL pointer to a newly allocated factor if successful, or NULL
otherwise.

cholmod_triplet *: a non-NULL pointer to a newly allocated triplet matrix if successful, or
NULL otherwise.

cholmod_dense *: a non-NULL pointer to a newly allocated dense matrix if successful, or NULL
otherwise.

TRUE and FALSE are not defined in cholmod.h, since they may conflict with the user program. A
routine that described here returning TRUE or FALSE returns 1 or 0, respectively. Any TRUE/FALSE
parameter is true if nonzero, false if zero.

Input, output, and input/output parameters:

Input parameters appear first in the parameter lists of all CHOLMOD routines. They are
not modified by CHOLMOD.

Input/output parameters (except for Common) appear next. They must be defined on input,
and are modified on output.

Output parameters are listed next. If they are pointers, they must point to allocated space
on input, but their contents are not defined on input.

Workspace parameters appear next. They are used in only two routines in the Supernodal
module.

The cholmod_common *Common parameter always appears as the last parameter (with two
exceptions: cholmod hypot and cholmod divcomplex). It is always an input/output param-
eter.

43

A floating-point scalar is passed to CHOLMOD as a pointer to a double array of size two. The
first entry in this array is the real part of the scalar, and the second entry is the imaginary part.
The imaginary part is only accessed if the other inputs are complex or zomplex. In some cases the
imaginary part is always ignored (cholmod_factor_p, for example).

44

10 Core Module: cholmod_common object

10.1 Constant definitions

/* itype defines the types of integer used: */
#define CHOLMOD_INT O /* all integer arrays are int */
#define CHOLMOD_INTLONG 1 /* most are int, some are SuiteSparse_long */
#define CHOLMOD_LONG 2 /* all integer arrays are SuiteSparse_long */
/* The itype of all parameters for all CHOLMOD routines must match.
* FUTURE WORK: CHOLMOD_INTLONG is not yet supported.
*/
/* dtype defines what the numerical type is (double or float): */
#define CHOLMOD_DOUBLE O /* all numerical values are double */
#define CHOLMOD_SINGLE 1 /* all numerical values are float */
/* The dtype of all parameters for all CHOLMOD routines must match.
*

* %

Scalar floating-point values are always passed as double arrays of size 2
(for the real and imaginary parts). They are typecast to float as needed.
FUTURE WORK: the float case is not supported yet.

*/

/* xtype defines the kind of numerical values used: */
#define CHOLMOD_PATTERN O /* pattern only, no numerical values */
#define CHOLMOD_REAL 1 /* a real matrix */
#define CHOLMOD_COMPLEX 2 /* a complex matrix (ANSI C99 compatible) */
#define CHOLMOD_ZOMPLEX 3 /* a complex matrix (MATLAB compatible) */
/* The xtype of all parameters for all CHOLMOD routines must match.

¥R R K K K X X X X X X X K K XK X X X X X X ¥ ¥

CHOLMOD_PATTERN: x and z are ignored.

CHOLMOD_DOUBLE: x is non-null of size nzmax, z is ignored.
CHOLMOD_COMPLEX: x is non-null of size 2*nzmax doubles, z is ignored.
CHOLMOD_ZOMPLEX: x and z are non-null of size nzmax

In the real case, z is ignored. The kth entry in the matrix is x [k].
There are two methods for the complex case. In the ANSI C99-compatible
CHOLMOD_COMPLEX case, the real and imaginary parts of the kth entry

are in x [2#k] and x [2xk+1], respectively. =z is ignored. In the
MATLAB-compatible CHOLMOD_ZOMPLEX case, the real and imaginary

parts of the kth entry are in x [k] and z [k].

Scalar floating-point values are always passed as double arrays of size 2
(real and imaginary parts). The imaginary part of a scalar is ignored if

the routine operates on a real matrix.

These Modules support complex and zomplex matrices, with a few exceptions:

Check all routines
Cholesky all routines
Core all except cholmod_aat, add, band, copy
Demo all routines

Partition all routines

45

* Supernodal all routines support any real, complex, or zomplex input.
* There will never be a supernodal zomplex L; a complex
* supernodal L is created if A is zomplex.

* Tcov all routines

* Valgrind all routines

*

* These Modules provide partial support for complex and zomplex matrices:

*

* MATLAB all routines support real and zomplex only, not complex,

* with the exception of ldlupdate, which supports

* real matrices only. This is a minor constraint since
* MATLAB’s matrices are all real or zomplex.

* MatrixOps only norm_dense, norm_sparse, and sdmult support complex

* and zomplex

*

* These Modules do not support complex and zomplex matrices at all:

*

* Modify all routines support real matrices only

*/

/* Definitions for cholmod_common: */
#define CHOLMOD_MAXMETHODS 9 /* maximum number of different methods that */
/* cholmod_analyze can try. Must be >= 9. */

/* Common->status values. zero means success, negative means a fatal error,
* positive is a warning. */

#define CHOLMOD_OK O /* success */

#define CHOLMOD_NOT_INSTALLED (-1) /* failure: method not installed */
#define CHOLMOD_QOUT_OF_MEMORY (-2) /* failure: out of memory */

#define CHOLMOD_TOO_LARGE (-3) /* failure: integer overflow occured */
#define CHOLMOD_INVALID (-4) /* failure: invalid input */

#define CHOLMOD_GPU_PROBLEM (-5) /* failure: GPU fatal error */

#define CHOLMOD_NOT_POSDEF (1) /* warning: matrix not pos. def. */
#define CHOLMOD_DSMALL (2) /* warning: D for LDL’ or diag(L) or */

/* LL’ has tiny absolute value */

/* ordering method (also used for L->ordering) */

#define CHOLMOD_NATURAL O /* use natural ordering */

#define CHOLMOD_GIVEN 1 /* use given permutation */

#define CHOLMOD_AMD 2 /* use minimum degree (AMD) */

#define CHOLMOD_METIS 3 /* use METIS’ nested dissection */

#define CHOLMOD_NESDIS 4 /* use CHOLMOD’s version of nested dissection:*/

/* node bisector applied recursively, followed
* by constrained minimum degree (CSYMAMD or
* CCOLAMD) */

#define CHOLMOD_COLAMD 5 /* use AMD for A, COLAMD for AxA’ x/

/* POSTORDERED is not a method, but a result of natural ordering followed by a
* weighted postorder. It is used for L->ordering, not method [].ordering. */
#define CHOLMOD_POSTORDERED 6 /* natural ordering, postordered. */

/* supernodal strategy (for Common->supernodal) */

#define CHOLMOD_SIMPLICIAL O /* always do simplicial */

#define CHOLMOD_AUTO 1 /* select simpl/super depending on matrix */
#define CHOLMOD_SUPERNODAL 2 /* always do supernodal */

46

Purpose: These definitions are used within the cholmod_common object, called Common both here
and throughout the code.

47

10.2

cholmod_common: parameters, statistics, and workspace

typedef struct cholmod_common_struct

{

/% ==

R ettt it e */

/* parameters for symbolic/numeric factorization and update/downdate */

/% —-

--- --- --- B */

double dbound ; /* Smallest absolute value of diagonal entries of D

* X X *

* for LDL’ factorization and update/downdate/rowadd/
rowdel, or the diagonal of L for an LL’ factorization.
Entries in the range 0 to dbound are replaced with dbound.
Entries in the range -dbound to O are replaced with -dbound. No
changes are made to the diagonal if dbound <= 0. Default: zero */

double grow0 ; /* For a simplicial factorization, L->i and L->x can

LR I R

* grow if necessary. grow0 is the factor by which
it grows. For the initial space, L is of size MAX (1,grow0) times
the required space. If L runs out of space, the new size of L is
MAX(1.2,grow0) times the new required space. If you do not plan on
modifying the LDL’ factorization in the Modify module, set growO to
zero (or set grow2 to O, see below). Default: 1.2 */

double growl ;

size_t grow2 ; /* For a simplicial factorization, each column j of L

L R I

* is initialized with space equal to
growl*L->ColCount [j] + grow2. If grow0O < 1, growl < 1, or grow2 == O,
then the space allocated is exactly equal to L->ColCount[j]l. If the
column j runs out of space, it increases to growl*need + grow2 in
size, where need is the total # of nonzeros in that column. If you do
not plan on modifying the factorization in the Modify module, set
grow2 to zero. Default: growl = 1.2, grow2 = 5. */

size_t maxrank ; /* rank of maximum update/downdate. Valid values:

* X X X X ¥

* 2, 4, or 8. A value < 2 is set to 2, and a
value > 8 is set to 8. It is then rounded up to the next highest
power of 2, if not already a power of 2. Workspace (Xwork, below) of
size nrow-by-maxrank double’s is allocated for the update/downdate.
If an update/downdate of rank-k is requested, with k > maxrank,
it is done in steps of maxrank. Default: 8, which is fastest.
Memory usage can be reduced by setting maxrank to 2 or 4.

*/

double supernodal_switch ; /* supernodal vs simplicial factorization */
int supernodal ; /* If Common->supernodal <= CHOLMOD_SIMPLICIAL

* X X X *

* (0) then cholmod_analyze performs a
simplicial analysis. If >= CHOLMOD_SUPERNODAL (2), then a supernodal
analysis is performed. If == CHOLMOD_AUTO (1) and
flop/nnz(L) < Common->supernodal_switch, then a simplicial analysis
is done. A supernodal analysis done otherwise.

Default: CHOLMOD_AUTO. Default supernodal_switch = 40 */

int final_asis ; /* If TRUE, then ignore the other final_* parameters

* (except for final_pack).

48

* The factor is left as-is when done. Default: TRUE.*/

int final_super ; /* If TRUE, leave a factor in supernodal form when
* supernodal factorization is finished. If FALSE,
* then convert to a simplicial factor when done.
* Default: TRUE */

int final_11 ; /* If TRUE, leave factor in LL’ form when done.
* Otherwise, leave in LDL’ form. Default: FALSE x/

int final_pack ; /* If TRUE, pack the columns when done. If TRUE, and

* cholmod_factorize is called with a symbolic L, L is
allocated with exactly the space required, using L->ColCount. If you
plan on modifying the factorization, set Common->final_pack to FALSE,
and each column will be given a little extra slack space for future
growth in fill-in due to updates. Default: TRUE */

* ¥ ¥ *

int final_monotonic ; /* If TRUE, ensure columns are monotonic when done.
* Default: TRUE */

int final_resymbol ;/* if cholmod_factorize performed a supernodal

* factorization, final_resymbol is true, and
final_super is FALSE (convert a simplicial numeric factorization),
then numerically zero entries that resulted from relaxed supernodal
amalgamation are removed. This does not remove entries that are zero
due to exact numeric cancellation, since doing so would break the
update/downdate rowadd/rowdel routines. Default: FALSE. */

* ¥ X X *

/* supernodal relaxed amalgamation parameters: */
double zrelax [3] ;
size_t nrelax [3] ;

/* Let ns be the total number of columns in two adjacent supernodes.
Let z be the fraction of zero entries in the two supernodes if they
are merged (z includes zero entries from prior amalgamations). The
two supernodes are merged if:

(ns <= nrelax [0]) || (no new zero entries added) |

(ns <= nrelax [1] && z < zrelax [0]) ||

(ns <= nrelax [2] && z < zrelax [1]) || (z < zrelax [2])

Default parameters result in the following rule:
(ns <= 4) || (no new zero entries added) ||
(ns <= 16 &% z < 0.8) || (ns <= 48 && z < 0.1) || (z < 0.05)

int prefer_zomplex ; /* X = cholmod_solve (sys, L, B, Common) computes

* x=A\b or solves a related system. If L and B are
both real, then X is real. Otherwise, X is returned as
CHOLMOD_COMPLEX if Common->prefer_zomplex is FALSE, or
CHOLMOD_ZOMPLEX if Common->prefer_zomplex is TRUE. This parameter
is needed because there is no supernodal zomplex L. Suppose the
caller wants all complex matrices to be stored in zomplex form
(MATLAB, for example). A supernodal L is returned in complex form
if A is zomplex. B can be real, and thus X = cholmod_solve (L,B)
should return X as zomplex. This cannot be inferred from the input

I R R S

49

arguments L and B. Default: FALSE, since all data types are
supported in CHOLMOD_COMPLEX form and since this is the native type
of LAPACK and the BLAS. Note that the MATLAB/cholmod.c mexFunction
sets this parameter to TRUE, since MATLAB matrices are in
CHOLMOD_ZOMPLEX form.

L K

int prefer_upper ; /* cholmod_analyze and cholmod_factorize work

* fastest when a symmetric matrix is stored in
upper triangular form when a fill-reducing ordering is used. In
MATLAB, this corresponds to how x=A\b works. When the matrix is
ordered as-is, they work fastest when a symmetric matrix is in lowe
triangular form. In MATLAB, R=chol(A) does the opposite. This
parameter affects only how cholmod_read returns a symmetric matrix.

* X X X X X ¥

upper-triangular form (A->stype = 1). */

int quick_return_if_not_posdef ; /* if TRUE, the supernodal numeric
* factorization will return quickly i
* the matrix is not positive definite. Default: FALSE. */

/4 mmmmmmmmmmmmee e -—- —- e
/* printing and error handling options */

K
int print ; /* print level. Default: 3 */

int precise ; /* if TRUE, print 16 digits. Otherwise print 5 */

int (*print_function) (const char *, ...) ; /* pointer to printf */

int try_catch ; /* if TRUE, then ignore errors; CHOLMOD is in the midd

* of a try/catch block. No error message is printed
* and the Common->error_handler function is not called. */

void (*error_handler) (int status, const char *file,
int line, comnst char *message) ;

/* Common->error_handler is the user’s error handling routine. If not
* NULL, this routine is called if an error occurs in CHOLMOD. status
* can be CHOLMOD_OK (0), negative for a fatal error, and positive for
* a warning. file is a string containing the name of the source code
* file where the error occured, and line is the line number in that
* file. message is a string describing the error in more detail. */

/*x —= e - e
/* ordering options */
/% —- —- —- - e

/* The cholmod_analyze routine can try many different orderings and select
the best one. It can also try one ordering method multiple times, with
different parameter settings. The default is to use three orderings,
the user’s permutation (if provided), AMD which is the fastest ordering
and generally gives good fill-in, and METIS. CHOLMOD’s nested dissecti
(METIS with a constrained AMD) usually gives a better ordering than MET
alone (by about 5% to 10%) but it takes more time.

* X X X X ¥ *

50

r

If TRUE (the default case), a symmetric matrix is always returned in

£

le

on
IS

If you know the method that is best for your matrix, set Common->nmethods
to 1 and set Common->method [0] to the set of parameters for that method.
If you set it to 1 and do not provide a permutation, then only AMD will
be called.

If METIS is not available, the default # of methods tried is 2 (the user
permutation, if any, and AMD).

To try other methods, set Common->nmethods to the number of methods you
want to try. The suite of default methods and their parameters is
described in the cholmod_defaults routine, and summarized here:

Common->method [i]:
i = 0: user-provided ordering (cholmod_analyze_p only)

= AMD (for both A and AxA’)

= METIS

= CHOLMOD’s nested dissection (NESDIS), default parameters
natural

NESDIS with nd_small = 20000

NESDIS with nd_small = 4, no constrained minimum degree
NESDIS with no dense node removal

AMD for A, COLAMD for AxA’

L T e A S T T
o
W~ U WN =

You can modify the suite of methods you wish to try by modifying
Common.method [...] after calling cholmod_start or cholmod_defaults.

For example, to use AMD, followed by a weighted postordering:

Common->nmethods = 1 ;
Common->method [0].ordering = CHOLMOD_AMD ;
Common->postorder = TRUE ;

To use the natural ordering (with no postordering):

Common->nmethods = 1 ;
Common->method [0].ordering = CHOLMOD_NATURAL ;
Common->postorder = FALSE ;

If you are going to factorize hundreds or more matrices with the same
nonzero pattern, you may wish to spend a great deal of time finding a
good permutation. In this case, try setting Common->nmethods to 9.
The time spent in cholmod_analysis will be very high, but you need to
call it only once.

cholmod_analyze sets Common->current to a value between O and nmethods-1.
Each ordering method uses the set of options defined by this parameter.

¥R K X X X X X X K X K X X K X K X K X X K X K X K X X X X K X K X X X ¥ ¥ ¥ ¥ ¥ ¥ X * *

*
~

int nmethods ; /* The number of ordering methods to try. Default: O.
* nmethods = 0 is a special case. cholmod_analyze

will try the user-provided ordering (if given) and AMD. Let fl and

Inz be the flop count and nonzeros in L from AMD’s ordering. Let

anz be the number of nonzeros in the upper or lower triangular part

of the symmetric matrix A. If f1/lnz < 500 or lnz/anz < 5, then this

is a good ordering, and METIS is not attempted. Otherwise, METIS is

* ¥ ¥ X *

o1

* tried. The best ordering found is used. If nmethods > 0, the
* methods used are given in the method[] array, below. The first
* three methods in the default suite of orderings is (1) use the given
* permutation (if provided), (2) use AMD, and (3) use METIS. Maximum
* allowed value is CHOLMOD_MAXMETHODS. */

int current ; /* The current method being tried. Default: 0. Valid

* range is O to nmethods-1. */
int selected ; /* The best method found. */

/* The suite of ordering methods and parameters: */

struct cholmod_method_struct
{
/* statistics for this method */
double 1lnz ; /* nnz(L) excl. zeros from supernodal amalgamation,
* for a "pure" L */

double f1 ; /* flop count for a "pure", real simplicial LL’
* factorization, with no extra work due to
* amalgamation. Subtract n to get the LDL’ flop count. Multiply
* by about 4 if the matrix is complex or zomplex. */

/* ordering method parameters */

double prune_dense ;/* dense row/col control for AMD, SYMAMD, CSYMAMD,
* and NESDIS (cholmod_nested_dissection). For a

symmetric n-by-n matrix, rows/columns with more than

MAX (16, prune_dense * sqrt (n)) entries are removed prior to

ordering. They appear at the end of the re-ordered matrix.

If prune_dense < 0, only completely dense rows/cols are removed.

This paramater is also the dense column control for COLAMD and
CCOLAMD. For an m-by-n matrix, columns with more than

MAX (16, prune_dense * sqrt (MIN (m,n))) entries are removed prior
to ordering. They appear at the end of the re-ordered matrix.
CHOLMOD factorizes A*A’, so it calls COLAMD and CCOLAMD with A’,
not A. Thus, this parameter affects the dense *row* control for
CHOLMOD’s matrix, and the dense *column* control for COLAMD and
CCOLAMD.

Removing dense rows and columns improves the run-time of the
ordering methods. It has some impact on ordering quality
(usually minimal, sometimes good, sometimes bad) .

¥ OX K X K X K X X X X X X X ¥ X ¥ X * *

Default: 10. */

double prune_dense2 ;/* dense row control for COLAMD and CCOLAMD.
* Rows with more than MAX (16, dense2 * sqrt (n))
* for an m-by-n matrix are removed prior to ordering. CHOLMOD’s
* matrix is transposed before ordering it with COLAMD or CCOLAMD,
* so this controls the dense *columns* of CHOLMOD’s matrix, and
* the dense *rows* of COLAMD’s or CCOLAMD’s matrix.
*

52

If prune_dense2 < 0, only completely dense rows/cols are removed.

Default: -1. Note that this is not the default for COLAMD and
CCOLAMD. -1 is best for Cholesky. 10 is best for LU. x*/

* X ¥ *

double nd_oksep ; /* in NESDIS, when a node separator is computed, it
* discarded if nsep >= nd_oksep*n, where nsep is
* the number of nodes in the separator, and n is the size of the
* graph being cut. Valid range is O to 1. If 1 or greater, the
* separator is discarded if it consists of the entire graph.
* Default: 1 */

double other_1 [4] ; /* future expansion */

size_t nd_small ; /* do not partition graphs with fewer nodes than
* nd_small, in NESDIS. Default: 200 (same as
* METIS) */

size_t other_2 [4] ; /* future expansion */

int aggressive ; /* Aggresive absorption in AMD, COLAMD, SYMAMD,

* CCOLAMD, and CSYMAMD. Default: TRUE */

int order_for_lu ; /* CCOLAMD can be optimized to produce an ordering

* for LU or Cholesky factorization. CHOLMOD only
performs a Cholesky factorization. However, you may wish to use
CHOLMOD as an interface for CCOLAMD but use it for your own LU
factorization. In this case, order_for_lu should be set to FALSE.
When factorizing in CHOLMOD itself, you should *** NEVER *** set
this parameter FALSE. Default: TRUE. */

* X ¥ X ¥

int nd_compress ; /* If TRUE, compress the graph and subgraphs before
* partitioning them in NESDIS. Default: TRUE */

int nd_camd ; /* If 1, follow the nested dissection ordering

* with a constrained minimum degree ordering that
respects the partitioning just found (using CAMD). If 2, use
CSYMAMD instead. If you set nd_small very small, you may not need
this ordering, and can save time by setting it to zero (no
constrained minimum degree ordering). Default: 1. */

* X ¥ *

int nd_components ; /* The nested dissection ordering finds a node

* separator that splits the graph into two parts,
which may be unconnected. If nd_components is TRUE, each of
these connected components is split independently. If FALSE,
each part is split as a whole, even if it consists of more than
one connected component. Default: FALSE */

* ¥ ¥ %

/* fill-reducing ordering to use */
int ordering ;

size_t other_3 [4] ; /* future expansion */

} method [CHOLMOD_MAXMETHODS + 1] ;

53

int postorder ; /* If TRUE, cholmod_analyze follows the ordering with a
* weighted postorder of the elimination tree. Improves
* supernode amalgamation. Does not affect fundamental nnz(L) and
* flop count. Default: TRUE. */

K */
/* memory management routines */

Ve - -—— e */
void *(*malloc_memory) (size_t) ; /* pointer to malloc */

void *(*realloc_memory) (void *, size_t) ; /* pointer to realloc */

void (*free_memory) (void *) ; /* pointer to free */

void *(*calloc_memory) (size_t, size_t) ; /* pointer to calloc */

K */
/* routines for complex arithmetic */

/*x —= -— - ——————————— *x/

int (*complex_divide) (double ax, double az, double bx, double bz,
double *cx, double *cz) ;

/* flag = complex_divide (ax, az, bx, bz, &cx, &cz) computes the complex
* division c¢ = a/b, where ax and az hold the real and imaginary part

* of a, and b and ¢ are stored similarly. flag is returned as 1 if

* a divide-by-zero occurs, or 0 otherwise. By default, the function

* pointer Common->complex_divide is set equal to cholmod_divcomplex.

