
AcroTEX.Net

The AeB Pro Package

Linking to Attachments

D. P. Story

Copyright c© 2017 dpstory@acrotex.net http://www.acrotex.net
Prepared: August 26, 2017 Published: January 12, 2007

mailto:dpstory@acrotex.net

Table of Contents

1. Introduction
2. Naming Attachments
3. Linking to Embedded Files

3.1. Jumping to a target
• Jumping to a \hypertarget with \ahyperlink • Jumping to a
\label with \ahyperref

3.2. Optional Args of \ahyperref and \ahyperlink
4. Opening and Saving with \ahyperextract
5. Final Assembly

3

1. Introduction

As we saw briefly in aebpro ex3.tex, it is possible to attach a document using
the docassembly environment, as illustrated below,

\begin{docassembly}
\importDataObject({

cName: "cooltarget",
cDIPath: "aebpro_ex2.pdf"

});
\end{docassembly}

In the above, we use \importDataObject, set the path to be cDIPath:
"aebpro ex2.pdf" (this can be absolute or relative), and give the attach-
ment a name with cName: "\aref(cooltarget)". The special command
\aref, is used to reference the assigned name has as its argument the label
name, delimited by parentheses.

The parameter cName in the above docassembly code is of particular im-
portance. The value of cName is used in the names tree for embedded files. It
is used to reference the attachment in the link code. After the file is imported,
the value of cName is converted by Acrobat to Unicode. When referencing it,
you must know the unicode of the value of the cName key.

First, we insert into the preamble, the linktoattachments option. This

4

brings in all the code and commands to be discussed in this document. (See
the preamble of this file.)

2. Naming Attachments

For documents attached by the attachments option, AeB Pro assigns them
“names,” which appear in the attachments tab of Acrobat/Reader as the De-
scription.1 The names assigned are AeB Attachment 1, AeB Attachment 2,
AeB Attachment 3, and so on. If you embedded the file using the docassem-
bly environment and the \importDataObject method, then you are free to
assign a name of your preference. However it is done, the names must be con-
verted to unicode on the TEX side of things to set up the links, and there must
be a LATEX-like way of referencing this unicode name, hence the development of
the attachmentNames environment and the two commands \autolabelNum
and \labelName.2

We describe these by example. In the preamble you will find

\begin{attachmentNames}
\autolabelNum{1}

1The Description is important as it is the way embedded files are referenced internally.
2It is important to note that these are not needed unless you are linking to the embedded

files.

Naming Attachments 5

\autolabelNum*{2}{target2.pdf Attachment File}
\autolabelNum*[AeST]{3}{AeBST Components}
\labelName{cooltarget}{My (cool) $|xˆ3|$ ˜ % ’<attachment>’}
\end{attachmentNames}

Note: The attachmentNames environment and the commands \autolabel-
Num and \labelName should be used only in the parent document; for child
documents they are not necessary.

\autolabelNum: For PDFs (or other files) embedded using the attachments
option, use the \autolabelNum command. The syntax is

\autolabelNum[<label>]{<num>}

The first optional argument is the label to be used to refer to this em-
bedded file; the default is attach<num>. The second argument is the
second is a number, 1, 2, 3.., which corresponds to the order the file is
listed in the value of the attachments key.3

\autolabelNum*: There is a star form of \autolabelNum, which allows to
to change the description of the attachment.

\autolabelNum*[<label>]{<num>}{<description>}

3To minimize the number of changes to the document, if you later add an attachment,
add it to the end of the list so the earlier declarations are still valid.

Naming Attachments 6

By default, the first attachment has label name attach<num> and has a
description of AeB Attachment <num>, This command allows you not
only to change the label, but to change the description of the attachment
as well.

\labelName: For files that are embedded in using \importDataObject, use
the command \labelName for assigning the name, and setting up the
correspondence between the name and the label.

\labelName{<label>}{<description>}

The first argument is the label to be used to reference this embedded
file. The second parameter you can assign an arbitrary name.

The <description> parameter used in \autolabelNum* and \labelName
can be an arbitrary string assigned to the description of this embedded file, the
characters can be most anything in the Basic Latin unicode set, 0021–007E,
with the exception of left and right braces {}, backslash \ and double quotes
".

You can also enter the unicode character codes directly by typing \uXXXX
in the <description>, where XXXX are four hex digits. (Did I say not to use
‘\’?) This is very useful when using the trouble making characters such as
backslash, left and right braces, and double quotes, or using unicode above

Naming Attachments 7

00FF (Basic Latin + Latin-1). To illustrate, suppose we wish the description
of cooltarget to be

"$|eˆ{\ln(17)}|$"

All the bad characters!

\labelName{cooltarget}{\u0022$|eˆ\u007B\u005Cln(17)\u007D|$\u0022}

From the unicode character tables we see that
• left brace \u007B

• right brace \u007D

• backslash \u005C

• double quotes \u0022
See the example file aebpro ex6.tex for additional examples of the use of
\uXXXX character codes.

There are several “helper” commands as well: \EURO, \DQUOTE, \BSLASH,
\LBRACE and \RBRACE. When the \u is detected, an \expandafter is exe-
cuted. This allows a command to appear immediately after the \u, things
work out well if the command expands to four hex numbers, as it should.
Thus, instead of typing \u0022 you can type \u\DQUOTE.

