The fvextra package

Geoffrey M. Poore
gpoore@gmail.com
github.com/gpoore/fvextra

v1.6.1 from 2023/11/28

Abstract

fvextra provides several extensions to fancyvrb, including automatic line
breaking and improved math mode. \Verb is reimplemented so that it works
(with a few limitations) inside other commands, even in movable arguments
and PDF bookmarks. The new command \EscVerb is similar to \Verb except
that it works everywhere without limitations by allowing the backslash to
serve as an escape character. fvextra also patches some fancyvrb internals.

mailto://gpoore@gmail.com
https://github.com/gpoore/fvextra

Contents

1

2

Introduction

Usage
2.1 Pandoc compatibilityo oo

General options

General commands

4.1 Inline-only settings with \fvinlineset

4.2 Custom formatting for inline commands like \Verb with
\FancyVerbFormatInline

4.3 Custom formatting for environments like Verbatim with
\FancyVerbFormatLine and \FancyVerbFormatText

Reimplemented commands

5.1 \Verb e e
5.2 \SaveVerb. i i e e
5.3 \UseVerb e

New commands and environments

6.1 \EscVerb @ i e
6.2 VerbEnv
6.3 VerbatimWrite,
6.4 VerbatimBuffer
6.5 \VerbatimInsertBuffer

Line breaking

7.1 Line breaking options oL

7.2 Line breaking and tab expansion

7.3 Advanced line breaking oL oL
7.3.1 A few notes on algorithms
7.3.2 Breaks within macro arguments
7.3.3 Customizing break behavior

Pygments support
8.1 Options for users
8.2 For package authors 0L

Patches
9.1 Visiblespaces L L
9.2 obeytabs with visible tabs and with tabs inside macro arguments .
9.3 Mathmode
0.3.1 Spaceso e
9.3.2 Symbolsand fonts
9.4 Orphaned labels
9.5 rulecolor and fillcolor. v v v v v v v v v ..
9.6 Command lookahead tokenization

11
11

11

11

12
13
14
14

14
14
15
16
16
19

20
20
26
27
27
27
29

29
29
30

10 Additional modifications to fancyvrb 33

10.1 Backtick and single quotation mark 33
10.2 Line numbering Lo 33
11 Undocumented features of fancyvrb 33
11.1 Undocumented options 33
11.2 Undocumented macros 33
12 Changelog 34
13 Implementation 37
13.1 Required packages L 37
13.2 Utility macros L oL 38
13.2.1 fancyvrb space and tab tokens L. 38
13.2.2 ASCII processing v v v v v it 38
13.2.3 Sentinels.o 39
13.2.4 Active character definitions 39
13.3 pdfTeX with inputenc using UTF-8 40
13.4 Reading and processing command arguments 43
13.4.1 Tokenization and lookahead 43
13.4.2 Reading arguments Lo 44
13.4.3 Reading and protecting arguments in expansion-only contexts 47
13.4.4 Converting detokenized tokens into PDF strings 50
13.4.5 Detokenizing verbatim arguments 51
13.4.6 Retokenizing detokenized arguments 68
13.5 Hooks o o e 69
13.6 Escaped characters Lo oL 70
13.7 Inline-only options Lo 70
13.8 Reimplementationso oL 71
13.8.1 extraoption L oL 71
13.8.2 \FancyVerbFormatInline 71
13.8.3 \Verb 71
13.8.4 \SaveVerb 73
13.8.5 \UseVerb 74
13.9 New commands and environments 75
13.9.1 \EscVerb 75
13.9.2 VerbEnv 76
13.9.3 VerbatimWrite 78
13.9.4 VerbatimBuffer 79
13.9.5 \VerbatimInsertBuffer 82
13.10Patches oL 83
13.10.1 Delimiting characters for verbatim commands 83
13.10.2\CustomVerbatimCommand compatibility with
\FVExtraRobustCommand 83
13.10.3Visible spaceso o e 84
13.10.4 obeytabs with visible tabs and with tabs inside macro
arguments . ..o L oL Lo 84
13.10.5Spacing in math mode 88
13.10.6 Fonts and symbols in math mode 88
13.10.7 Ophaned label L oL 89