*/
double (*hypotenuse) (double x, double y) ;

/* s = hypotenuse (x,y) computes s = sqrt (x*x + y*y), but does so more
* accurately. By default, the function pointer Common->hypotenuse is
* set equal to cholmod_hypot. See also the hypot function in the C99
* standard, which has an identical syntax and function. If you have
* a C99-compliant compiler, you can set Common->hypotenuse = hypot. */

[k —mmmmmmmm e -—- -—- e */
/* METIS workarounds */

K */
double metis_memory ; /* This is a parameter for CHOLMOD’s interface to

* METIS, not a parameter to METIS itself. METIS
uses an amount of memory that is difficult to estimate precisely
beforehand. If it runs out of memory, it terminates your program.
A1l routines in CHOLMOD except for CHOLMOD’s interface to METIS
return an error status and safely return to your program if they run
out of memory. To mitigate this problem, the CHOLMOD interface
can allocate a single block of memory equal in size to an empirical
upper bound of METIS’s memory usage times the Common->metis_memory
parameter, and then immediately free it. It then calls METIS. If
this pre-allocation fails, it is possible that METIS will fail as
well, and so CHOLMOD returns with an out-of-memory condition without
calling METIS.

* X X X X X K X X X ¥ ¥ *

METIS_NodeND (used in the CHOLMOD_METIS ordering option) with its

54

default parameter settings typically uses about (4*nz+40n+4096)
times sizeof (int) memory, where nz is equal to the number of entries
in A for the symmetric case or AA’ if an unsymmetric matrix is
being ordered (where nz includes both the upper and lower parts

of A or AA’). The observed "upper bound" (with 2 exceptions),
measured in an instrumented copy of METIS 4.0.1 on thousands of
matrices, is (10*nz+50%n+4096) * sizeof(int). Two large matrices
exceeded this bound, one by almost a factor of 2 (Gupta/gupta2).

If your program is terminated by METIS, try setting metis_memory to
2.0, or even higher if needed. By default, CHOLMOD assumes that METIS
does not have this problem (so that CHOLMOD will work correctly when
this issue is fixed in METIS). Thus, the default value is zero.

This work-around is not guaranteed anyway.

If a matrix exceeds this predicted memory usage, AMD is attempted
instead. It, too, may run out of memory, but if it does so it will
not terminate your program.

¥R K X K K X XK X X X X X X X X X ¥

*
~

double metis_dswitch ; /* METIS_NodeND in METIS 4.0.1 gives a seg */
size_t metis_nswitch ; /* fault with one matrix of order n = 3005 and
* nz = 6,036,025. This is a very dense graph.
The workaround is to use AMD instead of METIS for matrices of dimension
greater than Common->metis_nswitch (default 3000) or more and with
density of Common->metis_dswitch (default 0.66) or more.
cholmod_nested_dissection has no problems with the same matrix, even
though it uses METIS_NodeComputeSeparator on this matrix. If this
seg fault does not affect you, set metis_nswitch to zero or less,
and CHOLMOD will not switch to AMD based just on the density of the
matrix (it will still switch to AMD if the metis_memory parameter
causes the switch).

¥ X X X X X ¥ ¥ *

*
~

~ ~
* %
5 |
o |1
2}
~
[}
g
I
o |
® |
*
~
I
|
1
I
|
1
1
|
1
I
|
1
|
|
1
*
~

~
*
|
|
|
|
:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*
~

S~
*

CHOLMOD has several routines that take less time than the size of
workspace they require. Allocating and initializing the workspace would
dominate the run time, unless workspace is allocated and initialized
just once. CHOLMOD allocates this space when needed, and holds it here
between calls to CHOLMOD. cholmod_start sets these pointers to NULL
(which is why it must be the first routine called in CHOLMOD).
cholmod_finish frees the workspace (which is why it must be the last
call to CHOLMOD) .

* X X X X ¥ *

*
~

size_t nrow ; /* size of Flag and Head */
SuiteSparse_long mark ; /* mark value for Flag array */
size_t iworksize ; /* size of Iwork. Upper bound: 6*nrow+ncol */
size_t xworksize ; /* size of Xwork, in bytes.
* maxrank*nrow*sizeof (double) for update/downdate.
* 2#nrowxsizeof (double) otherwise */

95

/* ini
void *

void *

void *

LR I

/* uni
void *

int it

int dt

/*
*
%
*

int no
*

tialized workspace: contents needed between calls to CHOLMOD */
Flag ; /* size nrow, an integer array. Kept cleared between
* calls to cholmod rouines (Flag [i] < mark) x*/

Head ; /* size nrow+l, an integer array. Kept cleared between

* calls to cholmod routines (Head [i] = EMPTY) x*/
Xwork ; /* a double array. Its size varies. It is nrow for

* most routines (cholmod_rowfac, cholmod_add,
cholmod_aat, cholmod_norm, cholmod_ssmult) for the real case, twice
that when the input matrices are complex or zomplex. It is of size
2*nrow for cholmod_rowadd and cholmod_rowdel. For cholmod_updown,
its size is maxrank*nrow where maxrank is 2, 4, or 8. Kept cleared
between calls to cholmod (set to zero). */

nitialized workspace, contents not needed between calls to CHOLMOD */
Iwork ; /* size iworksize, 2*nrow+ncol for most routines,
* up to 6*nrow+ncol for cholmod_analyze. */

ype ; /* If CHOLMOD_LONG, Flag, Head, and Iwork are
* SuiteSparse_long. Otherwise all three are int. */

ype ; /* double or float */

Common->itype and Common->dtype are used to define the types of all
sparse matrices, triplet matrices, dense matrices, and factors
created using this Common struct. The itypes and dtypes of all
parameters to all CHOLMOD routines must match. */

_workspace_reallocate ; /* this is an internal flag, used as a
precaution by cholmod_analyze. It is normally false. If true,

* cholmod_allocate_work is not allowed to reallocate any workspace;
* they must use the existing workspace in Common (Iwork, Flag, Head,
* and Xwork). Added for CHOLMOD v1.1 x/
[m */
/* statistics */
/*x —= e - —— */
/* fl1 and lnz are set only in cholmod_analyze and cholmod_rowcolcounts,
* in the Cholesky modudle. modfl is set only in the Modify module. */
int status ; /* error code */
double f1 ; /* LL’ flop count from most recent analysis */
double 1nz ; /* fundamental nz in L */
double anz ; /* nonzeros in tril(A) if A is symmetric/lower,
* triu(A) if symmetric/upper, or tril(A*A’) if
* unsymmetric, in last call to cholmod_analyze. */
double modfl ; /* flop count from most recent update/downdate/
* rowadd/rowdel (excluding flops to modify the
* solution to Lx=b, if computed) */
size_t malloc_count ; /* # of objects malloc’ed minus the # free’dx/
size_t memory_usage ; /* peak memory usage in bytes */
size_t memory_inuse ; /* current memory usage in bytes */

56

double nrealloc_col ; /* # of column reallocations */
double nrealloc_factor ;/* # of factor reallocations due to col. reallocs */

double ndbounds_hit ; /* # of times diagonal modified by dbound */

double rowfacfl ; /* # of flops in last call to cholmod_rowfac */
double aatfl ; /* # of flops to compute A(:,f)*A(:,f)’ */

/* —= -—- -—- e */
/* statistics, parameters, and future expansion */

[k mm e B */

/* The goal for future expansion is to keep sizeof (Common) unchanged. */

double otherl [10] ; /* [0..9] for CHOLMOD GPU/CPU numerical
factorization statistics, and [0..3]
used by SuiteSparseQR statistics */

double SPQR_xstat [4] ; /* for SuiteSparseQR statistics */

/* SuiteSparseQR control parameters: */

double SPQR_grain ; /* task size is >= max (total flops / grain) */
double SPQR_small ; /* task size is >= small */

YA I et */
SuiteSparse_long SPQR_istat [10] ; /* for SuiteSparseQR statistics */
SuiteSparse_long other2 [6] ; /* unused (for future expansion) */

[H mmmmmmmmmm e -—- —- e */
int other3 [10] ; /* unused (for future expansion) */

int prefer_binary ; /* cholmod_read_triplet converts a symmetric

* pattern-only matrix into a real matrix. If
prefer_binary is FALSE, the diagonal entries are set to 1 + the degree
of the row/column, and off-diagonal entries are set to -1 (resulting
in a positive definite matrix if the diagonal is zero-free). Most
symmetric patterns are the pattern a positive definite matrix. If
this parameter is TRUE, then the matrix is returned with a 1 in each
entry, instead. Default: FALSE. Added in v1.3. */

EE I N R

/* control parameter (added for v1.2): */
int default_nesdis ; /* Default: FALSE. If FALSE, then the default
* ordering strategy (when Common->nmethods == 0)
* is to try the given ordering (if present), AMD, and then METIS if AMD
* reports high fill-in. If Common->default_nesdis is TRUE then NESDIS
* is used instead in the default strategy. */

/* statistic (added for v1.2): */
int called_nd ; /* TRUE if the last call to

* cholmod_analyze called NESDIS or METIS. */
int blas_ok ; /* FALSE if BLAS int overflow; TRUE otherwise */
/* SuiteSparseQR control parameters: */

int SPQR_shrink ; /* controls stack realloc method */
int SPQR_nthreads ; /* number of TBB threads, 0 = auto */

57

/*x - -— -— ————————————— */
size_t otherd4 [16] ; /* [0..7] for CHOLMOD GPU/CPU numerical
factorization statistics, remainder

unused (for future expansion) */

[H mmmmmmmmmmmmeee -—- e */
void *other5 [16] ; /* unused (for future expansion) */

[H mmmmmmmmmmmmeee -—- e */
/* GPU configuration */

K */

#ifdef GPU_BLAS
/* gpuConfig t gpuConfig ; */

cublasHandle_t cublasHandle ;
cudaStream_t cudaStreamSyrk ;
cudaStream_t cudaStreamGemm ;
cudaStream_t cudaStreamTrsm ;
cudaStream_t cudaStreamPotrf [3] ;
cudaEvent_t cublasEventPotrf [2] ;
void *HostPinnedMemory ;

void *devPotrfWork ;

void *devSyrkGemmPtrLx ;

void *devSyrkGemmPtrC ;

int GemmUsed ; /* TRUE if cuda dgemm used, false otherwise */
int SyrkUsed ; /* TRUE if cuda dsyrk used, false otherwise */
double syrkStart ; /* time syrk started */

#endif

} cholmod_common ;

Purpose: The cholmod common Common object contains parameters, statistics, and workspace
used within CHOLMOD. The first call to CHOLMOD must be cholmod_start, which initializes

this object.

58

10.3 cholmod_start: start CHOLMOD

int cholmod_start
(

cholmod_common *Common

int cholmod_1_start (cholmod_common *) ;

Purpose: Sets the default parameters, clears the statistics, and initializes all workspace pointers
to NULL. The int/long type is set in Common->itype.

10.4 cholmod finish: finish CHOLMOD

int cholmod_finish

(

cholmod_common *Common

int cholmod_1_finish (cholmod_common *) ;

Purpose: This must be the last call to CHOLMOD.

10.5 cholmod defaults: set default parameters

int cholmod_defaults
(

cholmod_common *Common

)

int cholmod_1_defaults (cholmod_common *) ;

Purpose: Sets the default parameters.

10.6 cholmod maxrank: maximum update/downdate rank

size_t cholmod_maxrank /* returns validated value of Common->maxrank */

(
/* —---- input ---- %/
size_t n, /* A and L will have n rows */
[* ——m—— *x/
cholmod_common *Common
)

size_t cholmod_1l_maxrank (size_t, cholmod_common *) ;

Purpose: Returns the maximum rank for an update/downdate.

59

10.7 cholmod_allocate_work: allocate workspace

int cholmod_allocate_work

(
/* —---- input ---- %/
size_t nrow, /* size: Common->Flag (nrow), Common->Head (nrow+1) */
size_t iworksize, /* size of Common->Iwork */
size_t xworksize, /* size of Common->Xwork */
[k ——mmmmm */
cholmod_common *Common
)

int cholmod_1l_allocate_work (size_t, size_t, size_t, cholmod_common *) ;

Purpose: Allocates workspace in Common. The workspace consists of the integer Head, Flag, and
Iwork arrays, of size nrow+1, nrow, and iworksize, respectively, and a double array Xwork of size
xworksize. The Head array is normally equal to -1 when it is cleared. If the Flag array is cleared,
all entries are less than Common->mark. The Iwork array is not kept in any particular state. The
integer type is int or long, depending on whether the cholmod_ or cholmod_1_ routines are used.

10.8 cholmod free work: free workspace

int cholmod_free_work
(

cholmod_common *Common

int cholmod_1_free_work (cholmod_common *) ;

Purpose: Frees the workspace in Common.

10.9 cholmod clear _flag: clear Flag array

SuiteSparse_long cholmod_clear_flag
(

cholmod_common *Common

SuiteSparse_long cholmod_l_clear_flag (cholmod_common *) ;

Purpose: Increments Common->mark so that the Flag array is now cleared.

60

10.10 cholmod_error: report error

int cholmod_error

(

/* —-—-— input ---- */

int status, /* error status */

const char *file, /* name of source code file where error occured */

int line, /* line number in source code file where error occured*/
const char *message,/* error message */

[k ——mmm—m */

cholmod_common *Common

)

int cholmod_1l_error (int, const char *, int, const char *, cholmod_common *) ;

Purpose: This routine is called when CHOLMOD encounters an error. It prints a mes-
sage (if printing is enabled), sets Common->status. It then calls the user error handler routine
Common->error_handler, if it is not NULL.

10.11 cholmod_dbound: bound diagonal of L

double cholmod_dbound /* returns modified diagonal entry of D or L */

(

/* —---- input ---- %/
double dj, /* diagonal entry of D for LDL’ or L for LL’ */
[k ——mm———m */

cholmod_common *Common

)

double cholmod_1_dbound (double, cholmod_common *) ;

Purpose: Ensures that entries on the diagonal of L for an LLT factorization are greater than or
equal to Common->dbound. For an LDLT factorization, it ensures that the magnitude of the entries
of D are greater than or equal to Common->dbound.

10.12 cholmod hypot: sqrt(x*x+y*y)

double cholmod_hypot
(
/* —---- input ---- %/
double x, double y
)

double cholmod_l_hypot (double, double) ;

Purpose: Computes the magnitude of a complex number. This routine is the default value for
the Common->hypotenuse function pointer. See also hypot, in the standard math.h header. If
you have the ANSI C99 hypot, you can use Common->hypotenuse = hypot. The cholmod hypot
routine is provided in case you are using the ANSI C89 standard, which does not have hypot.

61

10.13 cholmod divcomplex: complex divide

int cholmod_divcomplex /* return 1 if divide-by-zero, O otherise */
(

/* —---- input ---- %/

double ar, double ai, /* real and imaginary parts of a */

double br, double bi, /* real and imaginary parts of b */

/* —---- output --- */

double *cr, double *ci /* real and imaginary parts of c */
)

int cholmod_1l_divcomplex (double, double, double, double, double *, double *) ;

Purpose: Divides two complex numbers. It returns 1 if a divide-by-zero occurred, or 0 otherwise.
This routine is the default value for the Common->complex_divide function pointer. This return
value is the single exception to the CHOLMOD rule that states all int return values are TRUE
if successful or FALSE otherwise. The exception is made to match the return value of a different
complex divide routine that is not a part of CHOLMOD), but can be used via the function pointer.

62

11 Core Module: cholmod sparse object

11.1 cholmod_sparse: compressed-column sparse matrix

typedef struct cholmod_sparse_struct

{

size_t nrow ; /* the matrix is nrow-by-ncol */
size_t ncol ;
size_t nzmax ; /* maximum number of entries in the matrix */

/* pointers to int or SuiteSparse_long: */
void *p ; /* p [0..ncol], the column pointers */
void *i ; /* i [0..nzmax-1], the row indices */

/* for unpacked matrices only: */

void *nz ; /* nz [0..ncol-1], the # of nonzeros in each col. In
* packed form, the nonzero pattern of column j is in
* A->i [A->p [j] ... A->p [j+1]1-1]. 1In unpacked form, column j is in
* A->i [A->p [j] ... A->p [jl1+A->nz[j]-1] instead. In both cases, the
* numerical values (if present) are in the corresponding locations in
* the array x (or z if A->xtype is CHOLMOD_ZOMPLEX). */

/* pointers to double or float: */

void *x ; /* size nzmax or 2*nzmax, if present */

void *z ; /* size nzmax, if present */

int stype ; /* Describes what parts of the matrix are considered:
*

* 0: matrix is "unsymmetric": use both upper and lower triangular parts
* (the matrix may actually be symmetric in pattern and value, but
* both parts are explicitly stored and used). May be square or

* rectangular.

* >0: matrix is square and symmetric, use upper triangular part.

* Entries in the lower triangular part are ignored.

* <0: matrix is square and symmetric, use lower triangular part.

* Entries in the upper triangular part are ignored.

*

*

*

*

Note that stype>0 and stype<O are different for cholmod_sparse and
cholmod_triplet. See the cholmod_triplet data structure for more

details.
*/
int itype ; /* CHOLMOD_INT: p, i, and nz are int.
* CHOLMOD_INTLONG: p is SuiteSparse_long,
i and nz are int.
* CHOLMOD_LONG: p, i, and nz are SuiteSparse_long */
int xtype ; /* pattern, real, complex, or zomplex */
int dtype ; /* x and z are double or float */
int sorted ; /* TRUE if columns are sorted, FALSE otherwise */
int packed ; /* TRUE if packed (nz ignored), FALSE if unpacked

* (nz is required) */

} cholmod_sparse ;

63

Purpose: Stores a sparse matrix in compressed-column form.

11.2 cholmod allocate sparse: allocate sparse matrix

cholmod_sparse *cholmod_allocate_sparse

(
/* —-—-— input ---- */
size_t nrow, /* # of rows of A */
size_t ncol, /*x # of columns of A */
size_t nzmax, /* max # of nonzeros of A *x/
int sorted, /* TRUE if columns of A sorted, FALSE otherwise */
int packed, /* TRUE if A will be packed, FALSE otherwise */
int stype, /* stype of A */
int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */
[k ———mmm */
cholmod_common *Common
)

cholmod_sparse *cholmod_l_allocate_sparse (size_t, size_t, size_t, int, int,
int, int, cholmod_common *) ;

Purpose: Allocates a sparse matrix. A->i, A->x, and A->z are not initialized. The matrix
returned is all zero, but it contains space enough for nzmax entries.

11.3 cholmod free_sparse: free sparse matrix

int cholmod_free_sparse

(
/* —---- in/out --- %/
cholmod_sparse **A, /* matrix to deallocate, NULL on output */
[k ——————————————— */
cholmod_common *Common
)

int cholmod_l_free_sparse (cholmod_sparse **, cholmod_common *) ;

Purpose: Frees a sparse matrix.

11.4 cholmod reallocate sparse: reallocate sparse matrix

int cholmod_reallocate_sparse

(
/* —---- input ---- */
size_t nznew, /* new # of entries in A */
/* ---- in/out --- %/
cholmod_sparse *A, /* matrix to reallocate */
[k ———————————— */
cholmod_common *Common

)

int cholmod_l_reallocate_sparse (size_t, cholmod_sparse *, cholmod_common *) ;

64

Purpose: Reallocates a sparse matrix, so that it can contain nznew entries.

11.5 cholmod nnz: number of entries in sparse matrix

SuiteSparse_long cholmod_nnz

(
/* —-—-— input ---- */
cholmod_sparse *A,
[k —mmmmm e */
cholmod_common *Common
)

SuiteSparse_long cholmod_l_nnz (cholmod_sparse *, cholmod_common *) ;

Purpose: Returns the number of entries in a sparse matrix.

11.6 cholmod speye: sparse identity matrix

cholmod_sparse *cholmod_speye

(
/* —-—-— input ---- */
size_t nrow, /* # of rows of A */
size_t ncol, /* # of columns of A */
int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */
[* ———mmm *x/
cholmod_common *Common
)

cholmod_sparse *cholmod_l_speye (size_t, size_t, int, cholmod_common *) ;

Purpose: Returns the sparse identity matrix.

11.7 cholmod_spzeros: sparse zero matrix

cholmod_sparse *cholmod_spzeros

(
/* —--—- input ---- %/
size_t nrow, /* # of rows of A *x/
size_t ncol, /* # of columns of A */
size_t nzmax, /* max # of nonzeros of A */
int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */
[* ———mmm *x/
cholmod_common *Common
)

cholmod_sparse *cholmod_l_spzeros (size_t, size_t, size_t, int,
cholmod_common *) ;

Purpose: Returns the sparse zero matrix. This is another name for cholmod allocate_sparse,
but with fewer parameters (the matrix is packed, sorted, and unsymmetric).

65

11.8 cholmod transpose: transpose sparse matrix

cholmod_sparse *cholmod_transpose

(
/* —---- input ---- %/
cholmod_sparse *A, /* matrix to transpose */
int values, /* 0: pattern, 1: array transpose, 2: conj. transpose */
[k ———m */
cholmod_common *Common
)

cholmod_sparse *cholmod_l_transpose (cholmod_sparse *, int, cholmod_common *) ;

Purpose: Returns the transpose or complex conjugate transpose of a sparse matrix.

11.9 cholmod ptranspose: transpose/permute sparse matrix

cholmod_sparse *cholmod_ptranspose

(
/* —---- input ---- %/
cholmod_sparse *A, /* matrix to transpose */
int values, /* 0: pattern, 1: array transpose, 2: conj. transpose */
int *Perm, /* if non-NULL, F = A(p,f) or A(p,p) */
int *fset, /* subset of 0:(A->ncol)-1 */
size_t fsize, /* size of fset */
[k ———————————— */
cholmod_common *Common
)

cholmod_sparse *cholmod_l_ptranspose (cholmod_sparse *, int, SuiteSparse_long *,
SuiteSparse_long *, size_t, cholmod_common *)

Purpose: Returns A’ or A(p,p)’ if A is symmetric. Returns A’, A(:,f)’, or A(p,f)’ if A is
unsymmetric. See cholmod_transpose_unsym for a discussion of how £ is used; this usage deviates
from the MATLAB notation. Can also return the array transpose.

11.10 cholmod _sort: sort columns of a sparse matrix

int cholmod_sort

(
/* ---- in/out --- */
cholmod_sparse *A, /* matrix to sort */
[* ———mm *x/
cholmod_common *Common
)

int cholmod_l_sort (cholmod_sparse *, cholmod_common *) ;

Purpose: Sorts the columns of the matrix A. Returns A in packed form, even if it starts as
unpacked. Removes entries in the ignored part of a symmetric matrix.

66

11.11 cholmod transpose unsym: transpose/permute unsymmetric sparse matrix

int cholmod_transpose_unsym

(

/* —---- input ---- %/

cholmod_sparse *A, /* matrix to transpose */

int values, /* 0: pattern, 1: array transpose, 2: conj. transpose */
int *Perm, /* size nrow, if present (can be NULL) */

int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

/* —-—--— output --- */

cholmod_sparse *F, /x F = A’, A(:,f)’, or A(p,f)’ */

[k ——mmmm e */

cholmod_common *Common

)

int cholmod_1_transpose_unsym (cholmod_sparse *, int, SuiteSparse_long *,
SuiteSparse_long *, size_t, cholmod_sparse *, cholmod_common *) ;

Purpose: Transposes and optionally permutes an unsymmetric sparse matrix. The output matrix
must be preallocated before calling this routine.