8

3. Linking to Embedded Files

This package defines two commands, \ahyperref and \ahyperlink, to create
links between parent and child and child and child. The default behavior of
\ahyperref (and \ahyperlink) is to set up a link from parent to child.
\ahyperlink and \ahyperref are identical in all respects except for how
it interprets the destination. (Refer to ‘Jumping to a target’ on page 9 for
details.)

The commands each take three arguments, the first one of which is optional
\ahyperref[<options>]{<target_label>}{<text>}
\ahyperlink[<options>]{<target_label>}{<text>}

In the simplest case, we jump from the parent to the first page of a child file,
like so target1.pdf, given by. . .

\ahyperref{attach1}{target1.pdf}

This is the same as target1.pdf, the code is. . .
\ahyperref[goto=p2c]{attach1}{target1.pdf}

The goto key is one of the key-value pairs taken by the optional argument.
Permissible values for the goto key are p2c (the default), c2p (child to parent)
and c2c (child to child).

Linking to Embedded Files 9

TIP: After jumping to an attachment you can return to the point of origin (in
the parent document) by selecting the menu item View > Page Navigation
> Previous View or by using the keyboard shortcut of Alt+Left Arrow

Similarly, link to the other embedded files in this parent: target2.pdf and
aebpro ex2.pdf

In all cases above, the \ahyperlink command could have been used, be-
cause no named destination was specified, without a named destination, the
these links jump to page 1.

3.1. Jumping to a target

As you may know, LATEX, more exactly, hyperref has two methods of jumping
to a target in another document, jump to a label (defined by \label) and
jump to a target set by \hypertarget. Each of these is demonstrated for
embedded files in the next two sections.

• Jumping to a \hypertarget with \ahyperlink

There is a destination defined by the hyperref command hypertarget in
target1.pdf and we shall jump to it. Here we go! Jump!. The code for
this jump is

Linking to Embedded Files 10

\ahyperlink[dest=mytarget]{attach1}{Jump!}

Note that dest=mytarget, where “mytarget” is the label assigned by the
\hypertarget command in target1.pdf.

• Jumping to a \label with \ahyperref

LATEX has a cross-referencing system, to jump to a target set by the \label
command we use the xr-hyper package that comes with hyperref. Using
label referencing, we can jump to Section 1 on page 2 of the embedded file
target1.pdf. Swave! The code for the jump is

\ahyperref[dest=target1-s:intro]{attach1}
{Section˜\ref*{target1-s:intro}}

we set dest=target1-s:intro
The label in target1.pdf is s:intro, in the preamble of this document

we have
\externaldocument[target1-]{children/target1}

which causes xr-hyper to append a prefix to the label (this avoids the possibility
of duplication of labels, over multiple embedded files).

Linking to Embedded Files 11

3.2. Optional Args of \ahyperref and \ahyperlink

The \ahyperref commands has a large number of optional arguments en-
abling you to create any link that the user interface of Acrobat Pro can create,
and more. These are documented in aeb pro.dtx and well as the main docu-
mentation. Suffice it to have an example or two.

By using the optional parameters, you can create any link the UI can create:
Jump! This link is given by. . .

\ahyperref[%
dest=target1-s:intro,
bordercolor={0 1 0},
highlight=outline,
border=visible,
linestyle=dashed

]{attach1}{Jump!}

Now what do you think of that?

The argument list can be quite long, as shown above. If you have some favorite
settings, you can save them in a macro, like so,

\def\preseti{bordercolor={0 0 1},highlight=outline,open=new,%
border=visible,linestyle=dashed}

12

Then, I can say, more simply, Jump! This link is given by. . .
\ahyperref[dest=target1-s:intro,preset=\preseti]{attach1}{Jump!}

I’ve defined a preset key so you can predefine some common settings you like
to use, the enter these settings through preset key, like so preset=\preseti.
Cool.

Note that in the second example, I’ve included open=new, this causes the
embedded file to open in a new window. For Acrobat/Reader operating in MDI,
a new child window will open; for SDI (version 8), and if the user preferences
allows it, it will open in its Acrobat/Adobe Reader window.

TIP: After jumping to an attachment that opens a new window, just close
the new window to return the parent document. :-{)

4. Opening and Saving with \ahyperextract

In addition to embedding and linking a PDF, you can embed most any file
and programmatically (or through the UI) open and/or save it to the local file
system.

To attach a file to the parent PDF, you can use the attachsource or
the attachments options of AeB Pro, or you can embed your own using the
importDataObject method, as described earlier in this file.

Opening and Saving with \ahyperextract 13

If an embedded file is a PDF, then you can link to it, using \ahyperref
or \ahyperlink; we can jump to an embedded PDF and jump back. If the
embedded file is not a PDF, then jumping to it makes no sense; the best we
can do is to open the file (using an application to display the file) and/or save
it to the local hard drive.

The AeB Pro package has the command \ahyperextract to extract the
embedded file, and to save it to the local hard drive, with an option to start the
associated application and to display the file. The syntax for \ahyperextract
is the same as that of the other two commands:

\ahyperextract[<options>]{<target_label>}{<text>}

The <options> are the same as \ahyperref, the <target label> is the one
associated with the attachment name, and the <text> is the link text.

In addition to the standard options of \ahyperref, \ahyperextract recog-
nizes one additional key, launch. This key accepts three values: save (the
default), view and viewnosave. The following is a partial verbatim listing
of the descriptions given in the JavaScript for Acrobat API Reference, in the
section describing importDataObject method of the Doc object:

• save: The file will not be launched after it is saved. The user is prompted
for a save path.