Computes F=A’, F=A(:,f)’ or F=A(p,f)’, except that the indexing by f does not work the
same as the MATLAB notation (see below). A->stype is zero, which denotes that both the upper
and lower triangular parts of A are present (and used). The matrix A may in fact be symmetric in
pattern and/or value; A->stype just denotes which part of A are stored. A may be rectangular.

The integer vector p is a permutation of 0:m-1, and f is a subset of 0:n-1, where A is m-by-n.
There can be no duplicate entries in p or £.

Three kinds of transposes are available, depending on the values parameter:

e (: do not transpose the numerical values; create a CHOLMOD_PATTERN matrix
e 1: array transpose

e 2: complex conjugate transpose (same as 2 if input is real or pattern)
The set f is held in fset and fsize:
e fset = NULL means “:” in MATLAB. fset is ignored.

e fset != NULL means f = fset [0..fsize-1].

e fset != NULL and fsize = 0 means f is the empty set.

Columns not in the set £ are considered to be zero. That is, if A is 5-by-10 then F=A(:, [3 4])°
is not 2-by-5, but 10-by-5, and rows 3 and 4 of F are equal to columns 3 and 4 of A (the other rows
of F are zero). More precisely, in MATLAB notation:

[m n] = size (A)

F=A

notf = ones (1,n)

notf (£f) =0

F (:, find (notf)) =0
F=F

67

If you want the MATLAB equivalent F=A(p,f) operation, use cholmod _submatrix instead
(which does not compute the transpose). F->nzmax must be large enough to hold the matrix F. If
F->nz is present then F->nz [j] is equal to the number of entries in column j of F. A can be sorted
or unsorted, with packed or unpacked columns. If f is present and not sorted in ascending order,
then F is unsorted (that is, it may contain columns whose row indices do not appear in ascending
order). Otherwise, F is sorted (the row indices in each column of F appear in strictly ascending
order).

F is returned in packed or unpacked form, depending on F->packed on input. If F->packed
is FALSE, then F is returned in unpacked form (F->nz must be present). Each row i of F is large
enough to hold all the entries in row i of A, even if £ is provided. That is, F->i and F->x [F->p [i]

F->p [i] + F->nz [i] - 1] contain all entries in A(i,f), but F->p [i+1] - F->p [i] is
equal to the number of nonzeros in A (i,:), not just A (i,f). The cholmod transpose_unsym
routine is the only operation in CHOLMOD that can produce an unpacked matrix.

11.12 cholmod transpose_sym: transpose/permute symmetric sparse matrix

int cholmod_transpose_sym

(

/* —---- input ---- %/

cholmod_sparse *A, /* matrix to transpose */

int values, /* 0: pattern, 1: array transpose, 2: conj. transpose */
int *Perm, /* size nrow, if present (can be NULL) */

/* —--—-= output --- */

cholmod_sparse *F, /*x F = A’ or A(p,p)’ */

[k ——————————————— */

cholmod_common *Common

int cholmod_l_transpose_sym (cholmod_sparse *, int, SuiteSparse_long *,
cholmod_sparse *, cholmod_common *)

Purpose: Computes F = A’ or F = A(p,p)’, the transpose or permuted transpose, where
A->stype is nonzero. A must be square and symmetric. If A->stype > 0, then A is a symmetric
matrix where just the upper part of the matrix is stored. Entries in the lower triangular part may
be present, but are ignored. If A->stype < 0, then A is a symmetric matrix where just the lower
part of the matrix is stored. Entries in the upper triangular part may be present, but are ignored.
If F=A’ then F is returned sorted; otherwise F is unsorted for the F=A(p,p)’ case. There can be
no duplicate entries in p.
Three kinds of transposes are available, depending on the values parameter:

e (: do not transpose the numerical values; create a CHOLMOD_PATTERN matrix
e 1: array transpose
e 2: complex conjugate transpose (same as 2 if input is real or pattern)

For cholmod_transpose_unsym and cholmod_transpose_sym, the output matrix F must already
be pre-allocated by the caller, with the correct dimensions. If F is not valid or has the wrong
dimensions, it is not modified. Otherwise, if F is too small, the transpose is not computed; the

68

contents of F->p contain the column pointers of the resulting matrix, where F->p [F->ncol] >
F->nzmax. In this case, the remaining contents of F are not modified. F can still be properly freed
with cholmod_free_sparse.

11.13 cholmod _band: extract band of a sparse matrix

cholmod_sparse *cholmod_band

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to extract band matrix from */
SuiteSparse_long ki, /* ignore entries below the kl-st diagonal */
SuiteSparse_long k2, /* ignore entries above the k2-nd diagonal */

int mode, /* >0: numerical, O: pattern, <0: pattern (no diag) */
[* ———mm */

cholmod_common *Common

)

cholmod_sparse *cholmod_l_band (cholmod_sparse *, SuiteSparse_long,
SuiteSparse_long, int, cholmod_common *) ;

Purpose: Returns C = tril (triu (A,k1), k2). C is a matrix consisting of the diagonals of
A from k1 to k2. k=0 is the main diagonal of A, k=1 is the superdiagonal, k=-1 is the subdiagonal,
and so on. If A is m-by-n, then:

e k1=-m means C = tril (A,k2)
e k2=n means C = triu (A,k1)
e k1=0 and k2=0 means C = diag(A), except C is a matrix, not a vector

Values of k1 and k2 less than -m are treated as -m, and values greater than n are treated as n.

A can be of any symmetry (upper, lower, or unsymmetric); C is returned in the same form, and
packed. If A->stype > 0, entries in the lower triangular part of A are ignored, and the opposite is
true if A->stype < 0. If A has sorted columns, then so does C. C has the same size as A.

C can be returned as a numerical valued matrix (if A has numerical values and mode > 0), as a
pattern-only (mode = 0), or as a pattern-only but with the diagonal entries removed (mode < 0).

The xtype of A can be pattern or real. Complex or zomplex cases are supported only if mode is
< 0 (in which case the numerical values are ignored).

11.14 cholmod_band inplace: extract band, in place

int cholmod_band_inplace

(

/* —---- input ---- %/

SuiteSparse_long ki, /* ignore entries below the kl-st diagonal */
SuiteSparse_long k2, /* ignore entries above the k2-nd diagonal */

int mode, /* >0: numerical, O: pattern, <0: pattern (no diag) */
/* ---— in/out --- */

cholmod_sparse *A, /* matrix from which entries not in band are removed */
[* ———mm *x/

69

cholmod_common *Common

)

int cholmod_1l_band_inplace (SuiteSparse_long, SuiteSparse_long, int,
cholmod_sparse *, cholmod_common *)

Purpose: Same as cholmod_band, except that it always operates in place. Only packed matrices
can be converted in place.

11.15 cholmod_aat: compute AAT

cholmod_sparse *cholmod_aat

(

/* —-—-— input ---- */

cholmod_sparse *A, /* input matrix; C=A*A’ is constructed */

int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

int mode, /* >0: numerical, O: pattern, <0: pattern (no diag),

* -2: pattern only, no diagonal, add 50%+n extra
* space to C x/

[* ———mm *x/

cholmod_common *Common

)

cholmod_sparse *cholmod_1l_aat (cholmod_sparse *, SuiteSparse_long *, size_t,
int, cholmod_common *) ;

Purpose: Computes C = AxA’ or C = A(C:,f)*A(:,f)’. A can be packed or unpacked, sorted or
unsorted, but must be stored with both upper and lower parts (A->stype of zero). C is returned as
packed, C->stype of zero (both upper and lower parts present), and unsorted. See cholmod _ssmult
in the Matrix0Ops Module for a more general matrix-matrix multiply. The xtype of A can be pattern
or real. Complex or zomplex cases are supported only if mode is < 0 (in which case the numerical
values are ignored). You can trivially convert C to a symmetric upper/lower matrix by changing
C->stype to 1 or -1, respectively, after calling this routine.

11.16 cholmod _copy_sparse: copy sparse matrix

cholmod_sparse *cholmod_copy_sparse

(
/* —---- input ---- %/
cholmod_sparse *A, /* matrix to copy */
[k ——mmmm— */
cholmod_common *Common
)

cholmod_sparse *cholmod_l_copy_sparse (cholmod_sparse *, cholmod_common *) ;

Purpose: Returns an exact copy of the input sparse matrix A.

70

11.17 cholmod copy: copy (and change) sparse matrix

cholmod_sparse *cholmod_copy

(

/* —---- input ---- %/

cholmod_sparse *A, /* matrix to copy */

int stype, /* requested stype of C */

int mode, /* >0: numerical, 0: pattern, <0: pattern (no diag) */
[* ——mmm e */

cholmod_common *Common

)

cholmod_sparse *cholmod_l_copy (cholmod_sparse *, int, int, cholmod_common *) ;

Purpose: C = A, which allocates C and copies A into C, with possible change of stype. The
diagonal can optionally be removed. The numerical entries can optionally be copied. This routine
differs from cholmod _copy_sparse, which makes an exact copy of a sparse matrix.

A can be of any type (packed/unpacked, upper/lower/unsymmetric). C is packed and can be of
any stype (upper/lower/unsymmetric), except that if A is rectangular C can only be unsymmetric.
If the stype of A and C differ, then the appropriate conversion is made.

There are three cases for A->stype:

e < 0, lower: assume A is symmetric with just tril(A) stored; the rest of A is ignored

e 0, unsymmetric: assume A is unsymmetric; consider all entries in A

e > 0, upper: assume A is symmetric with just triu(A) stored; the rest of A is ignored
There are three cases for the requested symmetry of C (stype parameter):

e < (, lower: return just tril(C)

e 0, unsymmetric: return all of C

e > 0, upper: return just triu(C)

This gives a total of nine combinations:

Equivalent MATLAB statements Using cholmod_copy

C=A; A unsymmetric, C unsymmetric
C = tril (4) ; A unsymmetric, C lower

C = triu (4) ; A unsymmetric, C upper

U = triu (A) ; L = tril (U’,-1) ; C = L+U ; A upper, C unsymmetric

C = triu (A)’ ; A upper, C lower

C = triu (4) ; A upper, C upper

L = tril (A) ; U = triu (L’,1) ; C = L+U ; A lower, C unsymmetric

C = tril (4) ; A lower, C lower

C = tril (A)’ ; A lower, C upper

The xtype of A can be pattern or real. Complex or zomplex cases are supported only if values
is FALSE (in which case the numerical values are ignored).

71

11.18 cholmod _add: add sparse matrices

cholmod_sparse *cholmod_add

(
/* —---- input ---- */
cholmod_sparse *A, /* matrix to add */
cholmod_sparse *B, /* matrix to add */
double alpha [2], /* scale factor for A */
double beta [2], /* scale factor for B */
int values, /* if TRUE compute the numerical values of C */
int sorted, /* if TRUE, sort columns of C */
[k ——mmmm */
cholmod_common *Common

)

cholmod_sparse *cholmod_1_add (cholmod_sparse *, cholmod_sparse *, double *,
double *, int, int, cholmod_common *) ;

Purpose: Returns C = alpha*A + betaxB. If the stype of A and B match, then C has the same
stype. Otherwise, C->stype is zero (C is unsymmetric).

11.19 cholmod sparse xtype: change sparse xtype

int cholmod_sparse_xtype

(
/* —---- input ---- */
int to_xtype, /* requested xtype (pattern, real, complex, zomplex) */
/* —--—-- in/out --- %/
cholmod_sparse *A, /* sparse matrix to change */
[k ———m */
cholmod_common *Common
)

int cholmod_l_sparse_xtype (int, cholmod_sparse *, cholmod_common *) ;

Purpose: Changes the xtype of a sparse matrix, to pattern, real, complex, or zomplex. Changing
from complex or zomplex to real discards the imaginary part.

72

12 Core Module: cholmod_factor object

12.1 cholmod_factor object: a sparse Cholesky factorization

typedef struct cholmod_factor_struct

{

/*x —= e - —— */
/* for both simplicial and supernodal factorizations */

[k —mmmm -—= -——= e */
size_t n ; /* L is n-by-n */

size_t minor ; /* If the factorization failed, L->minor is the column

* at which it failed (in the range O to n-1). A value
* of n means the factorization was successful or
* the matrix has not yet been factorized. */

/* —= -—- -—- -—- e */
/* symbolic ordering and analysis */

K */
void *Perm ; /* size n, permutation used */

void *ColCount ; /* size n, column counts for simplicial L */

void *IPerm ; /* size n, inverse permutation. Only created by

* cholmod_solve2 if Bset is used. */

/*x —= B ettt e */
/* simplicial factorization */
Ve -— -—— -— e */
size_t nzmax ; /* size of i and x */
void *p ; /* p [0..ncol], the column pointers */
void *i ; /* i [0..nzmax-1], the row indices */
void *x ; /* x [0..nzmax-1], the numerical values */
void *z ;
void *nz ; /* nz [0..ncol-1], the # of nonzeros in each column.
* 1 [p [j] ... p [jJ+nz[jl-1] contains the row indices,

* and the numerical values are in the same locatins
* in x. The value of i [p [k]] is always k. */

void *next ; /* size ncol+2. next [j] is the next column in i/x */
void *prev ; /* size ncol+2. prev [j] is the prior column in i/x.
* head of the list is ncol+1l, and the tail is ncol. */

[k mm e B */
/* supernodal factorization */
K */

/* Note that L->x is shared with the simplicial data structure. L->x has
* size L->nzmax for a simplicial factor, and size L->xsize for a supernodal
x factor. x/

size_t nsuper ; /* number of supernodes */

73

siz
siz
siz
siz

voi
voi
voi
voi

/*
/*
/*

int
int

int
int

S~
*

¥R K X X X X K X K X X X X K X K X X X X K X X X X ¥ X ¥ ¥ ¥ ¥ %

e_t ssize ; /* size of s, integer part of supernodes */
e_t xsize ; /* size of x, real part of supernodes */
e_t maxcsize ; /% size of largest update matrix */
e_t maxesize ; /* max # of rows in supernodes, excl. triangular part */
d *super ; /* size nsuper+1l, first col in each supernode */
d *pi ; /* size nsuper+1l, pointers to integer patterns */
d *px ; /* size nsuper+1l, pointers to real parts */
d *s ; /* size ssize, integer part of supernodes */
- -— -— ——————————— *x/
factorization type */
——————————————— - - e %/
ordering ; /* ordering method used */
is_11 ; /* TRUE if LL’, FALSE if LDL’ */
is_super ; /* TRUE if supernodal, FALSE if simplicial */
is_monotonic ; /* TRUE if columns of L appear in order O..n-1.

* Only applicable to simplicial numeric types. */

There are 8 types of factor objects that cholmod_factor can represent
(only 6 are used):

Numeric types (xtype is not CHOLMOD_PATTERN)

simplicial LDL’: (is_11 FALSE, is_super FALSE). Stored in compressed
column form, using the simplicial components above (nzmax, p, i,
X, 2z, nz, next, and prev). The unit diagonal of L is not stored,
and D is stored in its place. There are no supernodes.

simplicial LL’: (is_11 TRUE, is_super FALSE). Uses the same storage
scheme as the simplicial LDL’, except that D does not appear.
The first entry of each column of L is the diagonal entry of
that column of L.

supernodal LDL’: (is_11 FALSE, is_super TRUE). Not used.
FUTURE WORK: add support for supernodal LDL’

supernodal LL’: (is_11 TRUE, is_super TRUE). A supernodal factor,
using the supernodal components described above (nsuper, ssize,
xsize, maxcsize, maxesize, super, pi, px, s, x, and z).

Symbolic types (xtype is CHOLMOD_PATTERN)

simplicial LDL’: (is_11 FALSE, is_super FALSE). Nothing is present
except Perm and ColCount.

simplicial LL’: (is_11 TRUE, is_super FALSE). Identical to the
simplicial LDL’, except for the is_11 flag.

supernodal LDL’: (is_11 FALSE, is_super TRUE). Not used.

74

* X ¥ X ¥ X

except

int itype ; /*
*
*
*
*
int xtype ; /*
int dtype ; /*

} cholmod_factor ;

FUTURE WORK: add support for supernodal LDL’

supernodal LL’: (is_11 TRUE, is_super TRUE). A supernodal symbolic
factorization. The simplicial symbolic information is present
(Perm and ColCount), as is all of the supernodal factorization

for the numerical values (x and z).

The integer arrays are Perm, ColCount, p, i, nz,

next, prev, super, pi, px, and s. If itype is

CHOLMOD_INT, all of these are int arrays.

CHOLMOD_INTLONG: p, pi, px are SuiteSparse_long, others int.
CHOLMOD_LONG: all integer arrays are SuiteSparse_long. */
pattern, real, complex, or zomplex */

x and z double or float */

Purpose: An LLT or LDLT

factorization in simplicial or supernodal form. A simplicial factor

is very similar to a cholmod_sparse matrix. For an LDLT factorization, the diagonal matrix D is
stored as the diagonal of L; the unit-diagonal of L is not stored.

75

12.2 cholmod_free factor: free factor

int cholmod_free_factor

(
/* —---- in/out --- %/
cholmod_factor **L, /* factor to free, NULL on output */
[k ——————————————— */
cholmod_common *Common
)

int cholmod_1_free_factor (cholmod_factor **, cholmod_common *) ;

Purpose: Frees a factor.

12.3 cholmod_allocate_factor: allocate factor

cholmod_factor *cholmod_allocate_factor

(
/* —-—-— input ---- */
size_t n, /* L is n-by-n */
[k ——mmmmm */
cholmod_common *Common
)

cholmod_factor *cholmod_l_allocate_factor (size_t, cholmod_common *) ;

Purpose: Allocates a factor and sets it to identity.

12.4 cholmod._reallocate_factor: reallocate factor

int cholmod_reallocate_factor

(
/* —---- input ---- */
size_t nznew, /* new # of entries in L */
/* ———— in/out --- */
cholmod_factor *L, /* factor to modify */
[k ———m——— */
cholmod_common *Common
)

int cholmod_1l_reallocate_factor (size_t, cholmod_factor *, cholmod_common *) ;

Purpose: Reallocates a simplicial factor so that it can contain nznew entries.

76

12.5 cholmod_change factor: change factor

int cholmod_change_factor

(

/* —---- input ---- %/
int to_xtype, /*
int to_11, /*
int to_super, /*
int to_packed, /*
int to_monotonic, /*
/* —-—-—— in/out --- */

cholmod_factor *L, /*

/*

—————————————— */

cholmod_common *Common

to CHOLMOD_PATTERN, _REAL, _COMPLEX, _ZOMPLEX */

TRUE:
TRUE:
TRUE:
TRUE:

convert to LL’, FALSE: LDL’ x*/

convert to supernodal, FALSE: simplicial */
pack simplicial columns, FALSE: do not pack */
put simplicial columns in order, FALSE: not */

factor to modify */

int cholmod_l_change_factor (int, int, int, int, int, cholmod_factor *,
cholmod_common *) ;

Purpose: Change the numeric or symbolic, LLT or LDLT, simplicial or super, packed or un-
packed, and monotonic or non-monotonic status of a cholmod_factor object.
There are four basic classes of factor types:

1. simplicial symbolic: Consists of two size-n arrays: the fill-reducing permutation (L->Perm)
and the nonzero count for each column of L. (L->ColCount). All other factor types also include
this information. L->ColCount may be exact (obtained from the analysis routines), or it may
be a guess. During factorization, and certainly after update/downdate, the columns of L can
have a different number of nonzeros. L->ColCount is used to allocate space. L->ColCount is
exact for the supernodal factorizations. The nonzero pattern of L is not kept.

2. simplicial numeric: These represent L in a compressed column form. The variants of this type

are:

e LDL": L is unit diagonal. Row indices in column j are located in L->i [L->p [j]
L->p [j] + L->nz [jl], and corresponding numeric values are in the same locations
in L->x. The total number of entries is the sum of L->nz [j]. The unit diagonal is not
stored; D is stored on the diagonal of L instead. L->p may or may not be monotonic.
The order of storage of the columns in L->i and L->x is given by a doubly-linked list
(L->prev and L->next). L->p is of size n+1, but only the first n entries are used.

For the complex case, L->x is stored interleaved with real and imaginary parts, and is of
size 2*1nz*sizeof (double). For the zomplex case, L->x is of size 1nz*sizeof (double)
and holds the real part; L->z is the same size and holds the imaginary part.

e LL": This is identical to the LDLT form, except that the non-unit diagonal of L is
stored as the first entry in each column of L.

3. supernodal symbolic: A representation of the nonzero pattern of the supernodes for a supern-
odal factorization. There are L->nsuper supernodes. Columns L->super [k] to L->super
[k+1]-1 are in the kth supernode. The row indices for the kth supernode are in L->s [L->pi

77

(k] ... L->pi [k+1]-1]. The numerical values are not allocated (L->x), but when they
are they will be located in L->x [L->px [k] ... L->px [k+1]-1], and the L->px array is
defined in this factor type.

For the complex case, L->x is stored interleaved with real/imaginary parts, and is of size
2xL->xsize*sizeof (double). The zomplex supernodal case is not supported, since it is not
compatible with LAPACK and the BLAS.

4. supernodal numeric: Always an LLT factorization. L has a non-unit diagonal. L->x contains
the numerical values of the supernodes, as described above for the supernodal symbolic factor.
For the complex case, L->x is stored interleaved, and is of size 2*xL->xsize*sizeof (double).
The zomplex supernodal case is not supported, since it is not compatible with LAPACK and
the BLAS.

In all cases, the row indices in each column (L->i for simplicial L and L->s for supernodal L)
are kept sorted from low indices to high indices. This means the diagonal of L (or D for a LDLT
factorization) is always kept as the first entry in each column. The elimination tree is not kept.
The parent of node j can be found as the second row index in the jth column. If column j has no
off-diagonal entries then node j is a root of the elimination tree.

The cholmod_change factor routine can do almost all possible conversions. It cannot do the
following conversions:

e Simplicial numeric types cannot be converted to a supernodal symbolic type. This would
simultaneously deallocate the simplicial pattern and numeric values and reallocate uninitial-
ized space for the supernodal pattern. This isn’t useful for the user, and not needed by
CHOLMOD’s own routines either.

e Only a symbolic factor (simplicial to supernodal) can be converted to a supernodal numeric
factor.

Some conversions are meant only to be used internally by other CHOLMOD routines, and
should not be performed by the end user. They allocate space whose contents are undefined:

e converting from simplicial symbolic to supernodal symbolic.

e converting any factor to supernodal numeric.

Supports all xtypes, except that there is no supernodal zomplex L.

The to_xtype parameter is used only when converting from symbolic to numeric or numeric to
symbolic. It cannot be used to convert a numeric xtype (real, complex, or zomplex) to a different
numeric xtype. For that conversion, use cholmod_factor_xtype instead.

78

12.6 cholmod pack factor: pack the columns of a factor

int cholmod_pack_factor

(
/* —---- in/out --- %/
cholmod_factor *L, /* factor to modify */
[k ——————————————— */
cholmod_common *Common
)

int cholmod_l_pack_factor (cholmod_factor *, cholmod_common *) ;

Purpose: Pack the columns of a simplicial LDLT or LLT factorization. This can be followed
by a call to cholmod_reallocate_factor to reduce the size of L to the exact size required by the
factor, if desired. Alternatively, you can leave the size of L->i and L->x the same, to allow space
for future updates/rowadds. Each column is reduced in size so that it has at most Common->grow?2
free space at the end of the column. Does nothing and returns silently if given any other type of
factor. Does not force the columns of L to be monotonic. It thus differs from

cholmod_change_factor (xtype, L->is_11, FALSE, TRUE, TRUE, L, Common)

which packs the columns and ensures that they appear in monotonic order.

12.7 cholmod_reallocate_column: reallocate one column of a factor

int cholmod_reallocate_column

(
/* —--—- input ---- %/
size_t j, /* the column to reallocate */
size_t need, /* required size of column j */
/* —---— in/out --- */
cholmod_factor *L, /* factor to modify */
[k ——mmmmm */
cholmod_common *Common
)

int cholmod_1l_reallocate_column (size_t, size_t, cholmod_factor *,
cholmod_common *) ;

Purpose: Reallocates the space allotted to a single column of L.

79

12.8 cholmod factor_to_sparse: sparse matrix copy of a factor

cholmod_sparse *cholmod_factor_to_sparse

(
/* —---- in/out --- %/
cholmod_factor *L, /* factor to copy, converted to symbolic on output */
[k ——————————————— */
cholmod_common *Common
)

cholmod_sparse *cholmod_l_factor_to_sparse (cholmod_factor *,
cholmod_common *) ;

Purpose: Returns a column-oriented sparse matrix containing the pattern and values of a simpli-
cial or supernodal numerical factor, and then converts the factor into a simplicial symbolic factor.
If L is already packed, monotonic, and simplicial (which is the case when cholmod factorize uses
the simplicial Cholesky factorization algorithm) then this routine requires only a small amount of
time and memory, independent of n. It only operates on numeric factors (real, complex, or zom-
plex). It does not change L->xtype (the resulting sparse matrix has the same xtype as L). If this
routine fails, L is left unmodified.

12.9 cholmod copy_factor: copy factor

cholmod_factor *cholmod_copy_factor

(
/* —---- input ---- */
cholmod_factor *L, /* factor to copy */
[* ——mmm e */
cholmod_common *Common
)

cholmod_factor *cholmod_l_copy_factor (cholmod_factor *, cholmod_common *) ;

Purpose: Returns an exact copy of a factor.

12.10 cholmod _factor_xtype: change factor xtype

int cholmod_factor_xtype

(
/* —---- input ---- %/
int to_xtype, /* requested xtype (real, complex, or zomplex) */
/* ———— in/out --- */
cholmod_factor *L, /* factor to change */
[* ———m— *x/
cholmod_common *Common
)

int cholmod_1l_factor_xtype (int, cholmod_factor *, cholmod_common *) ;

80

Purpose: Changes the xtype of a factor, to pattern, real, complex, or zomplex. Changing from
complex or zomplex to real discards the imaginary part. You cannot change a supernodal factor
to the zomplex xtype.

81

13 Core Module: cholmod_dense object

13.1 cholmod_dense object: a dense matrix

typedef struct cholmod_dense_struct

{
size_t nrow ; /* the matrix is nrow-by-ncol */
size_t ncol ;
size_t nzmax ; /* maximum number of entries in the matrix */
size_t 4 ; /* leading dimension (d >= nrow must hold) */
void *x ; /* size nzmax or 2*nzmax, if present */
void *z ; /* size nzmax, if present */
int xtype ; /* pattern, real, complex, or zomplex */
int dtype ; /* x and z double or float */

} cholmod_dense ;

Purpose: Contains a dense matrix.

13.2 cholmod_allocate_dense: allocate dense matrix

cholmod_dense *cholmod_allocate_dense

(
/* —---- input ---- %/
size_t nrow, /* # of rows of matrix */
size_t ncol, /* # of columns of matrix */
size_t d, /* leading dimension */
int xtype, /* CHOLMOD_REAL, _COMPLEX, or _ZOMPLEX */
[k ——mmm e */
cholmod_common *Common
)

cholmod_dense *cholmod_l_allocate_dense (size_t, size_t, size_t, int,
cholmod_common *) ;

Purpose: Allocates a dense matrix.

13.3 cholmod_free_dense: free dense matrix

int cholmod_free_dense

(
/* —-——— in/out --- */
cholmod_dense **X, /* dense matrix to deallocate, NULL on output */
[k ————— */
cholmod_common *Common
)

int cholmod_1_free_dense (cholmod_dense **, cholmod_common *) ;

Purpose: Frees a dense matrix.

82

13.4 cholmod_ensure_dense: ensure dense matrix has a given size and type

cholmod_dense *cholmod_ensure_dense

(
/* —---— input/output ---- */
cholmod_dense **XHandle, /* matrix handle to check */
/* —-—-— input ---- */
size_t nrow, /* # of rows of matrix */
size_t ncol, /* # of columns of matrix */
size_t d, /* leading dimension */
int xtype, /* CHOLMOD_REAL, _COMPLEX, or _ZOMPLEX */
[k ——mmmm */
cholmod_common *Common
)

cholmod_dense *cholmod_l_ensure_dense (cholmod_dense **, size_t, size_t, size_t,
int, cholmod_common *) ;

Purpose: Ensures a dense matrix has a given size and type.

83

13.5 cholmod _zeros: dense zero matrix

cholmod_dense *cholmod_zeros

(
/* —---- input ---- */
size_t nrow, /* # of rows of matrix */
size_t ncol, /* # of columns of matrix */
int xtype, /* CHOLMOD_REAL, _COMPLEX, or _ZOMPLEX */
[k ——mmmmm */
cholmod_common *Common
)

cholmod_dense *cholmod_l_zeros (size_t, size_t, int, cholmod_common *) ;

Purpose: Returns an all-zero dense matrix.

13.6 cholmod_ones: dense matrix, all ones

cholmod_dense *cholmod_ones

(
/* —---- input --—- */
size_t nrow, /*x # of rows of matrix */
size_t ncol, /* # of columns of matrix */
int xtype, /* CHOLMOD_REAL, _COMPLEX, or _ZOMPLEX */
[k ———————————— */
cholmod_common *Common
)

cholmod_dense *cholmod_l_ones (size_t, size_t, int, cholmod_common *) ;

Purpose: Returns a dense matrix with each entry equal to one.

13.7 cholmod_eye: dense identity matrix

cholmod_dense *cholmod_eye

(
/* —-—--— input ---- */
size_t nrow, /* # of rows of matrix */
size_t ncol, /* # of columns of matrix */
int xtype, /* CHOLMOD_REAL, _COMPLEX, or _ZOMPLEX */
[* ———mm e *x/
cholmod_common *Common
)

cholmod_dense *cholmod_l_eye (size_t, size_t, int, cholmod_common *) ;

Purpose: Returns a dense identity matrix.

84

13.8 cholmod sparse_to_dense: dense matrix copy of a sparse matrix

cholmod_dense *cholmod_sparse_to_dense

(
/* —---- input ---- %/
cholmod_sparse *A, /* matrix to copy */
[k ——————————————— */
cholmod_common *Common
)

cholmod_dense *cholmod_l_sparse_to_dense (cholmod_sparse *,
cholmod_common *) ;

Purpose: Returns a dense copy of a sparse matrix.

13.9 cholmod dense to_sparse: sparse matrix copy of a dense matrix

cholmod_sparse *cholmod_dense_to_sparse

(
/* —-—-— input ---- */
cholmod_dense *X, /* matrix to copy */
int values, /* TRUE if values to be copied, FALSE otherwise */
[* ———mm *x/
cholmod_common *Common
)

cholmod_sparse *cholmod_l_dense_to_sparse (cholmod_dense *, int,
cholmod_common *) ;

Purpose: Returns a sparse copy of a dense matrix.

13.10 cholmod copy_dense: copy dense matrix

cholmod_dense *cholmod_copy_dense

(
/* —---- input ---- */
cholmod_dense *X, /* matrix to copy */
[* ——mmm *x/
cholmod_common *Common
)

cholmod_dense *cholmod_l_copy_dense (cholmod_dense *, cholmod_common *) ;

Purpose: Returns a copy of a dense matrix.

85

13.11 cholmod copy_dense2: copy dense matrix (preallocated)

int cholmod_copy_dense2

(
/* —---- input ---- %/
cholmod_dense *X, /% matrix to copy */
/* ---— output --- */
cholmod_dense *Y, /* copy of matrix X */
[k ——mmmmm */
cholmod_common *Common

)

int cholmod_l_copy_dense2 (cholmod_dense *, cholmod_dense *, cholmod_common *) ;

Purpose: Returns a copy of a dense matrix, placing the result in a preallocated matrix Y.

13.12 cholmod dense xtype: change dense matrix xtype

int cholmod_dense_xtype

(
/* —---- input ---- */
int to_xtype, /* requested xtype (real, complex,or zomplex) */
/* —--—-- in/out --- %/
cholmod_dense *X, /* dense matrix to change */
[k ———m */
cholmod_common *Common
)

int cholmod_l_dense_xtype (int, cholmod_dense *, cholmod_common *) ;

Purpose: Changes the xtype of a dense matrix, to real, complex, or zomplex. Changing from
complex or zomplex to real discards the imaginary part.

86

14 Core Module: cholmod triplet object

14.1 cholmod triplet object: sparse matrix in triplet form

typedef struct cholmod_triplet_struct

{
size_t nrow ; /* the matrix is nrow-by-ncol */
size_t ncol ;
size_t nzmax ; /* maximum number of entries in the matrix */
size_t nnz ; /* number of nonzeros in the matrix */
void *i ; /* i [0..nzmax-1], the row indices */
void *j ; /* j [0..nzmax-1], the column indices */
void *x ; /* size nzmax or 2*nzmax, if present */
void *z ; /* size nzmax, if present */
int stype ; /* Describes what parts of the matrix are considered:

*
0: matrix is "unsymmetric": use both upper and lower triangular parts
(the matrix may actually be symmetric in pattern and value, but
both parts are explicitly stored and used). May be square or

rectangular.

>0: matrix is square and symmetric. Entries in the lower triangular
part are transposed and added to the upper triangular part when
the matrix is converted to cholmod_sparse form.

<0: matrix is square and symmetric. Entries in the upper triangular
part are transposed and added to the lower triangular part when
the matrix is converted to cholmod_sparse form.

Note that stype>0 and stype<O are different for cholmod_sparse and
cholmod_triplet. The reason is simple. You can permute a symmetric
triplet matrix by simply replacing a row and column index with their
new row and column indices, via an inverse permutation. Suppose

P = L->Perm is your permutation, and Pinv is an array of size n.
Suppose a symmetric matrix A is represent by a triplet matrix T, with
entries only in the upper triangular part. Then the following code:

Ti T->i ;
Tj T->5
for (k =0 ; k <n ; k++) Pinv [P [k]] =k ;

for (k =0 ; k < nz ; k++) Ti [k] = Pinv [Ti [k]] ;
for (k = 0 ; k < nz ; k++) Tj [k] = Pinv [Tj [k]] ;
creates the triplet form of C=P*A*P’. However, if T initially

contains just the upper triangular entries (T->stype = 1), after

permutation it has entries in both the upper and lower triangular
parts. These entries should be transposed when constructing the

cholmod_sparse form of A, which is what cholmod_triplet_to_sparse
does. Thus:

C = cholmod_triplet_to_sparse (T, O, &Common) ;

will return the matrix C = P*AxP’.

¥R R K K K K K X X X X X K K K K X X X X K R K K XK X X X X X X X X ¥ X X

Since the triplet matrix T is so simple to generate, it’s quite easy

87

to remove entries that you do not want, prior to converting T to the
cholmod_sparse form. So if you include these entries in T, CHOLMOD

assumes that there must be a reason (such as the one above). Thus,

no entry in a triplet matrix is ever ignored.

* ¥ ¥ *

*/
int itype ; /* CHOLMOD_LONG: i and j are SuiteSparse_long. Otherwise int */
int xtype ; /* pattern, real, complex, or zomplex */

int dtype ; /* x and z are double or float */

} cholmod_triplet ;

Purpose: Contains a sparse matrix in triplet form.

14.2 cholmod allocate triplet: allocate triplet matrix

cholmod_triplet *cholmod_allocate_triplet

(
/* —---- input --—- */
size_t nrow, /*x # of rows of T */
size_t ncol, /* # of columns of T */
size_t nzmax, /* max # of nonzeros of T */
int stype, /* stype of T */
int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */
[k —mmmmm e */
cholmod_common *Common
)

cholmod_triplet *cholmod_l_allocate_triplet (size_t, size_t, size_t, int, int,
cholmod_common *) ;

Purpose: Allocates a triplet matrix.

14.3 cholmod free triplet: free triplet matrix

int cholmod_free_triplet

(
/* —---— in/out --- */
cholmod_triplet **T, /* triplet matrix to deallocate, NULL on output */
[k ——mmmm— e */
cholmod_common *Common
)

int cholmod_1_free_triplet (cholmod_triplet *%, cholmod_common *) ;

Purpose: Frees a triplet matrix.

88

14.4 cholmod reallocate_triplet: reallocate triplet matrix

int cholmod_reallocate_triplet

(
/* —-—-— input ---- */
size_t nznew, /* new # of entries in T */
/* ----— in/out --- */
cholmod_triplet *T, /* triplet matrix to modify */
R *x/

cholmod_common *Common

int cholmod_1l_reallocate_triplet (size_t, cholmod_triplet *, cholmod_common *)

Purpose: Reallocates a triplet matrix so that it can hold nznew entries.

14.5 cholmod_sparse_to_triplet: triplet matrix copy of a sparse matrix

cholmod_triplet *cholmod_sparse_to_triplet
(

/* —-—-- input ---- %/
cholmod_sparse *A, /* matrix to copy */
[* ——mmm e */

cholmod_common *Common

cholmod_triplet *cholmod_l_sparse_to_triplet (cholmod_sparse *,
cholmod_common *) ;

Purpose: Returns a triplet matrix copy of a sparse matrix.

14.6 cholmod triplet_to_sparse: sparse matrix copy of a triplet matrix

cholmod_sparse *cholmod_triplet_to_sparse

(
/* —---- input ---- */
cholmod_triplet *T, /* matrix to copy */
size_t nzmax, /* allocate at least this much space in output matrix */
[k —mmmmm e */
cholmod_common *Common
)

cholmod_sparse *cholmod_l_triplet_to_sparse (cholmod_triplet *, size_t,
cholmod_common *) ;

Purpose: Returns a sparse matrix copy of a triplet matrix. If the triplet matrix is symmetric
with just the lower part present (T->stype < 0), then entries in the upper part are transposed
and placed in the lower part when converting to a sparse matrix. Similarly, if the triplet matrix
is symmetric with just the upper part present (T->stype > 0), then entries in the lower part are
transposed and placed in the upper part when converting to a sparse matrix. Any duplicate entries
are summed.

89

14.7 cholmod copy_-triplet: copy triplet matrix

cholmod_triplet *cholmod_copy_triplet

(
/* —---- input ---- */
cholmod_triplet *T, /* matrix to copy */
[k ——————————————— */
cholmod_common *Common
)

cholmod_triplet *cholmod_l_copy_triplet (cholmod_triplet *, cholmod_common *) ;

Purpose: Returns an exact copy of a triplet matrix.

14.8 cholmod triplet _xtype: change triplet xtype

int cholmod_triplet_xtype

(
/* —--—-- input ---- %/
int to_xtype, /* requested xtype (pattern, real, complex,or zomplex)*/
/* ---- in/out --- */
cholmod_triplet *T, /* triplet matrix to change */
[* ——mmm e *x/
cholmod_common *Common
)

int cholmod_l_triplet_xtype (int, cholmod_triplet *, cholmod_common *) ;

Purpose: Changes the xtype of a dense matrix, to real, complex, or zomplex. Changing from
complex or zomplex to real discards the imaginary part.

90

15 Core Module: memory management

15.1 cholmod malloc: allocate memory

void *cholmod_malloc /* returns pointer to the newly malloc’d block */
(

/* —-—-- input ---- %/

size_t n, /* number of items */

size_t size, /* size of each item */

[* ——mmm e *x/

cholmod_common *Common

)

void *cholmod_1l_malloc (size_t, size_t, cholmod_common *) ;

Purpose: Allocates a block of memory of size nxsize, using the Common->malloc_memory function
pointer (default is to use the ANSI C malloc routine). A value of n=0 is treated as n=1. If not
successful, NULL is returned and Common->status is set to CHOLMOD_OUT_OF_MEMORY.

15.2 cholmod_calloc: allocate and clear memory

void *cholmod_calloc /* returns pointer to the newly calloc’d block */
(

/* —-—-- input ---- %/

size_t n, /* number of items */

size_t size, /* size of each item */

[* ———mmm e *x/

cholmod_common *Common

)

void *cholmod_l_calloc (size_t, size_t, cholmod_common *) ;

Purpose: Allocates a block of memory of size nxsize, using the Common->calloc_memory function
pointer (default is to use the ANSI C calloc routine). A value of n=0 is treated as n=1. If not
successful, NULL is returned and Common->status is set to CHOLMOD_OUT_OF_MEMORY.

91

15.3 cholmod free: free memory

void *cholmod_free /* always returns NULL */
(
/* —---- input ---- %/
size_t n, /* number of items */
size_t size, /* size of each item */
/* —---- in/out --- %/
void *p, /* block of memory to free */
[k ———————————— */

cholmod_common *Common

void *cholmod_1_free (size_t, size_t, void *, cholmod_common *) ;

Purpose: Frees a block of memory of size n*size, using the Common->free memory function
pointer (default is to use the ANSI C free routine). The size of the block (n and size) is only
required so that CHOLMOD can keep track of its current and peak memory usage. This is a useful
statistic, and it can also help in tracking down memory leaks. After the call to cholmod finish,
the count of allocated blocks (Common->malloc_count) should be zero, and the count of bytes in
use (Common->memory_inuse) also should be zero. If you allocate a block with one size and free
it with another, the Common->memory_inuse count will be wrong, but CHOLMOD will not have a
memory leak.

15.4 cholmod realloc: reallocate memory

void *cholmod_realloc /* returns pointer to reallocated block */

(
/* —---- input ---- %/
size_t nnew, /* requested # of items in reallocated block */
size_t size, /* size of each item */
/* ———— in/out --- */
void *p, /* block of memory to realloc */
size_t *n, /* current size on input, nnew on output if successfulx/
[k ———m */
cholmod_common *Common
)

void *cholmod_l_realloc (size_t, size_t, void *, size_t *, cholmod_common *) ;

Purpose: Reallocates a block of memory whose current size n*size, and whose new size will
be nnewx*size if successful, using the Common->calloc memory function pointer (default is to use
the ANSI C realloc routine). If the reallocation is not successful, p is returned unchanged and
Common->status is set to CHOLMOD_OUT_OF_MEMORY. The value of n is set to nnew if successful, or
left unchanged otherwise. A value of nnew=0 is treated as nnew=1.

92

15.5 cholmod realloc multiple: reallocate memory

int cholmod_realloc_multiple

(
/* —---- input ---- %/
size_t nnew, /* requested # of items in reallocated blocks */
int nint, /* number of int/SuiteSparse_long blocks */
int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */
/* ---- in/out --- */
void **Iblock, /* int or SuiteSparse_long block */
void **Jblock, /* int or SuiteSparse_long block */
void **Xblock, /* complex, double, or float block */
void **Zblock, /* zomplex case only: double or float block */
size_t *n, /* current size of the I,J,X,Z blocks on input,
* nnew on output if successful */
[* ——mmm e */
cholmod_common *Common
)

int cholmod_l_realloc_multiple (size_t, int, int, void **, void **, void **,
void **, size_t *, cholmod_common *) ;

Purpose: Reallocates multiple blocks of memory, all with the same number of items (but with
different item sizes). Either all reallocations succeed, or all are returned to their original size.

93

16 Core Module: version control

16.1 cholmod version: return current CHOLMOD version

int cholmod_version /* returns CHOLMOD_VERSION */
(
/* output, contents not defined on input. Not used if NULL.
version [0] = CHOLMOD_MAIN_VERSION
version [1] CHOLMOD_SUB_VERSION
version [2] CHOLMOD_SUBSUB_VERSION

*/
int version [3]

)

int cholmod_1l_version (int version [3]) ;

Purpose: Returns the CHOLMOD version number, so that it can be tested at run time, even if the
caller does not have access to the CHOLMOD include files. For example, for a CHOLMOD version
3.2.1, the version array will contain 3, 2, and 1, in that order. This function appears in CHOLMOD
2.1.1 and later. You can check if the function exists with the CHOLMOD_HAS_VERSION_FUNCTION
macro, so that the following code fragment works in any version of CHOLMOD:

#ifdef CHOLMOD_HAS_VERSION_FUNCTION
v = cholmod_version (NULL) ;

#else

v = CHOLMOD_VERSION ;

#endif

Note that cholmod version and cholmod 1 _version have identical prototypes. Both use int’s.
Unlike all other CHOLMOD functions, this function does not take the Common object as an input
parameter, and it does not use any defintions from any include files. Thus, the caller can access
this function even if the caller does not include any CHOLMOD include files.

The above code fragment does require the #include "cholmod.h", of course, but cholmod _version

can be called without it, if necessary.

94

17 Check Module routines

No CHOLMOD routines print anything, except for the cholmod print_* routines in the Check
Module, and the cholmod_error routine. The Common->print_function is a pointer to printf by
default; you can redirect the output of CHOLMOD by redefining this pointer. If Common->print_function
is NULL, CHOLMOD does not print anything.

The Common->print parameter determines how much detail is printed. Each value of Common->print
listed below also prints the items listed for smaller values of Common->print:

e 0: print nothing; check the data structures and return TRUE or FALSE.
e 1: print error messages.

e 2: print warning messages.

e 3: print a one-line summary of the object.

e 4: print a short summary of the object (first and last few entries).

e 5: print the entire contents of the object.

Values less than zero are treated as zero, and values greater than five are treated as five.

17.1 cholmod_check_common: check Common object

int cholmod_check_common
(

cholmod_common *Common

)

int cholmod_1_check_common (cholmod_common *) ;

Purpose: Check if the Common object is valid.