Opening and Saving with \ahyperextract 14

• view: The file will be saved and then launched. Launching will prompt
the user with a security alert warning if the file is not a PDF file. The
user will be prompted for a save path.

• viewnosave: The file will be temporarily saved and then launched.
Launching will prompt the user with a security alert warning if the file
is not a PDF file. A temporary path is used, and the user will not be
prompted for a save path. The temporary file that is created will be
deleted by Acrobat upon application shutdown.

Here is a series of examples of usage:
1. aebpro ex2.pdf: Launch and view this PDF. The code is

\ahyperextract[launch=view]{cooltarget}{aebpro_ex2.pdf}

When you extract (or open) PDF in this way, any links created by
\ahyperref or \ahyperlink as the PDF being viewed is no longer
an embedded file of the parent.

2. View the aebpro ex5.tex. The code is

\ahyperextract[launch=viewnosave]{tex}{aebpro_ex5.tex}

Note that for attachments brought in by the attachsource option, the
label for that attachment is the file extension, in this case tex.

15

3. AeBST Component List: This is an Excel spreadsheet which lists the
components of the AcroTEX eDucation System Tools. Here you are
prompted to save; the spreadsheet will not be launched:

\ahyperextract[launch=save]{AeST}{AeBST Component List}

5. Final Assembly

To assemble your parent document with all the cross-references to its embedded
children, perform the following steps.

1. LATEX the parent document so that the auxiliary file \jobname xref.cut.
This file is read by the children when they are LATEXed.

2. LATEX the child documents. The child documents will write their own
auxiliary file and read \jobname xref.cut. (Multiple compiles may be
necessary to bring the auxiliary document up to date.)

3. Make PDF for the child documents.

4. Now LATEX the parent again, which will read in the auxiliary files of the
children, if needed. Distill and Le Voilà, you have it!

5. At this point you can clean up all auxiliary files.

	Table of Contents
	1 Introduction
	2 Naming Attachments
	3 Linking to Embedded Files
	3.1 Jumping to a target
	• Jumping to a \hypertarget with \ahyperlink
	• Jumping to a \label with \ahyperref

	3.2 Optional Args of \ahyperref and \ahpyerlink

	4 Opening and Saving with \ahyperextract
	5 Final Assembly

Sheet1

				AcroTeX eDucation System Tools

				http://www.acrotex.net

		Component		Description

		aeb_pro		The central control of the AeST, also provides options for creating layers, attaching files, linking to attachments, full page and document events supported and doc assembly methods.

		web		Creates screen friendly PDF pages, colored backgrounds, templates for graphical backgrounds, navigational button support. For the enhanced pro option, great control over the section titles through a convenient user interface.

		exerquiz		Used to create exercises, short quizzes and quizzes with or without solutions. The short quizzes are immediately marked, the quizzes are corrected and marked upon the completion of the quiz.

		eforms		At the heart of AeST is the eforms package to create all form elements of PDF. Create buttons, textfields, etc. with appearances and actions of your choice.

		eq2db		A package which converts an exerquiz quiz, which is normally self-contained, to a quiz that can be submitted to a script. Several scripts are provided to submit data to a database, a tab delimited file, and by email.

		insdljs		The package that provides support for inserting document level JavaScript into a PDF. Also enables you to executed JS post-distillation to use some of the JS methods to manipulate the document (execJS enviornment).

		dljslib		A library of JavaScript functions that extend the capability of exerquiz to processs responses.

		aebXMP		This package requires Acrobat 8 Pro. It adds three text commands which populate the Advanced Metadata of the Description tab of PDF.

		Paper and Electronic Exams

		eqexam		A LaTeX package to write exams. It is the underlying package used in @EASE, but eqexam is a standalone package. Options for creating exams, solutions keys, online versions as well. Eqexam can also be used to create online surveys. See www.math.uakron.edu/~dpstory/webeq.html for one such example.

		Games

		jj_class		A class for creating Jeopardy games.

		ecards		A package to create electronic flashcards, with hints and solutions.

		dps		dps = Das Puzzle Spiel. A package to create a matching game where each correct match inserts a new letter in a hidden message is revealed.

		AcroMemory		A package to create two forms of a memory game: (1) one game board; and (2) two game boards. Find the matching images, have fun win prizes. (Just kidding about the prizes.)

		AcroSort		A novelty package for creating a randomly sorted image and, at the press of a button, the grid of images resorts itself using a bubble sort. Good for eCards or birthday wishes, or holiday messages.

		Commerical

		APB		The AcroTeX Presentation Bundle. Create your own beautiful presentation using layers rather than a large number of pages. You can use layers to create simple, yet impressive animations, as a part of your presentation. Acrobat 7 Pro is required to create the presentation. Adobe Reader to present it. (Available for a nominal charge through www.acrotex.net)

		@EASE		Be at ease with @EASE! An exam database and exam assembly system that uses LaTeX and Acrobat 7 Pro. (Available for a nominal charge through www.acrotex.net)

		Batch Sequences

		AeB AM		This batch sequence for Acrobat 8 Pro can populate the three Advanced Metadata fields in the Description tab of the Document Properites dialog box. (Available for a nominal charge through www.acrotex.net)

		AcroSlicing		Several of the packages above require the slicing of an image into rows and columns. This batch sequence does just that, and without the cost of expensive programs like Illustrator or PhotoShop.

http://www.acrotex.net

Sheet2

		

Sheet3

		

D.P. Story Attaching and Linking www.acrotex.net

Welcome to target1.pdf!

Now, return to parent document

Jump to the other attached file target2.pdf

www.acrotex.net

1. Instructions

Instructions to set up links from the child are straight forward. First, you insert
a new option into the option list of aeb pro:

\usepackage[%

...

linktoattachments,

childof={../aebpro_ex5},

]{aeb_pro}

In addition to the linktoattachments, we also include the childof key along
with its value, childof={../aebpro_ex5}, the path to the parent. Do not
include any extension, just the base name will do fine, just fine. Second, well,
you’re done, there is no second.

For child to child, target2.pdf
\ahyperref[goto=c2c]{attach2}{target2.pdf}

and for child to parent document
\ahyperref[goto=c2p]{}{parent document}

Let’s jump to a \label{target2-targetsection}: Section 1 in the docu-
ment target2.pdf on page 2.

On this page we set a \hypertarget, and expect to jump here from the parent
document.

Now, let’s jump to a target defined by \hypertarget: Away!

		1 Instructions

D.P. Story Attaching and Linking www.acrotex.net

Welcome to target2.pdf.

Now, return to parent document

Jump to the other attached file target1.pdf

www.acrotex.net

1. Target Section

This is target2.pdf, you should have arrived here via a child-to-child link
from target1.pdf. This is a test of \ahyperref. And return!

One this page, we’ll create a hypertarget. We’ll test child to child jumping to
a destination using \ahyperlink. And return!

		1 Target Section

AcroTEX.Net

The AeB Pro Package

Highlighting the pro option of Web

D. P. Story

Copyright c© 2016 dpstory@acrotex.net http://www.acrotex.net
Prepared: August 3, 2016 Published: January 12, 2007

mailto:dpstory@acrotex.net

http://www.acrotex.net

Table of Contents

AeB Control Central
Document Information: \DeclareDocInfo
Control over Headings

Designing your Section Headings
Designing your Initial Pages
• The Title Page • The Table of Contents

3

✲ AeB Control Central✲ AeB Control Central

The AeB family of software, LATEX packages all, are for the most part stand
alone; however, usually they are used in combination with each other, at least
that is the purpose for which they were originally designed. When several
members of family AeB are used, they should be loaded in the optimal order.
With AeB Pro, you can now list the members of the AeB family you wish to
use, along with their optional parameters you wish to use.

For example,
\usepackage[%

driver=dvips,
web={pro,designv,tight,nodirectory,centertitlepage,usesf},
exerquiz={<optional parameters>},
...,
aebxmp,

]{aeb_pro}

Yes, yes, I know this is not necessary, you can always load the packages earlier
than AeB Pro, but please, humor me.

By default, the code for supporting features that require the use of Distiller
and Acrobat Pro are included; there is a nopro option that excludes these
features. Use the nopro if you wish to use the AeB Control Center to load the
various members of the AcroTEX family.

4

See the AeB Pro documentation for the list of supported options.

✲ Document Information: \DeclareDocInfo✲ Document Information: \DeclareDocInfo

The web package and the hyperref package both have several data strings
used in the Description tab of the Document Properties of a PDF document.
Below is the \DeclareDocInfo “data structure”, the meanings of the keys are
clear. Some of the keys are used in the Description tab of the PDF document,
others are used in the title page, while others true play a dual role.
\DeclareDocInfo{

title=The AeB Pro Package
\texorpdfstring{\\[1ex]}
{: }Highlighting the \texttt{pro} option of Web,

author=D. P. Story,
university=Acro\negthinspace\TeX.Net,
email=dpstory@acrotex.net,
subject=Test file for the AeB Pro package,
keywords={Adobe Acrobat, JavaScript},
talksite=\url{http://www.acrotex.net},
talkdate={January 12, 2007},
copyrightStatus=True,
copyrightNotice={Copyright (C) \the\year, D. P. Story},
copyrightInfoURL=http://www.acrotex.net

}

5

The last three keys are particular to the aebxmp package, which has been input
into this document. These three keys populate the Advanced Metadata dialog
box; Acrobat 8 Pro is required for aebxmp package to work correctly.

See the AeB Pro documentation for a detailed description of \DeclareDoc-
Info and the aebxmp package documentation.

✲ Control over Headings✲ Control over Headings

The pro option of web introduces the use of the xkeyval package and with
it comes a complex choice for setting up your section headings and various
elements of your title page.

✯ Designing your Section Headings

When the pro option of the web package is used, the commands \section-
Layout, \subsectionLayout and \subsubsectionLayout become avail-
able. Look in the preamble of this document, there, I’ve set the look of the
format of each of these three section levels. My design choices are meant to
illustrate the variety of choices you have, I myself have no sense of color, or
design, for that matter.

Control over Headings 6

The normal setting is to show section numbers, when you execute \no-
SectionNumbers in the preamble, obviously, no section numbers will be shown.
(Useful for presentations, with no cross-references.) If you specify a value for
the ding key, then a ding appears where the section number was.

When showing section numbers, the default, one of the famous features of
the web package was to have a bullet for the subsubsection heading, rather
than the subsubsection number. By executing \forceSubSubNumbers in the
preamble, you force the appearance of the subsubsection numbers. To get the
appearance of these numbers in the table of contents, use the latextoc option
of web.

The commands can be placed in the preamble or anywhere. They take
effect at the next encountered section that is applicable.