17.2 cholmod print_common: print Common object

int cholmod_print_common

(

/* —---- input ---- %/
const char *name, /* printed name of Common object */
/¥ ———mmmmm e *x/

cholmod_common *Common

)

int cholmod_1_print_common (const char *, cholmod_common *) ;

Purpose: Print the Common object and check if it is valid. This prints the CHOLMOD parameters
and statistics.

95

17.3 cholmod check sparse: check sparse matrix

int cholmod_check_sparse

(
/* —---- input ---- */
cholmod_sparse *A, /* sparse matrix to check */
[k ——————————————— */
cholmod_common *Common
)

int cholmod_l_check_sparse (cholmod_sparse *, cholmod_common *) ;

Purpose: Check if a sparse matrix is valid.

17.4 cholmod print_sparse: print sparse matrix

int cholmod_print_sparse

(
/* —--—-- input ---- %/
cholmod_sparse *A, /* sparse matrix to print */
const char *name, /* printed name of sparse matrix */
[k ———m— */
cholmod_common *Common
)

int cholmod_l_print_sparse (cholmod_sparse *, const char *, cholmod_common *) ;

Purpose: Print a sparse matrix and check if it is valid.

96

17.5 cholmod_check dense: check dense matrix

int cholmod_check_dense

(
/* —---- input ---- */
cholmod_dense *X, /* dense matrix to check */
[k ——————————————— */
cholmod_common *Common
)

int cholmod_1_check_dense (cholmod_dense *, cholmod_common *) ;

Purpose: Check if a dense matrix is valid.

17.6 cholmod print_dense: print dense matrix

int cholmod_print_dense

(
/* —---- input ---- %/
cholmod_dense *X, /* dense matrix to print */
const char *name, /* printed name of dense matrix */
[k ———————————— */
cholmod_common *Common
)

int cholmod_l_print_dense (cholmod_dense *, const char *, cholmod_common *) ;

Purpose: Print a dense matrix and check if it is valid.

97

17.7 cholmod_check factor: check factor

int cholmod_check_factor

(
/* —---- input ---- */
cholmod_factor *L, /%
[k ——————————————— */
cholmod_common *Common
)

int cholmod_1_check_factor

factor to check */

(cholmod_factor *, cholmod_common *) ;

Purpose: Check if a factor is valid.

17.8 cholmod print_factor: print factor

int cholmod_print_factor

(
/* —-—-— input ---- */
cholmod_factor *L, /%
const char *name, /%
[k ———————————— */
cholmod_common *Common
)

int cholmod_1_print_factor

factor to print */
printed name of factor */

(cholmod_factor *, const char *, cholmod_common *)

3

Purpose: Print a factor and check if it is valid.

98

17.9 cholmod check triplet: check triplet matrix

int cholmod_check_triplet

(
/* —---- input ---- %/
cholmod_triplet *T, /* triplet matrix to check */
[k ——————————————— */
cholmod_common *Common
)

int cholmod_l_check_triplet (cholmod_triplet *, cholmod_common *) ;

Purpose: Check if a triplet matrix is valid.

17.10 cholmod print_triplet: print triplet matrix

int cholmod_print_triplet

(
/* —---— input ---- */
cholmod_triplet *T, /* triplet matrix to print */
const char *name, /* printed name of triplet matrix */
[k ———m— */
cholmod_common *Common
)

int cholmod_l_print_triplet (cholmod_triplet *, const char *, cholmod_common *);

Ve -— -—— -—— -—— - x/
/* cholmod_check_subset: check a subset */
K */
int cholmod_check_subset
(
/* —---- input ---- %/
int *Set, /* Set [0:len-1] is a subset of O:n-1. Duplicates OK */
SuiteSparse_long len, /* size of Set (an integer array) */
size_t n, /* 0:n-1 is valid range */
[* ———mm *x/
cholmod_common *Common
)

int cholmod_l_check_subset (SuiteSparse_long *, SuiteSparse_long, size_t,
cholmod_common *) ;

Purpose: Print a triplet matrix and check if it is valid.

99

17.11

cholmod_check_subset: check subset

int

(

int

cholmod_check_subset
/* —---- input ---- */
int *Set,
SuiteSparse_long len,
size_t n, /%
[k ——mmmmm */

cholmod_common *Common

/* Set [0:len-1] is a subset of 0:n-1.
/* size of Set (an integer array) */

0:n-1 is valid range */

Duplicates 0K */

cholmod_1_check_subset (SuiteSparse_long *, SuiteSparse_long, size_t,

cholmod_common *) ;

Purpose: Check if a subset is valid.

17.12

cholmod print_subset: print subset

int

(

int

cholmod_print_subset

/* —-—-— input ---- */
int *Set, /*
SuiteSparse_long len,

size_t n, /*
const char *name, /*
[k ——mmmmm */

cholmod_common *Common

Set [0:len-1] is a subset of O:n-1.
/* size of Set (an integer array) */

0:n-1 is valid range */
printed name of Set */

Duplicates OK */

cholmod_1_print_subset (SuiteSparse_long *, SuiteSparse_long, size_t,
const char *, cholmod_common *) ;

Purpose: Print a subset and check if it is valid.

100

17.13

Purpose:

17.14

Purpose:

cholmod_check _perm: check permutation

int

(

cholmod_check_perm

/* —---- input ---- */
int *Perm, /*
size_t len, /*
size_t n, /%
[k ——mmmmm */

cholmod_common *Common

Perm [0:len-1] is a permutation of subset of 0:n-1 */
size of Perm (an integer array) */

0:n-1 is valid range */

int cholmod_l_check_perm (SuiteSparse_long *, size_t, size_t, cholmod_common *);

/A e ---

/* cholmod_print_perm:

/% -

int

(

int

cholmod_print_perm

/* —---- input ---- %/
int *Perm, /*
size_t len, /*
size_t n, /%
const char *name, /*
[* ——mm— *x/

cholmod_common *Common

print a permutation vector */

Perm [0:len-1] is a permutation of subset of O:n-1 */
size of Perm (an integer array) */

0:n-1 is valid range */
printed name of Perm */

cholmod_1_print_perm (SuiteSparse_long *, size_t, size_t, const char x*,

cholmod_common *) ;

Check if a permutation is valid.

cholmod print perm: print permutation

int

(

int

cholmod_print_perm

/* —---- input ---- %/
int *Perm, /*
size_t len, /%
size_t n, /*
const char *name, /*
[* ——m—— *x/

cholmod_common *Common

Perm [0:len-1] is a permutation of subset of O:n-1 */
size of Perm (an integer array) */

0:n-1 is valid range */
printed name of Perm */

cholmod_1_print_perm (SuiteSparse_long *, size_t, size_t, const char x*,

cholmod_common *) ;

Print a permutation and check if it is valid.

101

17.15 cholmod_check parent: check elimination tree

int cholmod_check_parent

(
/* —---- input ---- */
int *Parent, /* Parent [0:n-1] is an elimination tree */
size_t n, /* size of Parent */
[* ——mmm *x/
cholmod_common *Common
)

int cholmod_1_check_parent (SuiteSparse_long %, size_t, cholmod_common *) ;

Purpose: Check if an elimination tree is valid.

17.16 cholmod print_parent: print elimination tree

int cholmod_print_parent

(
/* —-—-— input ---- */
int *Parent, /* Parent [0:n-1] is an elimination tree */
size_t n, /* size of Parent */
const char *name, /* printed name of Parent */
[k —mmmmm e */
cholmod_common *Common
)

int cholmod_1_print_parent (SuiteSparse_long *, size_t, const char *,
cholmod_common *) ;

Purpose: Print an elimination tree and check if it is valid.

102

17.17 cholmod read triplet: read triplet matrix from file

cholmod_triplet *cholmod_read_triplet
(

/* —--—- input ---- %/
FILE *f, /* file to read from, must already be open */
[* ———m— */

cholmod_common *Common

)

cholmod_triplet *cholmod_l_read_triplet (FILE *, cholmod_common *) ;

Purpose: Read a sparse matrix in triplet form, using the the coord Matrix Market format
(http://www.nist.gov/MatrixMarket). Skew-symmetric and complex symmetric matrices are re-
turned with both upper and lower triangular parts present (an stype of zero). Real symmetric and
complex Hermitian matrices are returned with just their upper or lower triangular part, depend-
ing on their stype. The Matrix Market array data type for dense matrices is not supported (use
cholmod_read dense for that case).

If the first line of the file starts with %%MatrixMarket, then it is interpreted as a file in Matrix
Market format. The header line is optional. If present, this line must have the following format:

%/iMatrixMarket matrix coord type storage

where type is one of: real, complex, pattern, or integer, and storage is one of: general,
hermitian, symmetric, or skew-symmetric. In CHOLMOD, these roughly correspond to the
xtype (pattern, real, complex, or zomplex) and stype (unsymmetric, symmetric/upper, and sym-
metric/lower). The strings are case-insensitive. Omnly the first character (or the first two for
skew-symmetric) is significant. The coord token can be replaced with array in the Matrix Market
format, but this format not supported by cholmod read triplet. The integer type is converted
to real. The type is ignored; the actual type (real, complex, or pattern) is inferred from the number
of tokens in each line of the file (2: pattern, 3: real, 4: complex). This is compatible with the
Matrix Market format.

A storage of general implies an stype of zero (see below). A storage of symmetric and
hermitian imply an stype of -1. Skew-symmetric and complex symmetric matrices are returned
with an stype of 0. Blank lines, any other lines starting with “}%” are treated as comments, and are
ignored.

The first non-comment line contains 3 or 4 integers:

nrow ncol nnz stype

where stype is optional (stype does not appear in the Matrix Market format). The matrix is nrow-
by-ncol. The following nnz lines (excluding comments) each contain a single entry. Duplicates are
permitted, and are summed in the output matrix.

If stype is present, it denotes the storage format for the matrix.

e stype = 0 denotes an unsymmetric matrix (same as Matrix Market general).

e stype = -1 denotes a symmetric or Hermitian matrix whose lower triangular entries are stored.
Entries may be present in the upper triangular part, but these are ignored (same as Matrix
Market symmetric for the real case, hermitian for the complex case).

103

e stype = 1 denotes a symmetric or Hermitian matrix whose upper triangular entries are stored.
Entries may be present in the lower triangular part, but these are ignored. This format is not
available in the Matrix Market format.

If neither the stype nor the Matrix Market header are present, then the stype is inferred from the
rest of the data. If the matrix is rectangular, or has entries in both the upper and lower triangular
parts, then it is assumed to be unsymmetric (stype=0). If only entries in the lower triangular part
are present, the matrix is assumed to have stype = -1. If only entries in the upper triangular part
are present, the matrix is assumed to have stype = 1.

Each nonzero consists of one line with 2, 3, or 4 entries. All lines must have the same number
of entries. The first two entries are the row and column indices of the nonzero. If 3 entries are
present, the 3rd entry is the numerical value, and the matrix is real. If 4 entries are present, the
3rd and 4th entries in the line are the real and imaginary parts of a complex value.

The matrix can be either 0-based or 1-based. It is first assumed to be one-based (compatible
with Matrix Market), with row indices in the range 1 to ncol and column indices in the range 1 to
nrow. If a row or column index of zero is found, the matrix is assumed to be zero-based (with row
indices in the range 0 to ncol-1 and column indices in the range 0 to nrow-1). This test correctly
determines that all Matrix Market matrices are in 1-based form.

For symmetric pattern-only matrices, the kth diagonal (if present) is set to one plus the degree
of the row k or column k (whichever is larger), and the off-diagonals are set to -1. A symmetric
pattern-only matrix with a zero-free diagonal is thus converted into a symmetric positive definite
matrix. All entries are set to one for an unsymmetric pattern-only matrix. This differs from the
MatrixMarket format (A = mmread (’file’) returns a binary pattern for A for symmetric pattern-
only matrices). To return a binary format for all pattern-only matrices, use A = mread(’file’,1).

Example matrices that follow this format can be found in the CHOLMOD/Demo/Matrix and
CHOLMOD/Tcov/Matrix directories. You can also try any of the matrices in the Matrix Market
collection at http://www.nist.gov/MatrixMarket.

17.18 cholmod read _sparse: read sparse matrix from file

cholmod_sparse *cholmod_read_sparse

(

/* —---- input ---- %/
FILE *f, /* file to read from, must already be open */
[k ——mmmm e */

cholmod_common *Common

)

cholmod_sparse *cholmod_l_read_sparse (FILE *, cholmod_common *) ;

Purpose: Read a sparse matrix in triplet form from a file (using cholmod read triplet) and con-
vert to a CHOLMOD sparse matrix. The Matrix Market format is used. If Common->prefer_upper
is TRUE (the default case), a symmetric matrix is returned stored in upper-triangular form (A->stype
is 1). Otherwise, it is left in its original form, either upper or lower.

104

17.19 cholmod_read dense: read dense matrix from file

cholmod_dense *cholmod_read_dense

(
/* —---- input ---- %/
FILE *f, /* file to read from, must already be open */
[k ——————————————— */
cholmod_common *Common
)

cholmod_dense *cholmod_l_read_dense (FILE *, cholmod_common *) ;

Purpose: Read a dense matrix from a file, using the the array Matrix Market format
(http://www.nist.gov/MatrixMarket).

17.20 cholmod read matrix: read a matrix from file

void *cholmod_read_matrix

(

/* —---- input ---- %/

FILE *f, /* file to read from, must already be open */

int prefer, /* If 0, a sparse matrix is always return as a
* cholmod_triplet form. It can have any stype
* (symmetric-lower, unsymmetric, or
* symmetric-upper) .
* If 1, a sparse matrix is returned as an unsymmetric
* cholmod_sparse form (A->stype == 0), with both
* upper and lower triangular parts present.
* This is what the MATLAB mread mexFunction does,
* since MATLAB does not have an stype.
* If 2, a sparse matrix is returned with an stype of 0
* or 1 (unsymmetric, or symmetric with upper part
* stored) .
* This argument has no effect for dense matrices.
*/

/* —---— output---- */

int *mtype, /* CHOLMOD_TRIPLET, CHOLMOD_SPARSE or CHOLMOD_DENSE */

[—mmmm */

cholmod_common *Common

)

void *cholmod_l_read_matrix (FILE *, int, int *, cholmod_common *) ;

Purpose: Read a sparse or dense matrix from a file, in Matrix Market format. Returns a void
pointer to either a cholmod_triplet, cholmod_sparse, or cholmod_dense object.

105

17.21 cholmod write_sparse: write a sparse matrix to a file

int cholmod_write_sparse

(
/* —---- input ---- %/
FILE *f, /* file to write to, must already be open */
cholmod_sparse *A, /* matrix to print */
cholmod_sparse *Z, /* optional matrix with pattern of explicit zeros */
const char *comments, /* optional filename of comments to include */
[k ———————————— */
cholmod_common *Common
)

int cholmod_l_write_sparse (FILE *, cholmod_sparse *, cholmod_sparse *,
const char *c, cholmod_common *) ;

Purpose: Write a sparse matrix to a file in Matrix Market format. Optionally include comments,
and print explicit zero entries given by the pattern of the Z matrix. If not NULL, the Z matrix
must have the same dimensions and stype as A.

Returns the symmetry in which the matrix was printed (1 to 7) or -1 on failure. See the
cholmod_symmetry function for a description of the return codes.

If A and Z are sorted on input, and either unsymmetric (stype = 0) or symmetric-lower (stype
i 0), and if A and Z do not overlap, then the triplets are sorted, first by column and then by row
index within each column, with no duplicate entries. If all the above holds except stype ; 0, then
the triplets are sorted by row first and then column.

17.22 cholmod write_dense: write a dense matrix to a file

int cholmod_write_dense

(
/* —---- input ---- %/
FILE *f, /* file to write to, must already be open */
cholmod_dense *X, /* matrix to print */
const char *comments, /* optional filename of comments to include */
[k ———————————— */
cholmod_common *Common

)

int cholmod_1_write_dense (FILE *, cholmod_dense *, const char *,
cholmod_common *) ;

Purpose: Write a dense matrix to a file in Matrix Market format. Optionally include comments.
Returns ¢ 0 if successful, -1 otherwise (1 if rectangular, 2 if square). A dense matrix is written in
7general” format; symmetric formats in the Matrix Market standard are not exploited.

106

18 Cholesky Module routines

18.1 cholmod_analyze: symbolic factorization

cholmod_factor *cholmod_analyze

(

/* —-—-— input ---- */
cholmod_sparse *A, /* matrix to order and analyze */
[k ———————— */

cholmod_common *Common

)

cholmod_factor *cholmod_l_analyze (cholmod_sparse *, cholmod_common *) ;

Purpose: Orders and analyzes a matrix (either simplicial or supernodal), in preparation for
numerical factorization via cholmod_factorize or via the “expert” routines cholmod_rowfac and
cholmod_super _numeric.

In the symmetric case, A or A(p,p) is analyzed, where p is the fill-reducing ordering. In the
unsymmetric case, AxA’ or A(p,:)*A(p,:)’ is analyzed. The cholmod analyze_p routine can be
given a user-provided permutation p (see below).

The default ordering strategy is to first try AMD. The ordering quality is analyzed, and if AMD
obtains an ordering where nnz (L) is greater than or equal to 5*nnz (tril(A)) (or 5*nnz (tril (A*A’))
if A is unsymmetric) and the floating-point operation count for the subsequent factorization is
greater than or equal to 500%nnz (L), then METIS is tried (if installed). For cholmod analyze p,
the user-provided ordering is also tried. This default behavior is obtained when Common->nmethods
is zero. In this case, methods 0, 1, and 2 in Common->method[...] are reset to user-provided, AMD,
and METIS, respectively. The ordering with the smallest nnz (L) is kept.

If Common->default _nesdis is true (nonzero), then CHOLMOD’s nested dissection (NESDIS)
is used for the default strategy described above, in place of METIS.

Other ordering options can be requested. These include:

1. natural: A is not permuted to reduce fill-in.
2. user-provided: a permutation can be provided to cholmod_analyze_p.

3. AMD: approximate minimum degree (AMD for the symmetric case, COLAMD for the AxA’
case).

4. METIS: nested dissection with METIS_NodeND

5. NESDIS: CHOLMOD'’s nested dissection using METIS_NodeComputeSeparator, followed by a
constrained minimum degree (CAMD or CSYMAMD for the symmetric case, CCOLAMD for
the AxA’ case). This is typically slower than METIS, but typically provides better orderings.

Multiple ordering options can be tried (up to 9 of them), and the best one is selected (the
one that gives the smallest number of nonzeros in the simplicial factor L). If one method fails,
cholmod_analyze keeps going, and picks the best among the methods that succeeded. This routine
fails (and returns NULL) if either the initial memory allocation fails, all ordering methods fail, or
the supernodal analysis (if requested) fails. Change Common->nmethods to the number of methods
you wish to try. By default, the 9 methods available are:

107

1. user-provided permutation (only for cholmod_analyze_p).
2. AMD with default parameters.
3. METIS with default parameters.

4. NESDIS with default parameters: stopping the partitioning when the graph is of size nd_small
= 200 or less, remove nodes with more than max (16, prune dense * sqrt (n)) nodes
where prune_dense = 10, and follow partitioning with constrained minimum degree ordering
(CAMD for the symmetric case, CCOLAMD for the unsymmetric case).

5. natural ordering (with weighted postorder).

6. NESDIS, nd_small = 20000, prune_dense = 10.

7. NESDIS, nd_small = 4, prune_dense = 10, no constrained minimum degree.
8. NESDIS, nd_small = 200, prune_dense = 0.

9. COLAMD for A*A’ or AMD for A

You can modify these 9 methods and the number of methods tried by changing parameters in
the Common argument. If you know the best ordering for your matrix, set Common->nmethods to
1 and set Common->method[0] .ordering to the requested ordering method. Parameters for each
method can also be modified (refer to the description of cholmod_common for details).

Note that it is possible for METIS to terminate your program if it runs out of memory. This is
not the case for any CHOLMOD or minimum degree ordering routine (AMD, COLAMD, CAMD,
CCOLAMD, or CSYMAMD). Since NESDIS relies on METIS, it too can terminate your program.

The selected ordering is followed by a weighted postorder of the elimination tree by default (see
cholmod postorder for details), unless Common->postorder is set to FALSE. The postorder does
not change the number of nonzeros in L or the floating-point operation count. It does improve
performance, particularly for the supernodal factorization. If you truly want the natural ordering
with no postordering, you must set Common->postorder to FALSE.

The factor L is returned as simplicial symbolic if Common->supernodal is CHOLMOD _SIMPLICIAL
(zero) or as supernodal symbolic if Common->supernodal is CHOLMOD_SUPERNODAL (two). If
Common->supernodal is CHOLMOD_AUTO (one), then L is simplicial if the flop count per nonzero in L
is less than Common->supernodal switch (default: 40), and supernodal otherwise. In both cases,
L->xtype is CHOLMOD_PATTERN. A subsequent call to cholmod _factorize will perform a simplicial
or supernodal factorization, depending on the type of L.

For the simplicial case, L contains the fill-reducing permutation (L->Perm) and the counts of
nonzeros in each column of L (L->ColCount). For the supernodal case, L also contains the nonzero
pattern of each supernode.

If a simplicial factorization is selected, it will be LDLT by default, since this is the kind
required by the Modify Module. CHOLMOD does not include a supernodal LDLT factorization,
so if a supernodal factorization is selected, it will be in the form LLT. The LDLT method can be
used to factorize positive definite matrices and indefinite matrices whose leading minors are well-
conditioned (2-by-2 pivoting is not supported). The LLT method is restricted to positive definite
matrices. To factorize a large indefinite matrix, set Common->supernodal to CHOLMOD_SIMPLICIAL,

108

and the simplicial LDLT method will always be used. This will be significantly slower than a
supernodal LLT factorization, however.
Refer to cholmod_transpose_unsym for a description of f.

18.2 cholmod_factorize: numeric factorization

int cholmod_factorize
(
/* —---- input ---- %/
cholmod_sparse *A, /* matrix to factorize */
/* —---- in/out --- %/
cholmod_factor *L, /* resulting factorization */
[* ——mmm e */

cholmod_common *Common

)

int cholmod_l_factorize (cholmod_sparse *, cholmod_factor *, cholmod_common *) ;

Purpose: Computes the numerical factorization of a symmetric matrix. The inputs to this routine
are a sparse matrix A and the symbolic factor L from cholmod_analyze or a prior numerical factor L.
If A is symmetric, this routine factorizes A(p,p). where p is the fill-reducing permutation (L->Perm).
If A is unsymmetric, A(p, :)*A(p, :)’ is factorized. The nonzero pattern of the matrix A must be
the same as the matrix passed to cholmod_analyze for the supernodal case. For the simplicial
case, it can be different, but it should be the same for best performance.

A simplicial factorization or supernodal factorization is chosen, based on the type of the factor
L. If L->is_super is TRUE, a supernodal LLT factorization is computed. Otherwise, a simplicial
numeric factorization is computed, either LLT or LDLT, depending on Common->final 11 (the
default for the simplicial case is to compute an LDLT factorization).