✯ Designing your Initial Pages

The same mechanism used for the formatting of the section headings is also
used for the title page and the table of contents.

Control over Headings 7

• The Title Page

Certain components of the title page can be controlled using the same mecha-
nism as the section headings. Corresponding to the university, the title and the
author are \universityLayout, \titleLayout and \authorLayout. These
three have the same key-value pairs as the section layout commands, but they
do now obey the ding key.

See aebpro titlepg.tex for an interesting illustration of the key-values of
the layout for the title page.

• The Table of Contents
The \tocLayout command is like the layout commands on the title page, it
does not obey the ding key. With it you can adjust color of the text and
horizontal positioning. Special effects can also be specified.

When \noPageNumbers is in effect, you can specify the values of the
\selectDings structure to have dings showing up in the table of contents
listing. These dings may or may not match the dings of the section labeling.
Specifying no ding for a particular section level displays no ding for that toc
entry.

		Table of Contents

		 AeB Control Central

		 Document Information: \DeclareDocInfo

		 Control over Headings

		 Designing your Section Headings

		 Designing your Initial Pages

		 The Title Page

		 The Table of Contents

% Acrobat required

% use useacrobat option with pdftex and xetex if you have acrobat

% ----------------

%

% Instructions for compiling this file

% 1. Compile this file once, but do not make into a PDF yet.

% 2. Open the two files children/target1.tex and children/target2.tex

% and compile these two files several times to resolve the cross-

% references. Now, make into PDFs.

% 3. Return to this file and compile again to input cross-reference info

% and make into a PDF via distiller.

%

\documentclass{article}

\usepackage{xr-hyper}

\usepackage[%

% driver=dvips,

 gopro,

 web={designiv,usesf,tight},

 attachsource={tex,dvi},

 attachments={%

 children/target1.pdf,% % AeB Attachment #1

 children/target2.pdf,% % AeB Attachment #2

 ../extras/aest.xls % AeB Attachment #3

 },

 linktoattachments,

 eforms

]{aeb_pro}

\externaldocument[target1-]{children/target1}

\DeclareDocInfo

{

 title=The AeB Pro Package\texorpdfstring{\\[1ex]}{: }Linking to Attachments,

 author=D. P. Story,

 university=Acro\negthinspace\TeX.Net,

 email=dpstory@acrotex.net,

 subject=Test file for the AeB Pro package,

 keywords={Adobe Acrobat, JavaScript},

 talksite=http://www.acrotex.net,

 talkdate={January 12, 2007},

 copyrightStatus=True,

 copyrightNotice={Copyright (C) \the\year, D. P. Story},

 copyrightInfoURL=http://www.acrotex.net

}

\talkdateLabel{Published:}

\newcommand{\cs}[1]{\texttt{\char`\\#1}}

\newcommand\newtopic{\par\ifdim\lastskip>0pt\relax\vskip-\lastskip\fi

\par\vskip6pt\noindent}

\def\aftersverbskip{\noindent}

\newenvironment{sverbatim}

{\par\small\verbatim}

{\endverbatim\par\aftergroup\aftersverbskip}

\newenvironment{ssverbatim}

{\par\footnotesize\verbatim}

{\endverbatim\par\aftergroup\aftersverbskip}

\def\AcroTeX{Acro\negthinspace\TeX}

%\autolabelNum{AeST}{3}

%\autolabelNum{cooltarget}{3}

%\autolabelNum{attach1}{1}

%\autolabelNum{attach2}{2}

%

% \autolabelNum[mytarget]{1}

% \autolabelNum*[mytarget]{1}{New Title}

% \autolabelNum*[AeST]{3}{\u0022$|e^\u007B\u005Cln(17)\u007D|$\u0022 beep}

% \labelName{cooltarget}{\u0022$|e^\u007B\u005Cln(17)\u007D|$\u0022}

\begin{attachmentNames}

\autolabelNum{1}

%\autolabelNum{2}

\autolabelNum*{2}{target2.pdf Attachment File}

\autolabelNum*[AeST]{3}{AeBST Components}

\labelName{cooltarget}{My (cool) $|x^3|$ ~ % '<attachment>'}

\end{attachmentNames}

% The use of \importDataObject should occur after the \texttt{attachmentNames} environment.

%\def\u{\string\\u}%

\begin{docassembly}

var retn=\importDataObject({cName: "cooltarget",cDIPath: "aebpro_ex2.pdf"});

if ((app.viewerVersion>7) && retn)

 this.getDataObject("cooltarget").description="\aref(cooltarget)";

\end{docassembly}

\def\preseti{bordercolor={0 0 1},highlight=outline,border=visible,linestyle=dashed,open=new}

\begin{document}

\maketitle

\tableofcontents

\section{Introduction}

As we saw briefly in \texttt{aebpro_ex3.tex}, it is possible to

attach a document using the \texttt{docassembly} environment, as

illustrated below,

\begin{sverbatim}

 \begin{docassembly}

 \importDataObject({

 cName: "cooltarget",

 cDIPath: "aebpro_ex2.pdf"

 });

 \end{docassembly}

\end{sverbatim}

In the above, we use \cs{importDataObject}, set the path to be

\texttt{cDIPath: "aebpro_ex2.pdf"} (this can be absolute or

relative), and give the attachment a name with \texttt{cName:}

\texttt{"\cs{aref(cooltarget)}"}. The special command \cs{aref}, is

used to reference the assigned name has as its argument the label

name, \emph{delimited by parentheses}.