Once the factorization is complete, it can be left as is or optionally converted into any simplicial
numeric type, depending on the Common->final _* parameters. If converted from a supernodal to
simplicial type, and Common->final _resymbol is TRUE, then numerically zero entries in L due to
relaxed supernodal amalgamation are removed from the simplicial factor (they are always left in
the supernodal form of L). Entries that are numerically zero but present in the simplicial sym-
bolic pattern of L are left in place (the graph of L remains chordal). This is required for the
update/downdate/rowadd /rowdel routines to work properly.

If the matrix is not positive definite the routine returns TRUE, but Common->status is set to
CHOLMOD_NOT_POSDEF and L->minor is set to the column at which the failure occurred. Columns
L->minor to L->n-1 are set to zero.

Supports any xtype (pattern, real, complex, or zomplex), except that the input matrix A cannot
be pattern-only. If L is simplicial, its numeric xtype matches A on output. If L is supernodal, its
xtype is real if A is real, or complex if A is complex or zomplex. CHOLMOD does not provide
a supernodal zomplex factor, since it is incompatible with how complex numbers are stored in
LAPACK and the BLAS.

18.3 cholmod_analyze p: symbolic factorization, given permutation

109

cholmod_factor *cholmod_analyze_p

(

/* —---- input ---- */
cholmod_sparse *A, /%
int *UserPerm, /*
int *fset, /*
size_t fsize, /%
[* ——mmm e */

cholmod_common *Common

matrix to order and analyze */
user-provided permutation, size A->nrow */
subset of 0:(A->ncol)-1 */

size of fset */

cholmod_factor *cholmod_l_analyze_p (cholmod_sparse *, SuiteSparse_long *,
SuiteSparse_long *, size_t, cholmod_common *)
cholmod_factor *cholmod_analyze_p2

(

/* —--—- input ---- %/
int for_cholesky, /*
cholmod_sparse *A, /%
int *UserPerm, /*
int *fset, /*
size_t fsize, /*
[k ——mmmm e */

cholmod_common *Common

if TRUE, then analyze for Cholesky; else for QR */
matrix to order and analyze */

user-provided permutation, size A->nrow */

subset of 0:(A->ncol)-1 */

size of fset */

cholmod_factor *cholmod_l_analyze_p2 (int, cholmod_sparse *, SuiteSparse_long *,
SuiteSparse_long *, size_t, cholmod_common *) ;

Purpose:

Identical to cholmod_analyze, except that a user-provided permutation p can be

provided, and the set f for the unsymmetric case can be provided. The matrices A(:,f)*A(:,f)°
or A(p,f)*A(p,f)’ can be analyzed in the the unsymmetric case.

cholmod factorize p: numeric factorization, given permutation

cholmod_factorize_p

/* —---- input --—- */
cholmod_sparse *A, /*
double beta [2], /*
int *fset, /*
size_t fsize, /%
/* ———— in/out --- */
cholmod_factor *L, /%
[k ———— */

cholmod_common *Common

matrix to factorize */

factorize betaxI+A or betaxI+A’*A */
subset of 0:(A->ncol)-1 */

size of fset */

resulting factorization */

cholmod_1_factorize_p (cholmod_sparse *, double *, SuiteSparse_long *,

size_t, cholmod_factor

*, cholmod_common *) ;

18.4
int
(
)
int
Purpose:

Identical to cholmod _factorize, but with additional options.

The set £ can be

provided for the unsymmetric case; A(p,f)*A(p,f)’ is factorized. The term beta*I can be added
to the matrix before it is factorized, where beta is real. Only the real part, beta[0], is used.

110

18.5 cholmod_solve: solve a linear system

cholmod_dense *cholmod_solve /* returns the solution X */
(

/* —---— input ---- */

int sys, /* system to solve */

cholmod_factor *L, /* factorization to use */
cholmod_dense *B, /* right-hand-side */

[k ———— */

cholmod_common *Common

)

cholmod_dense *cholmod_l_solve (int, cholmod_factor *, cholmod_dense *,
cholmod_common *) ;

Purpose: Returns a solution X that solves one of the following systems:
system sys parameter system sys parameter
Ax=Db 0: CHOLMOD_A

LDL'x=b 1: CHOLMOD LDLt | LTx =b 5: CHOLMOD Lt

LDx =D 2: CHOLMOD_LD Dx=bD 6: CHOLMOD_D

DL'x=b 3: CHOLMOD_DLt x =Pb 7. CHOLMOD_P
Lx=b 4: CHOLMOD L x =PTb 8: CHOLMOD Pt

The factorization can be simplicial LDLT, simplicial LL", or supernodal LLT. For an LLT
factorization, D is the identity matrix. Thus CHOLMOD_LD and CHOLMOD_L solve the same system if
an LLT factorization was performed, for example. This is one of the few routines in CHOLMOD for
which the xtype of the input arguments need not match. If both L and B are real, then X is returned
real. If either is complex or zomplex, X is returned as either complex or zomplex, depending on the
Common->prefer_zomplex parameter (default is complex).

This routine does not check to see if the diagonal of L or D is zero, because sometimes a partial
solve can be done with an indefinite or singular matrix. If you wish to check in your own code, test
L->minor. If L->minor == L->n, then the matrix has no zero diagonal entries. If k = L->minor
< L->n, then L(k,k) is zero for an LLT factorization, or D(k,k) is zero for an LDLT factorization.

Iterative refinement is not performed, but this can be easily done with the MatrixOps Module.
See Demo/cholmod_demo.c for an example.

18.6 cholmod_spsolve: solve a linear system

cholmod_sparse *cholmod_spsolve

(
/* —---- input ---- %/
int sys, /* system to solve */
cholmod_factor *L, /* factorization to use */
cholmod_sparse *B, /* right-hand-side */
[k ——mmmm— */
cholmod_common *Common

)

cholmod_sparse *cholmod_l_spsolve (int, cholmod_factor *, cholmod_sparse *,
cholmod_common *) ;

111

Purpose: Identical to cholmod_solve, except that B and X are sparse. This function converts B to
full format, solves the system, and then converts X back to sparse. If you want to solve with a sparse
B and get just a partial solution back in X (corresponding to the pattern of B), use cholmod _solve?2
below.

18.7 cholmod_solve2: solve a linear system, reusing workspace

int cholmod_solve2 /* returns TRUE on success, FALSE on failure */
(
/* —-—-— input ---- */
int sys, /* system to solve */
cholmod_factor *L, /* factorization to use */
cholmod_dense *B, /* right-hand-side */
cholmod_sparse *Bset,
/* ---- output --- */
cholmod_dense **X_Handle, /* solution, allocated if need be */
cholmod_sparse **Xset_Handle,
/* ----— workspace */
cholmod_dense **Y_Handle, /* workspace, or NULL */
cholmod_dense **E_Handle, /* workspace, or NULL */
[k ———————————— */

cholmod_common *Common

int cholmod_l_solve2 (int, cholmod_factor *, cholmod_dense *, cholmod_sparse *,
cholmod_dense **, cholmod_sparse **, cholmod_dense **, cholmod_dense **,
cholmod_common *) ;

Purpose: Solve a linear system, optionally reusing workspace from a prior call to cholmod_solve2.

The inputs to this function are the same as cholmod_solve, with the addition of three param-
eters: X, Y, and E. The dense matrix X is the solution on output. On input, &X can point to a
NULL matrix, or be the wrong size. If that is the case, it is freed and allocated to be the proper
size. If X has the right size and type on input, then the allocation is skipped. In contrast, the
cholmod_solve function always allocates its output X. This cholmod_solve2 function allows you
to reuse the memory space of a prior X, thereby saving time.

The two workspace matrices Y and E can also be reused between calls. You must free X Y, and
E yourself, when your computations are done. Below is an example of usage. Note that X Y, and E
must be defined on input (either NULL, or valid dense matrices).

cholmod_dense *X = NULL, *Y = NULL, *E = NULL ;

cholmod_1_solve2 (sys, L, B1, NULL, &X, NULL, &Y, &E, Common) ;
cholmod_1_solve2 (sys, L, B2, NULL, &X, NULL, &Y, &E, Common) ;
cholmod_1_solve2 (sys, L, B3, NULL, &X, NULL, &Y, &E, Common) ;
cholmod_1_free_dense (&X, Common) ;
cholmod_1_free_dense (&Y, Common) ;
cholmod_1_free_dense (&E, Common) ;

112

The equivalent when using cholmod_solve is:
cholmod_dense *X = NULL, *Y = NULL, *E = NULL ;

X = cholmod_1l_solve (sys, L, Bl, Common) ;
cholmod_1_free_dense (&X, Common) ;
X = cholmod_1l_solve (sys, L, B2, Common) ;
cholmod_1_free_dense (&X, Common) ;
X = cholmod_1_solve (sys, L, B3, Common) ;
cholmod_1_free_dense (&X, Common) ;

Both methods work fine, but in the second method with cholmod_solve, the internal workspaces
(Y and E) and the solution (X) are allocated and freed on each call.

The cholmod_solve2 function can also solve for a subset of the solution vector X, if the
optional Bset parameter is non-NULL. The right-hand-side B must be a single column vector, and
its complexity (real, complex, zomplex) must match that of L. The vector B is dense, but it is
assumed to be zero except for row indices specified in Bset. The vector Bset must be a sparse
column vector, of dimension the same as B. Only the pattern of Bset is used. The solution X (a
dense column vector) is modified on output, but is defined only in the rows defined by the sparse
vector Xset. The entries in Bset are a subset of Xset (except if sys is CHOLMOD_P or CHOLMOD_Pt).

No memory allocations are done if the outputs and internal workspaces (X, Xset, Y, and E) have
been allocated by a prior call (or if allocated by the user). To let cholmod_solve2 allocate these
outputs and workspaces for you, simply initialize them to NULL (as in the example above). Since
it is possible for this function to reallocate these 4 arrays, you should always reaquire the pointers
to their internal data (X->x for example) after calling cholmod _solve2), since they may change.
They normally will not change except in the first call to this function.

On the first call to cholmod_solve2 when Bset is NULL, the factorization is converted from
supernodal to simplicial, if needed. The inverse permutation is also computed and stored in the
factoriation object, L. This can take a modest amount of time. Subsequent calls to cholmod_solve2
with a small Bset are very fast (both asympotically and in practice).

You can find an example of how to use cholmod_solve2 in the two demo programs, cholmod_demo
and cholmod_1_demo.

18.8 cholmod_etree: find elimination tree

int cholmod_etree

(

/* —---- input ---- %/

cholmod_sparse *A,

/* ---- output --- */

int *Parent, /* size ncol. Parent [j] = p if p is the parent of j */
[* ——mmm e *x/

cholmod_common *Common

)

int cholmod_l_etree (cholmod_sparse *, SuiteSparse_long *, cholmod_common *) ;

113

Purpose: Computes the elimination tree of A or A’ *A. In the symmetric case, the upper triangular
part of A is used. Entries not in this part of the matrix are ignored. Computing the etree of a
symmetric matrix from just its lower triangular entries is not supported. In the unsymmetric case,
all of A is used, and the etree of A’*A is computed. Refer to [20] for a discussion of the elimination
tree and its use in sparse Cholesky factorization.

18.9 cholmod_rowcolcounts: nonzeros counts of a factor
int cholmod_rowcolcounts
(
/* —---- input ---- %/
cholmod_sparse *A, /* matrix to analyze */
int *fset, /* subset of 0:(A->ncol)-1 */
size_t fsize, /* size of fset */
int *Parent, /* size nrow. Parent [i] = p if p is the parent of i */
int *Post, /* size nrow. Post [k] = i if i is the kth node in
* the postordered etree. */
/* —---- output --- */
int *RowCount, /* size nrow. RowCount [i] = # entries in the ith row of
* L, including the diagonal. */

/*

*

/*

*

/*

*

int *ColCount,

int *First,

int *Level,

size nrow. ColCount [i] = # entries in the ith
column of L, including the diagonal. */

First [i] = k is the least postordering
of any descendant of i. */

size nrow. Level [i] is the length of the path from
i to the root, with Level [root] = 0. */

size nrow.

[k ———————— */
cholmod_common *Common

)

int cholmod_l_rowcolcounts (cholmod_sparse *, SuiteSparse_long *, size_t,
SuiteSparse_long *, SuiteSparse_long *, SuiteSparse_long *,
SuiteSparse_long *, SuiteSparse_long *, SuiteSparse_long *,
cholmod_common *) ;

Purpose: Compute the row and column counts of the Cholesky factor L of the matrix A

or AxA’. The etree and its postordering must already be computed (see cholmod etree and
cholmod_postorder) and given as inputs to this routine. For the symmetric case (LLT = A),
A must be stored in symmetric/lower form (A->stype = -1). In the unsymmetric case, A*A’ or
AC:,£)*A(:,f)’ can be analyzed. The fundamental floating-point operation count is returned
in Common->f1 (this excludes extra flops due to relaxed supernodal amalgamation). Refer to
cholmod_transpose_unsym for a description of f. The algorithm is described in [13, 15].

18.10 cholmod_analyze ordering: analyze a permutation

int cholmod_analyze_ordering
(
/* —---— input ---- */
cholmod_sparse *A, /* matrix to analyze */

114

int ordering, /* ordering method used */

int *Perm, /* size n, fill-reducing permutation to analyze */
int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

/* —---— output --- */

int *Parent, /* size n, elimination tree */

int *Post, /* size n, postordering of elimination tree */
int *ColCount, /* size n, nnz in each column of L */

/* —----— workspace */

int *First, /* size nworkspace for cholmod_postorder */
int *Level, /* size n workspace for cholmod_postorder */
[* ——mm— *x/

cholmod_common *Common

int cholmod_l_analyze_ordering (cholmod_sparse *, int, SuiteSparse_long *,
SuiteSparse_long *, size_t, SuiteSparse_long *, SuiteSparse_long *,
SuiteSparse_long *, SuiteSparse_long *, SuiteSparse_long *,
cholmod_common *) ;

Purpose: Given a matrix A and its fill-reducing permutation, compute the elimination tree, its
(non-weighted) postordering, and the number of nonzeros in each column of L. Also computes the
flop count, the total nonzeros in L, and the nonzeros in tril(A) (Common->fl, Common->1nz, and
Common->anz). In the unsymmetric case, A(p,f)*A(p,f)’ is analyzed, and Common->anz is the
number of nonzero entries in the lower triangular part of the product, not in A itself.

Refer to cholmod_transpose_unsym for a description of f.

The column counts of L, flop count, and other statistics from cholmod_rowcolcounts are not
computed if ColCount is NULL.

18.11 cholmod_amd: interface to AMD

int cholmod_amd

(
/* —---- input ---- %/
cholmod_sparse *A, /* matrix to order */
int *fset, /* subset of 0:(A->ncol)-1 */
size_t fsize, /* size of fset */
/* ---- output --- */
int *Perm, /* size A->nrow, output permutation */
[* ——mmm e */
cholmod_common *Common
)

int cholmod_l_amd (cholmod_sparse *, SuiteSparse_long *, size_t,
SuiteSparse_long *, cholmod_common *)

Purpose: CHOLMOD interface to the AMD ordering package. Orders A if the matrix is sym-
metric. On output, Perm [k] = i if row/column i of A is the kth row/column of P*AxP’. This
corresponds to A(p,p) in MATLAB notation. If A is unsymmetric, cholmod_amd orders A*A’ or
AC:,£)*A(C:,£)’. On output, Perm [k] = i if row/column i of AxA’ is the kth row/column

115

of PxA*xA’*P’. This corresponds to A(p,:)*A(p,:)’ in MATLAB notation. If f is present,
A(p,f)*A(p,f)’ is the permuted matrix. Refer to cholmod transpose_unsym for a description
of £.

Computes the flop count for a subsequent LLT factorization, the number of nonzeros in L, and
the number of nonzeros in the matrix ordered (A, AxA’ or A(:,£f)*A(:,f)’). These statistics are
returned in Common->f1, Common->1nz, and Common->anz, respectively.

18.12 cholmod colamd: interface to COLAMD

int cholmod_colamd

(
/* —---- input ---- %/
cholmod_sparse *A, /* matrix to order */
int *fset, /* subset of 0:(A->ncol)-1 */
size_t fsize, /* size of fset */
int postorder, /* if TRUE, follow with a coletree postorder */
/* ----— output --- */
int *Perm, /* size A->nrow, output permutation */
[k ——mmm—mm */
cholmod_common *Common
)

int cholmod_1_colamd (cholmod_sparse *, SuiteSparse_long *, size_t, int,
SuiteSparse_long *, cholmod_common *) ;

Purpose: CHOLMOD interface to the COLAMD ordering package. Finds a permutation p
such that the Cholesky factorization of PxA*A’*P’ is sparser than AxA’, using COLAMD. If the
postorder input parameter is TRUE, the column elimination tree is found and postordered, and the
COLAMD ordering is then combined with its postordering (COLAMD itself does not perform this
postordering). A must be unsymmetric (A->stype = 0).

18.13 cholmod rowfac: row-oriented Cholesky factorization

int cholmod_rowfac

(
/* —-—-— input ---- */
cholmod_sparse *A, /* matrix to factorize */
cholmod_sparse *F, /* used for A*A’ case only. F=A’ or A(:,fset)’ */
double beta [2], /* factorize beta*I+A or beta*xI+A’*A *x/
size_t kstart, /* first row to factorize */
size_t kend, /* last row to factorize is kend-1 */
/* —-——— in/out --- */
cholmod_factor *L,
[k ———mmm */
cholmod_common *Common

)

int cholmod_1_rowfac (cholmod_sparse *, cholmod_sparse *, double *, size_t,
size_t, cholmod_factor *, cholmod_common *) ;
int cholmod_rowfac_mask

116

/* ---- input ---- */
cholmod_sparse *A, /* matrix to factorize */
cholmod_sparse *F, /* used for A*A’ case only. F=A’ or A(:,fset)’ */

double beta [2], /* factorize beta*I+A or betaxI+A’*A *x/
size_t kstart, /* first row to factorize */

size_t kend, /* last row to factorize is kend-1 */

int *mask, /* if mask[i] >= 0, then set row i to zero */
int *RLinkUp, /* link list of rows to compute */

/* -—--— in/out --- */

cholmod_factor *L,

[* ——mm— *x/

cholmod_common *Common

int cholmod_1_rowfac_mask (cholmod_sparse *, cholmod_sparse *, double *, size_t,
size_t, SuiteSparse_long *, SuiteSparse_long *, cholmod_factor *,
cholmod_common *) ;

Purpose: Full or incremental numerical LDL" or LLT factorization (simplicial, not supernodal).
cholmod factorize is the “easy” wrapper for this code, but it does not provide access to incre-
mental factorization. The algorithm is the row-oriented, up-looking method described in [5]. See
also [19]. No 2-by-2 pivoting (or any other pivoting) is performed.

cholmod_rowfac computes the full or incremental LDLT or LLT factorization of A+betaxI
(where A is symmetric) or A¥F+beta*I (where A and F are unsymmetric and only the upper trian-
gular part of A*F+betaxI is used). It computes L (and D, for LDLT) one row at a time. The input
scalar beta is real; only the real part (beta[0]) is used.

L can be a simplicial symbolic or numeric (L->is_super must be FALSE). A symbolic factor is
converted immediately into a numeric factor containing the identity matrix.

For a full factorization, use kstart = 0 and kend = nrow. The existing nonzero entries (nu-
merical values in L->x and L->z for the zomplex case, and indices in L->1) are overwritten.

To compute an incremental factorization, select kstart and kend as the range of rows of L you
wish to compute. Rows kstart to kend-1 of L will be computed. A correct factorization will be
computed only if all descendants of all nodes kstart to kend-1 in the elimination tree have been
factorized by a prior call to this routine, and if rows kstart to kend-1 have not been factorized.
This condition is not checked on input.

In the symmetric case, A must be stored in upper form (A->stype is greater than zero). The
matrix F is not accessed and may be NULL. Only columns kstart to kend-1 of A are accessed.

In the unsymmetric case, the typical case is F=A’. Alternatively, if F=A(:,f)’, then this rou-
tine factorizes the matrix S = beta*I + A(:,f)*A(:,f)’. The product A*F is assumed to be
symmetric; only the upper triangular part of AxF is used. F must be of size A->ncol by A->nrow.

18.14 cholmod rowfac mask: row-oriented Cholesky factorization

int cholmod_rowfac_mask
(
/* —---- input ---- %/
cholmod_sparse *A, /* matrix to factorize */
cholmod_sparse *F, /* used for AxA’ case only. F=A’ or A(:,fset)’ */

117

double beta [2], /* factorize beta*I+A or betaxI+A’*A */

size_t kstart, /*x first row to factorize */

size_t kend, /* last row to factorize is kend-1 */

int *mask, /* if mask[i] >= 0, then set row i to zero */
int *RLinkUp, /* link list of rows to compute */

/* —---- in/out --- %/

cholmod_factor *L,

[* ——mmm e */

cholmod_common *Common

int cholmod_l_rowfac_mask (cholmod_sparse *, cholmod_sparse *, double *, size_t,
size_t, SuiteSparse_long *, SuiteSparse_long *, cholmod_factor *,
cholmod_common *) ;

Purpose: For use in LPDASA only.

18.15 cholmod row subtree: pattern of row of a factor

int cholmod_row_subtree

(
/* —---- input ---- %/
cholmod_sparse *A, /* matrix to analyze */
cholmod_sparse *F, /* used for AxA’ case only. F=A’ or A(:,fset)’ */
size_t k, /*x row k of L */
int *Parent, /* elimination tree */
/* —----— output --- */
cholmod_sparse *R, /* pattern of L(k,:), n-by-1 with R->nzmax >= n */
[* ——mmm e */
cholmod_common *Common
)

int cholmod_l_row_subtree (cholmod_sparse *, cholmod_sparse *, size_t,
SuiteSparse_long *, cholmod_sparse *, cholmod_common *)

Purpose: Compute the nonzero pattern of the solution to the lower triangular system

L(0:k-1,0:k-1) * x

A (0:k-1,k)

if A is symmetric, or

L(0:k-1,0:k-1) * x = A (0:k-1,:) * A (:,k)’

if A is unsymmetric. This gives the nonzero pattern of row k of L (excluding the diagonal). The
pattern is returned postordered, according to the subtree of the elimination tree rooted at node k.
The symmetric case requires A to be in symmetric-upper form.
The result is returned in R, a pre-allocated sparse matrix of size nrow-by-1, with R->nzmax >=
nrow. R is assumed to be packed (Rnz [0] is not updated); the number of entries in R is given by
Rp [O].