The parameter \texttt{cName} in the above \texttt{docassembly} code

is of particular importance. The value of \texttt{cName} is used in

the names tree for embedded files. It is used to reference the

attachment in the link code. After the file is imported, the value

of \texttt{cName} is converted by Acrobat to Unicode. When

referencing it, you must know the unicode of the value of the

\texttt{cName} key.

First, we insert into the preamble, the \texttt{linktoattachments} option.

This brings in all the code and commands to be discussed in this document.

(See the preamble of this file.)

\section{Naming Attachments}

For documents attached by the \texttt{attachments} option, AeB Pro

assigns them ``names,'' which appear in the attachments tab of

Acrobat/Reader as the Description.\footnote{The Description is

important as it is the way embedded files are referenced

internally.} The names assigned are \texttt{AeB Attachment 1},

\texttt{AeB Attachment 2}, \texttt{AeB Attachment 3}, and so on.

If you embedded the file using the \texttt{docassem\-bly} environment

and the \cs{importDataObject} method, then you are free to assign a

name of your preference. However it is done, the names must be

converted to unicode on the {\TeX} side of things to set up the

links, and there must be a \LaTeX-like way of referencing this

unicode name, hence the development of the \texttt{attachmentNames}

environment and the two commands \cs{autolabelNum} and

\cs{labelName}.\footnote{It is important to note that

these are not needed unless you are linking to the embedded

files.}

We describe these by example. In the preamble you will find

\begin{sverbatim}

 \begin{attachmentNames}

 \autolabelNum{1}

 \autolabelNum*{2}{target2.pdf Attachment File}

 \autolabelNum*[AeST]{3}{AeBST Components}

 \labelName{cooltarget}{My (cool) $|x^3|$ ~ % '<attachment>'}

 \end{attachmentNames}

\end{sverbatim}

\textbf{\color{red}Note:} The \texttt{attachmentNames} environment

and the commands \cs{autolabel\-Num} and \cs{labelName} should be

used only in the parent document; for child documents they are not

necessary.

\begin{description}

\item[\cs{autolabelNum}:] For PDFs (or other files) embedded using the

\texttt{attachments} option, use the \cs{autolabelNum} command. The

syntax is

\begin{verbatim}

 \autolabelNum[<label>]{<num>}

\end{verbatim}

The first optional argument is the label to be used to refer to this

embedded file; the default is \texttt{attach<num>}. The second

argument is the second is a number, 1, 2, 3.., which

corresponds to the order the file is listed in the value of the

\texttt{attachments} key.\footnote{To minimize the number of changes

to the document, if you later add an attachment, add it to the end

of the list so the earlier declarations are still valid.}

\item[\cs{autolabelNum*}:] There is a star form of \cs{autolabelNum}, which

allows to to change the description of the attachment.

\begin{verbatim}

 \autolabelNum*[<label>]{<num>}{<description>}

\end{verbatim}

By default, the first attachment has label name \texttt{attach<num>}

and has a description of \texttt{AeB Attachment <num>}, This command

allows you not only to change the label, but to change the description

of the attachment as well.

\item[\cs{labelName}:] For files that are embedded in using

\cs{importDataObject}, use the command \cs{labelName} for assigning

the name, and setting up the correspondence between the name and the

label.

\begin{verbatim}

 \labelName{<label>}{<description>}

\end{verbatim}

The first argument is the label to be used to reference this

embedded file. The second parameter you can assign an arbitrary

name.

\end{description}

\newtopic The \texttt{<description>} parameter used in

\cs{autolabelNum*} and \cs{labelName} can be an arbitrary string

assigned to the description of this embedded file, the characters

can be most anything in the Basic Latin unicode set, 0021--007E,

with the exception of left and right braces \verb!{}!, backslash

\verb!\! and double quotes \texttt{"}.

You can also enter the unicode character codes directly by typing

\cs{uXXXX} in the \texttt{<description>}, where \texttt{XXXX} are four hex digits. (Did I say not

to use `\verb!\!'?) This is very useful when using the trouble making

characters such as backslash, left and right braces, and double

quotes, or using unicode above 00FF (Basic Latin + Latin-1). To illustrate, suppose we wish

the description of \texttt{cooltarget} to be

\begin{sverbatim}

 "$|e^{\ln(17)}|$"

\end{sverbatim}

All the bad characters!

\begin{sverbatim}

\labelName{cooltarget}{\u0022$|e^\u007B\u005Cln(17)\u007D|$\u0022}

\end{sverbatim}

From the unicode character tables we see that

\begin{itemize}

\item left brace \cs{u007B}

\item right brace \cs{u007D}

\item backslash \cs{u005C}

\item double quotes \cs{u0022}

\end{itemize}

See the example file \texttt{aebpro_ex6.tex} for additional examples of the use

of \cs{uXXXX} character codes.

There are several ``helper'' commands as well: \cs{EURO}, \cs{DQUOTE}, \cs{BSLASH},

\cs{LBRACE} and \cs{RBRACE}. When the \cs{u} is detected, an \cs{expandafter} is executed.

This allows a command to appear immediately after the \cs{u}, things work out well if the

command expands to four hex numbers, as it should. Thus, instead of typing

\cs{u0022} you can type \verb!\u\DQUOTE!.

\section{Linking to Embedded Files}\label{embed}

This package defines two commands, \cs{ahyperref} and

\cs{ahyperlink}, to create links between parent and child and child

and child. The default behavior of \cs{ahyperref} (and

\cs{ahyperlink}) is to set up a link from parent to child.