118

18.16 cholmod_row_lsubtree: pattern of row of a factor

int cholmod_row_lsubtree

(
/* —---- input ---- %/
cholmod_sparse *A, /* matrix to analyze */
int *Fi, size_t fnz, /* nonzero pattern of kth row of A’, not required
* for the symmetric case. Need not be sorted. */
size_t k, /* row k of L */
cholmod_factor *L, /* the factor L from which parent(i) is derived */
/* —---= output --- %/
cholmod_sparse *R, /* pattern of L(k,:), n-by-1 with R->nzmax >= n */
[* ——mm— */
cholmod_common *Common
)

int cholmod_1_row_lsubtree (cholmod_sparse *, SuiteSparse_long *, size_t,
size_t, cholmod_factor *, cholmod_sparse *, cholmod_common *)

Purpose: Identical to cholmod_row_subtree, except the elimination tree is found from L itself,
not Parent. Also, F=A’ is not provided; the nonzero pattern of the kth column of F is given by Fi
and fnz instead.

18.17 cholmod resymbol: re-do symbolic factorization

int cholmod_resymbol

(

/* —--—- input ---- %/

cholmod_sparse *A, /* matrix to analyze */

int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

int pack, /* if TRUE, pack the columns of L */

/* —-——= in/out --- */

cholmod_factor *L, /* factorization, entries pruned on output */
[* ——mmm e *x/

cholmod_common *Common

int cholmod_1l_resymbol (cholmod_sparse *, SuiteSparse_long *, size_t, int,
cholmod_factor *, cholmod_common *) ;

Purpose: Recompute the symbolic pattern of L. Entries not in the symbolic pattern of the
factorization of A(p,p) or F¥F’, where F=A(p,f) or F=A(:,f), are dropped, where p = L->Perm
is used to permute the input matrix A.

Refer to cholmod_transpose_unsym for a description of £.

If an entry in L is kept, its numerical value does not change.

This routine is used after a supernodal factorization is converted into a simplicial one, to remove
zero entries that were added due to relaxed supernode amalgamation. It can also be used after a
series of downdates to remove entries that would no longer be present if the matrix were factorized
from scratch. A downdate (cholmod_updown) does not remove any entries from L.

119

18.18 cholmod resymbol noperm: re-do symbolic factorization

int cholmod_resymbol_noperm

(

/* —---- input ---- %/

cholmod_sparse *A, /* matrix to analyze */

int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

int pack, /* if TRUE, pack the columns of L */

/* —--—= in/out --- %/

cholmod_factor *L, /* factorization, entries pruned on output */
[* ——mmm e *x/

cholmod_common *Common

int cholmod_1l_resymbol_noperm (cholmod_sparse *, SuiteSparse_long *, size_t, int,
cholmod_factor *, cholmod_common *) ;

Purpose: Identical to cholmod resymbol, except that the fill-reducing ordering L->Perm is not
used.

18.19 cholmod postorder: tree postorder

SuiteSparse_long cholmod_postorder /* return # of nodes postordered */

(
/* —---- input ---- */
int *Parent, /* size n. Parent [j] = p if p is the parent of j */
size_t n,
int *Weight_p, /* size n, optional. Weight [j] is weight of node j */
/* —---— output --- */
int *Post, /* size n. Post [k] = j is kth in postordered tree */
[k —mmmmm */

cholmod_common *Common

)

SuiteSparse_long cholmod_1l_postorder (SuiteSparse_long *x, size_t,
SuiteSparse_long *, SuiteSparse_long *, cholmod_common *) ;

Purpose: Postorder a tree. The tree is either an elimination tree (the output from cholmod_etree)
or a component tree (from cholmod nested dissection).

An elimination tree is a complete tree of n nodes with Parent [j] > j or Parent [j] = -1if
j is a root. On output Post [0..n-1] is a complete permutation vector; Post [k] = j if node j
is the kth node in the postordered elimination tree, where k is in the range 0 to n-1.

A component tree is a subset of 0:n-1. Parent [j] = -2 if node j is not in the component
tree. Parent [j] = -1 if j is a root of the component tree, and Parent [j] is in the range 0 to
n-1 if j is in the component tree but not a root. On output, Post [k] is defined only for nodes in
the component tree. Post [k] = j if node j is the kth node in the postordered component tree,
where k is in the range 0 to the number of components minus 1. Node j is ignored and not included
in the postorder if Parent [j] < -1. As a result, cholmod _check parent (Parent, ...) and
cholmod_check_perm (Post, ...) fail if used for a component tree and its postordering.

120

An optional node weight can be given. When starting a postorder at node j, the children of
j are ordered in decreasing order of their weight. If no weights are given (Weight is NULL) then
children are ordered in decreasing order of their node number. The weight of a node must be in
the range 0 to n-1. Weights outside that range are silently converted to that range (weights < 0
are treated as zero, and weights > n are treated as n-1).

18.20 cholmod_rcond: reciprocal condition number

double cholmod_rcond /* return min(diag(L)) / max(diag(L)) */
(

/* —--—- input ---- %/

cholmod_factor *L,

/¥ ——mmmmm e *x/

cholmod_common *Common

)

double cholmod_l_rcond (cholmod_factor *, cholmod_common *) ;

Purpose: Returns a rough estimate of the reciprocal of the condition number: the minimum entry
on the diagonal of L (or absolute entry of D for an LDL' factorization) divided by the maximum
entry. L can be real, complex, or zomplex. Returns -1 on error, 0 if the matrix is singular or has a
zero or NaN entry on the diagonal of L, 1 if the matrix is 0-by-0, or min(diag(L)) /max(diag(L))
otherwise. Never returns NaN; if L has a NaN on the diagonal it returns zero instead.

121

19 Modify Module routines

19.1 cholmod updown: update/downdate

int cholmod_updown

(

/* —---- input ---- %/

int update, /* TRUE for update, FALSE for downdate */
cholmod_sparse *C, /* the incoming sparse update */

/* —--—-- in/out --- %/

cholmod_factor *L, /* factor to modify */

[k ————— */

cholmod_common *Common

int cholmod_l_updown (int, cholmod_sparse *, cholmod_factor *,
cholmod_common *) ;

Purpose: Updates/downdates the LDLT factorization (symbolic, then numeric), by computing
a new factorization of

LDL' = LDLT +CCT

where L denotes the new factor. C must be sorted. It can be either packed or unpacked. As in
all CHOLMOD routines, the columns of L are sorted on input, and also on output. If L does not
contain a simplicial numeric LDLT factorization, it is converted into one. Thus, a supernodal LLT
factorization can be passed to cholmod updown. A symbolic L is converted into a numeric identity
matrix. If the initial conversion fails, the factor is returned unchanged.

If memory runs out during the update, the factor is returned as a simplicial symbolic factor.
That is, everything is freed except for the fill-reducing ordering and its corresponding column counts
(typically computed by cholmod_analyze).

Note that the fill-reducing permutation L->Perm is not used. The row indices of C refer to the
rows of L, not A. If your original system is LDLT = PAP" (where P = L->Perm), and you want
to compute the LDLT factorization of A + CCT, then you must permute C first. That is, if

PAP' = LDL"
is the initial factorization, then
P(A+CCT)PT = PAP" + PCC'P" = LDL" + (PC)(PC)" = LDLT + CC'

where C = PC.
You can use the cholmod_submatrix routine in the MatrixOps Module to permute C, with:

Cnew = cholmod_submatrix (C, L->Perm, L->n, NULL, -1, TRUE, TRUE, Common) ;

Note that the sorted input parameter to cholmod_submatrix must be TRUE, because cholmod_updown
requires C with sorted columns. Only real matrices are supported. The algorithms are described
in [8, 9].

122

19.2 cholmod updown solve: update/downdate

int cholmod_updown_solve

(
/* —---- input ---- %/
int update, /* TRUE for update, FALSE for downdate */
cholmod_sparse *C, /* the incoming sparse update */
/* —---- in/out --- %/
cholmod_factor *L, /* factor to modify */
cholmod_dense *X, /* solution to Lx=b (size n-by-1) */
cholmod_dense *DeltaB, /* change in b, zero on output */
[——mm */
cholmod_common *Common

)

int cholmod_1_updown_solve (int, cholmod_sparse *, cholmod_factor *,
cholmod_dense *, cholmod_dense *, cholmod_common *) ;

Purpose: Identical to cholmod updown, except the system Lx = b is also updated/downdated.
The new system is LX = b + Ab. The old solution x is overwritten with X. Note that as in the
update/downdate of L itself, the fill- reducing permutation L->Perm is not used. The vectors x and
b are in the permuted ordering, not your original ordering. This routine does not handle multiple
right-hand-sides.

19.3 cholmod updown mark: update/downdate

int cholmod_updown_mark

(
/* —---- input ---- %/
int update, /* TRUE for update, FALSE for downdate */
cholmod_sparse *C, /* the incoming sparse update */
int *colmark, /* int array of size n. See cholmod_updown.c */
/* —--—- in/out --- %/
cholmod_factor *L, /* factor to modify */
cholmod_dense *X, /* solution to Lx=b (size n-by-1) */
cholmod_dense *DeltaB, /* change in b, zero on output */
[¥* ——mm */
cholmod_common *Common
)

int cholmod_l_updown_mark (int, cholmod_sparse *, SuiteSparse_long *,
cholmod_factor *, cholmod_dense *, cholmod_dense *, cholmod_common *) ;

Purpose: Identical to cholmod_updown_solve, except that only part of L is used in the update of
the solution to Lx = b. For more details, see the source code file CHOLMOD/Modify/cholmod_updown. c.
This routine is meant for use in the LPDASA linear program solver only, by Hager and Davis.

19.4 cholmod updown mask: update/downdate

123

int cholmod_updown_mask

(
/* —---- input ---- %/
int update, /* TRUE for update, FALSE for downdate */
cholmod_sparse *C, /* the incoming sparse update */
int *colmark, /* int array of size n. See cholmod_updown.c */
int *mask, /* size n */
/* —--—- in/out --- %/
cholmod_factor *L, /* factor to modify */
cholmod_dense *X, /* solution to Lx=b (size n-by-1) */
cholmod_dense *DeltaB, /* change in b, zero on output */
[* ——mm— *x/
cholmod_common *Common
)

int cholmod_1_updown_mask (int, cholmod_sparse *, SuiteSparse_long *,
SuiteSparse_long *, cholmod_factor *, cholmod_dense *, cholmod_dense *,
cholmod_common *) ;

Purpose: For use in LPDASA only.

19.5 cholmod_rowadd: add row to factor

int cholmod_rowadd

(
/* —---- input ---- %/
size_t k, /* row/column index to add */
cholmod_sparse *R, /* row/column of matrix to factorize (n-by-1) */
/* —--—- in/out --- %/
cholmod_factor *L, /* factor to modify */
[k ——mm——mm */
cholmod_common *Common
)

int cholmod_1l_rowadd (size_t, cholmod_sparse *, cholmod_factor *,
cholmod_common *) ;

Purpose: Adds a row and column to an LDLT factorization. The kth row and column of L
must be equal to the kth row and column of the identity matrix on input. Only real matrices are
supported. The algorithm is described in [10].

19.6 cholmod_rowadd_solve: add row to factor

int cholmod_rowadd_solve

(
/* ---- input ---- */
size_t k, /* row/column index to add */
cholmod_sparse *R, /* row/column of matrix to factorize (n-by-1) */
double bk [2], /* kth entry of the right-hand-side b */
/* ---- in/out --- %/

cholmod_factor *L, /* factor to modify */

124

cholmod_dense *X, /* solution to Lx=b (size n-by-1) */
cholmod_dense *DeltaB, /* change in b, zero on output */
[* ———mm */

cholmod_common *Common

int cholmod_1_rowadd_solve (size_t, cholmod_sparse *, double *,
cholmod_factor *, cholmod_dense *, cholmod_dense *, cholmod_common *) ;

Purpose: Identical to cholmod rowadd, except the system Lx = b is also updated/downdated,
just like cholmod_updown_solve.

19.7 cholmod._rowdel: delete row from factor

int cholmod_rowdel

(
/* —---- input ---- %/
size_t k, /* row/column index to delete */
cholmod_sparse *R, /* NULL, or the nonzero pattern of kth row of L */
/* —--—-- in/out --- %/
cholmod_factor *L, /* factor to modify */
[k ————— */
cholmod_common *Common
)

int cholmod_l_rowdel (size_t, cholmod_sparse *, cholmod_factor x*,
cholmod_common *) ;

Purpose: Deletes a row and column from an LDLT factorization. The kth row and column of
L is equal to the kth row and column of the identity matrix on output. Only real matrices are
supported.

19.8 cholmod_rowdel_solve: delete row from factor

int cholmod_rowdel_solve

(
/* —--- input ---- %/
size_t Kk, /* row/column index to delete */
cholmod_sparse *R, /* NULL, or the nonzero pattern of kth row of L */
double yk [2], /* kth entry in the solution to Axy=b */
/* —-——- in/out --- */
cholmod_factor *L, /* factor to modify */
cholmod_dense *X, /* solution to Lx=b (size n-by-1) */
cholmod_dense *DeltaB, /* change in b, zero on output */
[¥* ———mm */
cholmod_common *Common

)

int cholmod_l_rowdel_solve (size_t, cholmod_sparse *, double x*,
cholmod_factor *, cholmod_dense *, cholmod_dense *, cholmod_common *) ;

125

Purpose: Identical to cholmod rowdel, except the system Lx = b is also updated/downdated,
just like cholmod_updown_solve. When row/column k of A is deleted from the system Ay = b,
this can induce a change to x, in addition to changes arising when L and b are modified. If this is
the case, the kth entry of y is required as input (yk). The algorithm is described in [10].

19.9 cholmod_rowadd_mark: add row to factor

int cholmod_rowadd_mark

(
/* —---- input ---- %/
size_t k, /* row/column index to add */
cholmod_sparse *R, /* row/column of matrix to factorize (n-by-1) */
double bk [2], /* kth entry of the right hand side, b */
int *colmark, /* int array of size n. See cholmod_updown.c */
/* —---— in/out --- */
cholmod_factor *L, /* factor to modify */
cholmod_dense *X, /* solution to Lx=b (size n-by-1) */
cholmod_dense *DeltaB, /* change in b, zero on output */
[* ———mm *x/
cholmod_common *Common
)

int cholmod_1l_rowadd_mark (size_t, cholmod_sparse *, double *,
SuiteSparse_long *, cholmod_factor *, cholmod_dense *, cholmod_dense *,
cholmod_common *) ;

Purpose: Identical to cholmod_rowadd_solve, except that only part of L is used in the update of
the solution to Lx = b. For more details, see the source code file CHOLMOD/Modify/cholmod_rowadd. c.
This routine is meant for use in the LPDASA linear program solver only.

19.10 cholmod_rowdel_mark: delete row from factor

int cholmod_rowdel_mark

(
/* —---- input ---- %/
size_t k, /* row/column index to delete */
cholmod_sparse *R, /% NULL, or the nonzero pattern of kth row of L */
double yk [2], /* kth entry in the solution to Axy=b */
int *colmark, /* int array of size n. See cholmod_updown.c */
/* ---— in/out --- */
cholmod_factor *L, /* factor to modify */
cholmod_dense *X, /* solution to Lx=b (size n-by-1) */
cholmod_dense *DeltaB, /* change in b, zero on output */
[* ——mmm e */
cholmod_common *Common
)

int cholmod_l_rowdel_mark (size_t, cholmod_sparse *, double *,
SuiteSparse_long *, cholmod_factor *, cholmod_dense *, cholmod_dense *,
cholmod_common *) ;

126

Purpose: Identical to cholmod _rowadd_solve, except that only part of L is used in the update of
the solution to Lx = b. For more details, see the source code file CHOLMOD/Modify/cholmod _rowdel.c.
This routine is meant for use in the LPDASA linear program solver only.

127

20 MatrixOps Module routines

20.1 cholmod_drop: drop small entries

int cholmod_drop
(

/* —---- input ---- %/

double tol, /* keep entries with absolute value > tol */
/* ---- in/out --- */

cholmod_sparse *A, /* matrix to drop entries from */

[* ——mmm e *x/

cholmod_common *Common

int cholmod_1l_drop (double, cholmod_sparse *, cholmod_common *) ;

Purpose: Drop small entries from A, and entries in the ignored part of A if A is symmetric. No
CHOLMOD routine drops small numerical entries from a matrix, except for this one. NaN’s and
Inf’s are kept.

Supports pattern and real matrices; complex and zomplex matrices are not supported.

20.2 cholmod norm dense: dense matrix norm

double cholmod_norm_dense

(
/* —-—-— input ---- */
cholmod_dense *X, /* matrix to compute the norm of */
int norm, /* type of norm: O: inf. norm, 1: l-norm, 2: 2-norm */
[* ———m— *x/
cholmod_common *Common
)

double cholmod_l_norm_dense (cholmod_dense *, int, cholmod_common *) ;

Purpose: Returns the infinity-norm, 1-norm, or 2-norm of a dense matrix. Can compute the
2-norm only for a dense column vector. All xtypes are supported.

20.3 cholmod norm sparse: sparse matrix norm

double cholmod_norm_sparse

(
/* ---- input ---- */
cholmod_sparse *A, /* matrix to compute the norm of */
int norm, /* type of norm: O: inf. norm, 1: l-norm */
[k —mmmmmmm e */
cholmod_common *Common
)

double cholmod_l_norm_sparse (cholmod_sparse *, int, cholmod_common *) ;

Purpose: Returns the infinity-norm or 1-norm of a sparse matrix. All xtypes are supported.

128

20.4 cholmod scale: scale sparse matrix

#define CHOLMOD_SCALAR 0 /* A = sxA */

#define CHOLMOD_ROW 1 /* A = diag(s)*A */
#define CHOLMOD_COL 2 /* A = Axdiag(s) */

#define CHOLMOD_SYM 3 /* A = diag(s)*Axdiag(s) */

int cholmod_scale

(
/* —-—-— input ---- */
cholmod_dense *S, /* scale factors (scalar or vector) */
int scale, /* type of scaling to compute */
/* —-——— in/out --- */
cholmod_sparse *A, /* matrix to scale */
[k ——mmmm—mm */
cholmod_common *Common
)

int cholmod_1_scale (cholmod_dense *, int, cholmod_sparse *, cholmod_common *)

Purpose: Scales a matrix: A = diag(s)*A, Axdiag(s), s*A, or diag(s)*Axdiag(s).

A can be of any type (packed/unpacked, upper/lower/unsymmetric). The symmetry of A is
ignored; all entries in the matrix are modified.

If A is m-by-n unsymmetric but scaled symmetrically, the result is

A = diag (s (1:m)) * A * diag (s (1:n))

Row or column scaling of a symmetric matrix still results in a symmetric matrix, since entries
are still ignored by other routines. For example, when row-scaling a symmetric matrix where just
the upper triangular part is stored (and lower triangular entries ignored) A = diag(s)*triu(4a) is
performed, where the result A is also symmetric-upper. This has the effect of modifying the implicit
lower triangular part. In MATLAB notation:

U = diag(s)*triu(d) ;
L = tril (U’,-1)
A=L+1U;
The scale parameter determines the kind of scaling to perform and the size of S:
scale operation size of S
CHOLMOD_SCALAR s[0]*A 1
CHOLMOD_ROW diag(s)*A nrow-by-1 or 1-by-nrow
CHOLMOD_COL Axdiag(s) ncol-by-1 or 1-by-ncol
CHOLMOD_SYM diag(s)*Axdiag(s) max(nrow,ncol)-by-1, or 1-by-max(nrow,ncol)

Only real matrices are supported.

129

20.5 cholmod _sdmult: sparse-times-dense matrix

int cholmod_sdmult

(
/* —---- input ---- */
cholmod_sparse *A, /% sparse matrix to multiply */
int transpose, /* use A if 0, or A’ otherwise */
double alpha [2], /* scale factor for A */
double beta [2], /* scale factor for Y */
cholmod_dense *X, /* dense matrix to multiply */
/* —-—-—— in/out --- */
cholmod_dense *Y, /* resulting dense matrix */
[* ——mmm e */
cholmod_common *Common

)

int cholmod_l_sdmult (cholmod_sparse *, int, double *, double *,
cholmod_dense *, cholmod_dense *Y, cholmod_common *) ;

Purpose: Sparse matrix times dense matrix: Y = alpha*(A*X) + betaxYorY = alphax*(A’*X)
+ betax*Y, where A is sparse and X and Y are dense. When using A, X has A->ncol rows and Y has
A->nrow rows. When using A’, X has A->nrow rows and Y has A->ncol rows. If transpose = 0,
then A is used; otherwise, A’ is used (the complex conjugate transpose). The transpose parameter
is ignored if the matrix is symmetric or Hermitian. (the array transpose A.’ is not supported).
Supports real, complex, and zomplex matrices, but the xtypes of A, X, and Y must all match.

20.6 cholmod_ssmult: sparse-times-sparse matrix

cholmod_sparse *cholmod_ssmult

(
/* —---- input ---- %/
cholmod_sparse *A, /* left matrix to multiply */
cholmod_sparse *B, /* right matrix to multiply */
int stype, /* requested stype of C */
int values, /* TRUE: do numerical values, FALSE: pattern only */
int sorted, /* if TRUE then return C with sorted columns */
[* ——mmm e */
cholmod_common *Common
)

cholmod_sparse *cholmod_l_ssmult (cholmod_sparse *, cholmod_sparse *, int, int,
int, cholmod_common *) ;

Purpose: Computes C = A*B; multiplying two sparse matrices. C is returned as packed, and
either unsorted or sorted, depending on the sorted input parameter. If C is returned sorted, then
either C = (B’*A’)’ or C = (A*B)’’ is computed, depending on the number of nonzeros in A, B,
and C. The stype of C is determined by the stype parameter. Only pattern and real matrices are
supported. Complex and zomplex matrices are supported only when the numerical values are not
computed (values is FALSE).

130

20.7 cholmod submatrix: sparse submatrix

cholmod_sparse *cholmod_submatrix

(
/* —---- input ---- */
cholmod_sparse *A, /* matrix to subreference */
int *rset, /* set of row indices, duplicates 0K */
SuiteSparse_long rsize, /* size of r; rsize < 0 denotes ":" %/
int *cset, /* set of column indices, duplicates 0K */
SuiteSparse_long csize, /* size of c; csize < 0 denotes ":" */
int values, /* if TRUE compute the numerical values of C */
int sorted, /* if TRUE then return C with sorted columns */
[* ——mmm e */
cholmod_common *Common

)

cholmod_sparse *cholmod_l_submatrix (cholmod_sparse *, SuiteSparse_long *,
SuiteSparse_long, SuiteSparse_long *, SuiteSparse_long, int, int,
cholmod_common *) ;

Purpose: Returns C = A (rset,cset), where C becomes length(rset)-by-length(cset) in
dimension. rset and cset can have duplicate entries. A must be unsymmetric. C unsymmetric and
is packed. If sorted is TRUE on input, or rset is sorted and A is sorted, then C is sorted; otherwise
C is unsorted.