\cs{ahyperlink} and \cs{ahyperref} are identical in all respects

except for how it interprets the destination. (Refer to

\Nameref{jump} for details.)

\newtopic The commands each take three arguments, the

first one of which is optional

\begin{verbatim}

 \ahyperref[<options>]{<target_label>}{<text>}

 \ahyperlink[<options>]{<target_label>}{<text>}

\end{verbatim}

\noindent In the simplest case, we jump from the parent to the first page of a

child file, like so \ahyperref{attach1}{target1.pdf}, given by\dots

\begin{verbatim}

 \ahyperref{attach1}{target1.pdf}

\end{verbatim}

This is the same as \ahyperref[goto=p2c]{attach1}{target1.pdf}, the code is\dots

\begin{verbatim}

 \ahyperref[goto=p2c]{attach1}{target1.pdf}

\end{verbatim}

The \texttt{goto} key is one of the key-value pairs taken by the

optional argument. Permissible values for the \texttt{goto} key are

\texttt{p2c} (the default), \texttt{c2p} (child to parent) and

\texttt{c2c} (child to child).

\newtopic

\fcolorbox{blue}{webyellow}{\parbox{\linewidth-2\fboxsep-2\fboxrule}{\textbf{\textcolor{red}{TIP:}}

After jumping to an attachment you can return to the point of origin

(in the parent document) by selecting the menu item \texttt{View >

Page Navigation > Previous View} or by using the keyboard shortcut of

\texttt{Alt+Left Arrow}}}

\newtopic Similarly, link to the other embedded files in this parent:

\ahyperref{attach2}{target2.pdf} and \ahyperref{cooltarget}{aebpro_ex2.pdf}

In all cases above, the \cs{ahyperlink} command could have been used, because no

\emph{named} destination was specified, without a named destination, the these links jump to page~1.

\subsection{Jumping to a target}\label{jump}

As you may know, {\LaTeX}, more exactly, \texttt{hyperref} has two

methods of jumping to a target in another document, jump to a label

(defined by \cs{label}) and jump to a target set by

\cs{hypertarget}. Each of these is demonstrated for embedded files

in the next two sections.

\subsubsection{Jumping to a \texorpdfstring{\protect\cs{hypertarget}}{\textbackslash hypertarget}

with \texorpdfstring{\protect\cs{ahyperlink}}{\textbackslash ahyperlink}}

There is a destination defined by the hyperref command

\texttt{hypertarget} in \texttt{target1.pdf} and we shall jump to

it. Here we go! \ahyperlink[dest=mytarget]{attach1}{Jump!}. The

code for this jump is

\begin{verbatim}

 \ahyperlink[dest=mytarget]{attach1}{Jump!}

\end{verbatim}

\noindent Note that \texttt{dest=mytarget}, where ``\texttt{mytarget}'' is the

label assigned by the \cs{hypertarget} command in \texttt{target1.pdf}.

\penalty-5000

\subsubsection{Jumping to a \texorpdfstring{\protect\cs{label}}{\textbackslash label}

with \texorpdfstring{\protect\cs{ahyperref}}{\textbackslash ahyperref}}

{\LaTeX} has a cross-referencing system, to jump to a target set by

the \cs{label} command we use the \textsf{xr-hyper} package that

comes with \texttt{hyperref}. Using label referencing, we can jump to

\ahyperref[dest=target1-s:intro]{attach1}{Section~\ref*{target1-s:intro}}

on page~\pageref*{target1-s:intro} of the embedded file

\texttt{target1.pdf}. Swave! The code for the jump is

\begin{verbatim}

 \ahyperref[dest=target1-s:intro]{attach1}

 {Section~\ref*{target1-s:intro}}

\end{verbatim}

\noindent we set \verb!dest=target1-s:intro!

The label in \texttt{target1.pdf} is \texttt{s:intro}, in the preamble of

this document we have

\begin{verbatim}

 \externaldocument[target1-]{children/target1}

\end{verbatim}

\noindent which causes \textsf{xr-hyper} to append a prefix to the label (this

avoids the possibility of duplication of labels, over multiple

embedded files).

\goodbreak

\subsection{Optional Args of \texorpdfstring{\protect\cs{ahyperref}}{\textbackslash ahyperref}

and \texorpdfstring{\protect\cs{ahyperlink}}{\textbackslash ahpyerlink}}

The \cs{ahyperref} commands has a large number of optional arguments

enabling you to create any link that the user interface of Acrobat

Pro can create, and more. These are documented in

\textsf{aeb_pro.dtx} and well as the main documentation. Suffice it

to have an example or two.

By using the optional parameters, you can create any link the UI can create:

\ahyperref[dest=target1-s:intro,bordercolor={0 1 0},highlight=outline,%

border=visible,linestyle=dashed]{attach1}{Jump!}

This link is given by\dots

\begin{verbatim}

 \ahyperref[%

 dest=target1-s:intro,

 bordercolor={0 1 0},

 highlight=outline,

 border=visible,

 linestyle=dashed

]{attach1}{Jump!}

\end{verbatim}

\noindent Now what do you think of that?

\newtopic The argument list can be quite long, as shown above. If you have some favorite settings, you can

save them in a macro, like so,

\begin{sverbatim}

 \def\preseti{bordercolor={0 0 1},highlight=outline,open=new,%

 border=visible,linestyle=dashed}

\end{sverbatim}

\noindent Then, I can say, more simply, \ahyperref[dest=target1-s:intro,preset=\preseti]{attach1}{Jump!}

This link is given by\dots

\begin{sverbatim}

\ahyperref[dest=target1-s:intro,preset=\preseti]{attach1}{Jump!}

\end{sverbatim}

\noindent I've defined a \texttt{preset} key so you can predefine some common settings you like to use,

the enter these settings through preset key, like so \verb!preset=\preseti!. Cool.

Note that in the second example, I've included \texttt{open=new}, this causes the embedded file to open

in a new window. For Acrobat/Reader operating in MDI, a new child window will open; for SDI (version 8),

and if the user preferences allows it, it will open in its Acrobat/Adobe Reader window.

\newtopic

\fcolorbox{blue}{webyellow}{\parbox{\linewidth-2\fboxsep-2\fboxrule}{\textbf{\textcolor{red}{TIP:}}

After jumping to an attachment that opens a new window, just close the new window to

return the parent document. \texttt{:-\textrm{\{})}}}

\section{Opening and Saving with \texorpdfstring{\protect\cs{ahyperextract}}

 {\textbackslash ahyperextract}}

In addition to embedding and linking a PDF, you can embed most any

file and programmatically (or through the UI) open and/or save it to

the local file system.

To attach a file to the parent PDF, you can use the

\texttt{attachsource} or the \texttt{attachments} options of AeB

Pro, or you can embed your own using the \texttt{importDataObject}

method, as described earlier in this file.

If an embedded file is a PDF, then you can link to it, using

\cs{ahyperref} or \cs{ahyperlink}; we can jump to an embedded PDF

and jump back. If the embedded file is not a PDF, then jumping to it

makes no sense; the best we can do is to open the file (using an

application to display the file) and/or save it to the local hard

drive.

The AeB Pro package has the command \cs{ahyperextract} to extract

the embedded file, and to save it to the local hard drive, with an

option to start the associated application and to display the file.

The syntax for \cs{ahyperextract} is the same as that of the other two commands:

\begin{verbatim}

 \ahyperextract[<options>]{<target_label>}{<text>}

\end{verbatim}

\noindent The \texttt{<options>} are the same as \cs{ahyperref}, the \texttt{<target_label>} is the one associated

with the attachment name, and the \texttt{<text>} is the link text.

\newtopic In addition to the standard options of \cs{ahyperref}, \cs{ahyperextract} recognizes one additional key, \texttt{launch}.

This key accepts three values: \texttt{save} (the default), \texttt{view} and \texttt{viewnosave}. The following is a

partial verbatim listing of the descriptions given in the \textsl{JavaScript for Acrobat API Reference}, in the section

describing \texttt{importDataObject} method of the Doc object:

\begin{itemize}

 \item \texttt{save}: The file will not be launched after it is saved. The user is prompted for a save path.

 \item \texttt{view}: The file will be saved and then launched.

 Launching will prompt the user with a security alert warning

 if the file is not a PDF file. The user will be prompted for a

 save path.

 \item \texttt{viewnosave}: The file will be temporarily saved and

 then launched. Launching will prompt the user with a security

 alert warning if the file is not a PDF file. A temporary path

 is used, and the user will not be prompted for a save path.

 The temporary file that is created will be deleted by Acrobat

 upon application shutdown.

\end{itemize}

\newtopic Here is a series of examples of usage:

\begin{enumerate}

\item \ahyperextract[launch=view]{cooltarget}{aebpro_ex2.pdf}: Launch

 and view this PDF. The code is

\begin{verbatim}

\ahyperextract[launch=view]{cooltarget}{aebpro_ex2.pdf}

\end{verbatim}

When you extract (or open) PDF in this way, any links created

by \cs{ahyperref} or \cs{ahyperlink} as the PDF being viewed is no longer an embedded file of the

parent.

\item View the \ahyperextract[launch=viewnosave]{tex}{aebpro_ex5.tex}. The code is

\begin{verbatim}

\ahyperextract[launch=viewnosave]{tex}{aebpro_ex5.tex}

\end{verbatim}

Note that for attachments brought in by the \texttt{attachsource} option,

the label for that attachment is the file extension, in this case

\texttt{tex}.

\item \ahyperextract[launch=save]{AeST}{AeBST Component List}: This is an Excel spreadsheet which lists

the components of the {Acro\negthinspace\TeX} eDucation System

Tools. Here you are prompted to save; the spreadsheet will not be launched:

\begin{verbatim}

\ahyperextract[launch=save]{AeST}{AeBST Component List}

\end{verbatim}

\end{enumerate}

\section{Final Assembly}

To assemble your parent document with all the cross-references to

its embedded children, perform the following steps.

\begin{enumerate}

\item {\LaTeX} the parent document so that the auxiliary file

 \cs{jobname_xref.cut}. This file is read by the children when they

 are {\LaTeX}ed.

\item {\LaTeX} the child documents. The child documents will write

 their own auxiliary file and read \cs{jobname_xref.cut}. (Multiple

 compiles may be necessary to bring the auxiliary document up to

 date.)

\item Make PDF for the child documents.

\item Now {\LaTeX} the parent again, which will read in the

 auxiliary files of the children, if needed. Distill and \textsl{Le

 Voil\`{a}}, you have it!

\item At this point you can clean up all auxiliary files.

\end{enumerate}

\end{document}