If rset is NULL, it means “[]” in MATLAB notation, the empty set. The number of rows
in the result C will be zero if rset is NULL. Likewise if cset means the empty set; the number of
columns in the result C will be zero if cset is NULL. If rsize or csize is negative, it denotes “:”
in MATLAB notation. Thus, if both rsize and csize are negative C = A(:,:) = A is returned.

For permuting a matrix, this routine is an alternative to cholmod ptranspose (which permutes
and transposes a matrix and can work on symmetric matrices).

The time taken by this routine is O(A->nrow) if the Common workspace needs to be initialized,
plus O(C->nrow + C->ncol + nnz (A (:,cset))). Thus, if C is small and the workspace is not
initialized, the time can be dominated by the call to cholmod_allocate _work. However, once the
workspace is allocated, subsequent calls take less time.

Only pattern and real matrices are supported. Complex and zomplex matrices are supported
only when values is FALSE.

131

20.8 cholmod_ horzcat: horizontal concatenation

cholmod_sparse *cholmod_horzcat

(
/* —---- input ---- %/
cholmod_sparse *A, /* left matrix to concatenate */
cholmod_sparse *B, /* right matrix to concatenate */
int values, /* if TRUE compute the numerical values of C */
[k ——mmmmm */
cholmod_common *Common
)

cholmod_sparse *cholmod_l_horzcat (cholmod_sparse *, cholmod_sparse *, int,
cholmod_common *) ;

Purpose: Horizontal concatenation, returns C = [A,B] in MATLAB notation. A and B can have
any stype. C is returned unsymmetric and packed. A and B must have the same number of rows. C
is sorted if both A and B are sorted. A and B must have the same numeric xtype, unless values is
FALSE. A and B cannot be complex or zomplex, unless values is FALSE.

20.9 cholmod vertcat: vertical concatenation

cholmod_sparse *cholmod_vertcat

(
/* ---- input ---- */
cholmod_sparse *A, /* left matrix to concatenate */
cholmod_sparse *B, /* right matrix to concatenate */
int values, /* if TRUE compute the numerical values of C */
[k ——————— */
cholmod_common *Common
)

cholmod_sparse *cholmod_l_vertcat (cholmod_sparse *, cholmod_sparse *, int,
cholmod_common *) ;

Purpose: Vertical concatenation, returns C = [A;B] in MATLAB notation. A and B can have
any stype. Cis returned unsymmetric and packed. A and B must have the same number of columns.
C is sorted if both A and B are sorted. A and B must have the same numeric xtype, unless values
is FALSE. A and B cannot be complex or zomplex, unless values is FALSE.

132

20.10 cholmod symmetry: compute the symmetry of a matrix

int cholmod_symmetry

(
/* —---- input ---- %/
cholmod_sparse *A,
int option,
/* ---- output ---- %/
int *xmatched,
int *pmatched,
int *nzoffdiag,
int *nzdiag,
[k ———————————— */

cholmod_common *Common

int cholmod_l_symmetry (cholmod_sparse *, int, SuiteSparse_long *,
SuiteSparse_long *, SuiteSparse_long *, SuiteSparse_long *,
cholmod_common *) ;

Purpose:

Determines if a sparse matrix is rectangular, unsymmetric, symmetric, skew-symmetric, or
Hermitian. It does so by looking at its numerical values of both upper and lower triangular parts
of a CHOLMOD ”unsymmetric” matrix, where A-jstype == 0. The transpose of A is NOT
constructed.

If not unsymmetric, it also determines if the matrix has a diagonal whose entries are all real
and positive (and thus a candidate for sparse Cholesky if A-;stype is changed to a nonzero value).

Note that a Matrix Market ”general” matrix is either rectangular or unsymmetric.

The row indices in the column of each matrix MUST be sorted for this function to work properly
(A-jsorted must be TRUE). This routine returns EMPTY if A-;jstype is not zero, or if A-jsorted
is FALSE. The exception to this rule is if A is rectangular.

If option == 0, then this routine returns immediately when it finds a non-positive diagonal
entry (or one with nonzero imaginary part). If the matrix is not a candidate for sparse Cholesky,
it returns the value CHOLMOD_MM_UNSYMMETRIC, even if the matrix might in fact be symmetric or
Hermitian.

This routine is useful inside the MATLAB backslash, which must look at an arbitrary matrix
(A-jstype == 0) and determine if it is a candidate for sparse Cholesky. In that case, option should
be 0.

This routine is also useful when writing a MATLAB matrix to a file in Rutherford /Boeing or
Matrix Market format. Those formats require a determination as to the symmetry of the matrix,
and thus this routine should not return upon encountering the first non-positive diagonal. In this
case, option should be 1.

If option is 2, this function can be used to compute the numerical and pattern symmetry, where
0 is a completely unsymmetric matrix, and 1 is a perfectly symmetric matrix. This option is used
when computing the following statistics for the matrices in the UF Sparse Matrix Collection.

numerical symmetry: number of matched offdiagonal nonzeros over the total number of offdi-
agonal entries. A real entry a;;, i # j, is matched if aj; = a;;, but this is only counted if both aj;

133

and a;; are nonzero. This does not depend on Z. (If A is complex, then the above test is modified;
Qi is matched if COIlj(CLjZ') = Qjj.

Then numeric symmetry = xmatched / nzoffdiag, or 1 if nzoffdiag = 0.

pattern symmetry: number of matched offdiagonal entries over the total number of offdiagonal
entries. An entry a;;, i # j, is matched if aj; is also an entry.

Then pattern symmetry = pmatched / nzoffdiag, or 1 if nzoffdiag = 0.

The symmetry of a matrix with no offdiagonal entries is equal to 1.

A workspace of size ncol integers is allocated; EMPTY is returned if this allocation fails.

Summary of return values:

EMPTY (-1) out of memory, stype not zero, A not sorted
CHOLMOD_MM_RECTANGULAR 1 A is rectangular

CHOLMOD_MM_UNSYMMETRIC 2 A is unsymmetric

CHOLMOD_MM_SYMMETRIC 3 A is symmetric, but with non-pos. diagonal
CHOLMOD_MM_HERMITIAN 4 A is Hermitian, but with non-pos. diagonal
CHOLMOD_MM_SKEW_SYMMETRIC 5 A is skew symmetric

CHOLMOD_MM_SYMMETRIC_POSDIAG 6 A is symmetric with positive diagonal
CHOLMOD_MM_HERMITIAN_POSDIAG 7 A is Hermitian with positive diagonal
See also the spsym mexFunction, which is a MATLAB interface for this code.
If the matrix is a candidate for sparse Cholesky, it will return a result
CHOLMOD_MM_SYMMETRIC_POSDIAG if real, or CHOLMOD_MM_HERMITIAN_POSDIAG if complex. Otherwise,
it will return a value less than this. This is true regardless of the value of the option parameter.

134

21 Supernodal Module routines

21.1 cholmod_super_symbolic: supernodal symbolic factorization

int cholmod_super_symbolic

(
/* —---- input ---- %/
cholmod_sparse *A, /* matrix to analyze */
cholmod_sparse *F, /*x F = A’ or A(:,f)’ %/
int *Parent, /* elimination tree */
/* —---- in/out --- */
cholmod_factor *L, /* simplicial symbolic on input,
* supernodal symbolic on output */
[k ——mmmmm */
cholmod_common *Common
)

int cholmod_1_super_symbolic (cholmod_sparse *, cholmod_sparse *,
SuiteSparse_long *, cholmod_factor *, cholmod_common *) ;
int cholmod_super_symbolic2

(
/* —--- input ---- %/
int for_cholesky, /* Cholesky if TRUE, QR if FALSE */
cholmod_sparse *A, /* matrix to analyze */
cholmod_sparse *F, /*x F = A’ or A(:,f)’ %/
int *Parent, /* elimination tree */
/* -——— in/out --- */
cholmod_factor *L, /* simplicial symbolic on input,
* supernodal symbolic on output */
[k ——————————————— */
cholmod_common *Common
)

int cholmod_l_super_symbolic2 (int, cholmod_sparse *, cholmod_sparse *,
SuiteSparse_long *, cholmod_factor *, cholmod_common *) ;

Purpose: Supernodal symbolic analysis of the LLT factorization of A, A*A?, or AC: ,£)*A(: ,£)°.
This routine must be preceded by a simplicial symbolic analysis (cholmod rowcolcounts). See
Cholesky/cholmod_analyze.c for an example of how to use this routine. The user need not call
this directly; cholmod_analyze is a “simple” wrapper for this routine. A can be symmetric (upper),
or unsymmetric. The symmetric/lower form is not supported. In the unsymmetric case F is the
normally transpose of A. Alternatively, if F=A(:,f)’ then FxF’ is analyzed. Requires Parent and
L->ColCount to be defined on input; these are the simplicial Parent and ColCount arrays as
computed by cholmod_rowcolcounts. Does not use L->Perm; the input matrices A and F must
already be properly permuted. Allocates and computes the supernodal pattern of L (L->super,
L->pi, L->px, and L->s). Does not allocate the real part (L->x).

135

21.2 cholmod_super numeric: supernodal numeric factorization

int cholmod_super_numeric

(
/* —---- input ---- %/
cholmod_sparse *A, /* matrix to factorize */
cholmod_sparse *F, /*x F = A’ or A(:,f)’ %/

double beta [2], /* beta*I is added to diagonal of matrix to factorize */
/* ———— in/out --- */

cholmod_factor *L, /* factorization */

[* ——mmm *x/

cholmod_common *Common

int cholmod_l_super_numeric (cholmod_sparse *, cholmod_sparse *, double *,
cholmod_factor *, cholmod_common *) ;

Purpose: Computes the numerical Cholesky factorization of A+beta*I or A*F+beta*I. Only the
lower triangular part of A+beta*I or A*F+betaxI is accessed. The matrices A and F must already be
permuted according to the fill-reduction permutation L->Perm. cholmod factorize is an "easy”
wrapper for this code which applies that permutation. The input scalar beta is real; only the real
part (beta[0] is used.

Symmetric case: A is a symmetric (lower) matrix. F is not accessed and may be NULL. With a
fill-reducing permutation, A(p,p) should be passed for A, where is p is L->Perm.

Unsymmetric case: A is unsymmetric, and F must be present. Normally, F=A’. With a fill-
reducing permutation, A(p,f) and A(p,f)’ should be passed as the parameters A and F, respec-
tively, where f is a list of the subset of the columns of A.

The input factorization L must be supernodal (L->is_super is TRUE). It can either be symbolic or
numeric. In the first case, L has been analyzed by cholmod_analyze or cholmod_super_symbolic,
but the matrix has not yet been numerically factorized. The numerical values are allocated here and
the factorization is computed. In the second case, a prior matrix has been analyzed and numerically
factorized, and a new matrix is being factorized. The numerical values of L are replaced with the
new numerical factorization.

L->is 11 is ignored on input, and set to TRUE on output. This routine always computes an
LL" factorization. Supernodal LDLT factorization is not supported.

If the matrix is not positive definite the routine returns TRUE, but sets Common->status to
CHOLMOD_NOT_POSDEF and L->minor is set to the column at which the failure occurred. Columns
L->minor to L->n-1 are set to zero.

If L is supernodal symbolic on input, it is converted to a supernodal numeric factor on output,
with an xtype of real if A is real, or complex if A is complex or zomplex. If L is supernodal numeric
on input, its xtype must match A (except that L can be complex and A zomplex). The xtype of A
and F must match.

136

21.3 cholmod_super_lsolve: supernodal forward solve

int cholmod_super_lsolve

(
/* —---- input ---- */
cholmod_factor *L, /* factor to use for the forward solve */
/* ---— output ---- */
cholmod_dense *X, /* b on input, solution to Lx=b on output */
/* ---- workspace */
cholmod_dense *E, /* workspace of size nrhs*(L->maxesize) */
[* ——mmm *x/
cholmod_common *Common
)

int cholmod_1l_super_lsolve (cholmod_factor *, cholmod_dense *, cholmod_dense *,
cholmod_common *) ;

Purpose: Solve Lx = b for a supernodal factorization. This routine does not apply the permuta-
tion L->Perm. See cholmod _solve for a more general interface that performs that operation. Only
real and complex xtypes are supported. L, X, and E must have the same xtype.

21.4 cholmod super_ltsolve: supernodal backsolve

int cholmod_super_ltsolve

(
/* —---- input ---- %/
cholmod_factor *L, /* factor to use for the backsolve */
/* ---- output ---- %/
cholmod_dense *X, /* b on input, solution to L’x=b on output */
/* ---— workspace */
cholmod_dense *E, /* workspace of size nrhs*(L->maxesize) */
[k ———m */
cholmod_common *Common
)

int cholmod_1_super_ltsolve (cholmod_factor *, cholmod_dense *, cholmod_dense *,
cholmod_common *) ;

Purpose: Solve LTx = b for a supernodal factorization. This routine does not apply the per-
mutation L->Perm. See cholmod_solve for a more general interface that performs that operation.
Only real and complex xtypes are supported. L, X, and E must have the same xtype.

137

22 Partition Module routines

22.1 cholmod nested _dissection: nested dissection ordering

SuiteSparse_long cholmod_nested_dissection /* returns # of components */
(

/* —---- input ---- %/

cholmod_sparse *A, /* matrix to order */

int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

/* ---- output --- */

int *Perm, /* size A->nrow, output permutation */

int *CParent, /* size A->nrow. On output, CParent [c] is the parent

* of component c, or EMPTY if c is a root, and where
* ¢ is in the range O to # of components minus 1 */
int *Cmember, /* size A->nrow. Cmember [j] = c if node j of A is
* in component c */
[k ———m———————— */
cholmod_common *Common

)

SuiteSparse_long cholmod_l_nested_dissection (cholmod_sparse *,
SuiteSparse_long *, size_t, SuiteSparse_long *, SuiteSparse_long *,
SuiteSparse_long *, cholmod_common *)

Purpose: CHOLMOD’s nested dissection algorithm: using its own compression and connected-
components algorithms, an external graph partitioner (METIS), and a constrained minimum degree
ordering algorithm (CAMD, CCOLAMD, or CSYMAMD). Typically gives better orderings than
METIS_NodeND (about 5% to 10% fewer nonzeros in L).

This method uses a node bisector, applied recursively (but using a non-recursive implemen-
tation). Once the graph is partitioned, it calls a constrained minimum degree code (CAMD or
CSYMAMD for A+A’, and CCOLAMD for A*A’) to order all the nodes in the graph - but obeying
the constraints determined by the separators. This routine is similar to METIS _NodeND, except for
how it treats the leaf nodes. METIS NodeND orders the leaves of the separator tree with MMD, ignor-
ing the rest of the matrix when ordering a single leaf. This routine orders the whole matrix with
CAMD, CSYMAMD, or CCOLAMD, all at once, when the graph partitioning is done.

138

22.2 cholmod metis: interface to METIS nested dissection

int cholmod_metis

(

int

/* —---- input ---- */
cholmod_sparse *A, /%
int *fset, /*
size_t fsize, /*
int postorder, /*
/* ---— output --- */
int *Perm, /*
[k ——mmmm */

cholmod_common *Common

matrix to order */

subset of 0:(A->ncol)-1 */

size of fset */

if TRUE, follow with etree or coletree postorder */

size A->nrow, output permutation */

cholmod_1_metis (cholmod_sparse *, SuiteSparse_long *, size_t, int,
SuiteSparse_long *, cholmod_common *) ;

Purpose: CHOLMOD wrapper for the METIS NodeND ordering routine. Creates A+A’, A*A’ or
AC:,£)*A(:,f)’ and then calls METIS NodeND on the resulting graph. This routine is comparable
to cholmod_nested_dissection, except that it calls METIS _NodeND directly, and it does not return
the separator tree.

139

22.3 cholmod_camd: interface to CAMD

Purpose: CHOLMOD interface to the CAMD ordering routine. Finds a permutation p such
that the Cholesky factorization of A(p,p) is sparser than A. If A is unsymmetric, A*A’ is ordered.
If Cmember [i]=c then node i is in set c¢. All nodes in set 0 are ordered first, followed by all nodes
in set 1, and so on.

140

22.4 cholmod _ccolamd: interface to CCOLAMD

Purpose: CHOLMOD interface to the CCOLAMD ordering routine. Finds a permutation p such
that the Cholesky factorization of A(p,:)*A(p,:)’ is sparser than AxA’. The column elimination
is found and postordered, and the CCOLAMD ordering is then combined with its postordering. A
must be unsymmetric. If Cmember [i]=c then node 1 is in set c. All nodes in set 0 are ordered first,
followed by all nodes in set 1, and so on.

22.5 cholmod csymamd: interface to CSYMAMD

Purpose: CHOLMOD interface to the CSYMAMD ordering routine. Finds a permutation p
such that the Cholesky factorization of A(p,p) is sparser than A. The elimination tree is found
and postordered, and the CSYMAMD ordering is then combined with its postordering. If A is
unsymmetric, A+A’ is ordered (A must be square). If Cmember[i]l=c then node i is in set c. All
nodes in set 0 are ordered first, followed by all nodes in set 1, and so on.

141

22.6 cholmod bisect: graph bisector

SuiteSparse_long cholmod_bisect /* returns # of nodes in separator */

(
/* —---- input ---- %/
cholmod_sparse *A, /* matrix to bisect */
int *fset, /* subset of 0:(A->ncol)-1 */
size_t fsize, /* size of fset */
int compress, /* if TRUE, compress the graph first */
/* ---— output --- */
int *Partition, /* size A->nrow. Node i is in the left graph if
* Partition [i] = O, the right graph if 1, and in the
* separator if 2. */
[* ———mm */
cholmod_common *Common
)

SuiteSparse_long cholmod_1l_bisect (cholmod_sparse *, SuiteSparse_long *,
size_t, int, SuiteSparse_long *, cholmod_common *) ;

Purpose: Finds a node bisector of A, AxA’, A(: ,f)*A(:,f)’: a set of nodes that partitions the
graph into two parts. Compresses the graph first, and then calls METIS.

22.7 cholmod metis_bisector: interface to METIS node bisector

SuiteSparse_long cholmod_metis_bisector /* returns separator size */

(
/* —-—-— input ---- */
cholmod_sparse *A, /* matrix to bisect */
int *Anw, /* size A->nrow, node weights */
int *Aew, /* size nz, edge weights */
/* ---- output --- */
int *Partition, /* size A->nrow. see cholmod_bisect above. */
[* ——mmm e *x/
cholmod_common *Common
)

SuiteSparse_long cholmod_l_metis_bisector (cholmod_sparse *,
SuiteSparse_long *, SuiteSparse_long *, SuiteSparse_long *,
cholmod_common *) ;

Purpose: Finds a set of nodes that bisects the graph of A or A*xA’ (a direct interface to
METIS NodeComputeSeparator).

The input matrix A must be square, symmetric (with both upper and lower parts present) and
with no diagonal entries. These conditions are not checked.

142

22.8 cholmod_collapse_septree: prune a separator tree

SuiteSparse_long cholmod_collapse_septree

(
/* —---- input ---- */
size_t n, /* # of nodes in the graph */
size_t ncomponents, /* # of nodes in the separator tree (must be <= n) */
double nd_oksep, /* collapse if #sep >= nd_oksep * #nodes in subtree */
size_t nd_small, /* collapse if #nodes in subtree < nd_small */
/* —---— in/out --- */
int *CParent, /* size ncomponents; from cholmod_nested_dissection */
int *Cmember, /* size n; from cholmod_nested_dissection */
[* ——mmm e */
cholmod_common *Common
)

SuiteSparse_long cholmod_l_collapse_septree (size_t, size_t, double, size_t,
SuiteSparse_long *, SuiteSparse_long *, cholmod_common *) ;

Purpose: Prunes a separator tree obtained from cholmod nested dissection.

143

References

1]

2]

P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algo-
rithm. SIAM J. Matriz Anal. Applic., 17(4):886-905, 1996.

P. R. Amestoy, T. A. Davis, and 1. S. Duff. Algorithm 837: AMD, an approximate minimum
degree ordering algorithm. ACM Trans. Math. Softw., 30(3):381-388, 2004.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenny, and D. Sorensen. LAPACK Users’ Guide, 3rd ed. SIAM,
1999.

Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm 8xx: CHOLMOD,
supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw.,
submitted in 2006.

T. A. Davis. Algorithm 849: A concise sparse Cholesky algorithm. ACM Trans. Math. Softw.,
31(4):587-591, 2005.

T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. Algorithm 836: COLAMD, a column
approximate minimum degree ordering algorithm. ACM Trans. Math. Softw., 30(3):377-380,
2004.

T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. A column approximate minimum
degree ordering algorithm. ACM Trans. Math. Softw., 30(3):353-376, 2004.

T. A. Davis and W. W. Hager. Modifying a sparse Cholesky factorization. SIAM J. Matrix
Anal. Applic., 20(3):606-627, 1999.

T. A. Davis and W. W. Hager. Multiple-rank modifications of a sparse Cholesky factorization.
SIAM J. Matriz Anal. Applic., 22(4):997-1013, 2001.

T. A. Davis and W. W. Hager. Row modifications of a sparse Cholesky factorization. SIAM
J. Matriz Anal. Applic., 26(3):621-639, 2005.

T. A. Davis and W. W. Hager. Dynamic supernodes in sparse Cholesky update/downdate and
triangular solves. ACM Trans. Math. Softw., submitted in 2006.

J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of level-3 basic linear algebra
subprograms. ACM Trans. Math. Softw., 16(1):1-17, 1990.

J. R. Gilbert, X. S. Li, E. G. Ng, and B. W. Peyton. Computing row and column counts for
sparse QR and LU factorization. BIT, 41(4):693-710, 2001.

J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in MATLAB: design and imple-
mentation. SIAM J. Matriz Anal. Applic., 13(1):333-356, 1992.

J. R. Gilbert, E. G. Ng, and B. W. Peyton. An efficient algorithm to compute row and column
counts for sparse Cholesky factorization. SIAM J. Matriz Anal. Applic., 15(4):1075-1091,
1994.

144

[16] N.I. M. Gould, Y. Hu, and J. A. Scott. Complete results from a numerical evaluation of sparse
direct solvers for the solution of large sparse, symmetric linear systems of equations. Technical
Report Internal report 2005-1 (revision 1), CCLRC, Rutherford Appleton Laboratory, 2005.

[17] N.I. M. Gould, Y. Hu, and J. A. Scott. A numerical evaluation of sparse direct solvers for the
solution of large sparse, symmetric linear systems of equations. ACM Trans. Math. Softw., to
appear.

[18] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20(1):359-392, 1998.

[19] J. W. H. Liu. A compact row storage scheme for Cholesky factors using elimination trees.
ACM Trans. Math. Softw., 12(2):127-148, 1986.

[20] J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM J. Matriz Anal.
Applic., 11(1):134-172, 1990.

[21] E. Ng and B. Peyton. Block sparse Cholesky algorithms on advanced uniprocessor computers.
SIAM J. Sci. Comput., 14:1034-1056, 1993.

145