13.10.8 rulecolor and fillcolor &9

13.11Extensionso 90
13.11.1 New options requiring minimal implementation 90
13.11.2 Formatting with \FancyVerbFormatLine,

\FancyVerbFormatText, and \FancyVerbHighlightLine . 93
13.11.3 Line numbering Lo oL 94
13.11.4 Line highlighting or emphasis 98

13.12Line breaking Lo L 100
13.12.1 Options and associated macros 100
13.12.2 Line breaking implementation 108

13.13Pygments compatibility 000000 126

1 Introduction

The fancyvrb package had its first public release in January 1998. In July of the
same year, a few additional features were added. Since then, the package has
remained almost unchanged except for a few bug fixes. fancyvrb has become one of
the primary IETEX packages for working with verbatim text.

Additional verbatim features would be nice, but since fancyvrb has remained
almost unchanged for so long, a major upgrade could be problematic. There are
likely many existing documents that tweak or patch fancyvrb internals in a way
that relies on the existing implementation. At the same time, creating a completely
new verbatim package would require a major time investment and duplicate much
of fancyvrb that remains perfectly functional. Perhaps someday there will be an
amazing new verbatim package. Until then, we have fvextra.

fvextra is an add-on package that gives fancyvrb several additional features,
including automatic line breaking. Because fvextra patches and overwrites some
of the fancyvrb internals, it may not be suitable for documents that rely on the
details of the original fancyvrb implementation. fvextra tries to maintain the
default fancyvrb behavior in most cases. All reimplementations (section 5), patches
(section 9), and modifications to fancyvrb defaults (section 10) are documented. In
most cases, there are options to switch back to original implementations or original
default behavior.

Some features of fvextra were originally created as part of the pythontex and
minted packages. fancyvrb-related patches and extensions that currently exist in
those packages will gradually be migrated into fvextra.

2 Usage

fvextra may be used as a drop-in replacement for fancyvrb. It will load fancyvrb if it
has not yet been loaded, and then proceeds to patch fancyvrb and define additional
features.

The upquote package is loaded to give correct backticks (*) and typewriter
single quotation marks ('). When this is not desirable within a given environment,
use the option curlyquotes. fvextra modifies the behavior of these and other
symbols in typeset math within verbatim, so that they will behave as expected
(section 9.3). fvextra uses the lineno package for working with automatic line breaks.
lineno gives a warning when the csquotes package is loaded before it, so fvextra
should be loaded before csquotes. The etoolbox package is required. color or xcolor
should be loaded manually to use color-dependent features.

While fvextra attempts to minimize changes to the fancyvrb internals, in some
cases it completely overwrites fancyvrb macros with new definitions. New definitions
typically follow the original definitions as much as possible, but code that depends
on the details of the original fancyvrb implementation may be incompatible with
fvextra.

2.1 Pandoc compatibility

fvextra supports line breaking in Pandoc ETEX output that includes highlighted
source code. Enabling basic line breaking at spaces is as simple as adding

https://pandoc.org/

beameroverlays

curlyquotes

\usepackage{fvextra} and \fvset{breaklines} to the Pandoc Markdown
header-includes.

By default, more advanced line breaking features such as breakanywhere,
breakbefore, and breakafter will not work with Pandoc highlighted output, due
to the presence of the syntax highlighting macros. This can be fixed by using
breaknonspaceingroup, which enables all line breaking features within macros.
For example, the following YAML metadata in a Markdown document would
redefine the Pandoc Highlighting environment to enable line breaking anywhere.

header-includes:
-
“T {=latex}
\usepackage{fvextra}
\DefineVerbatimEnvironment{Highlighting}{Verbatim}{
commandchars=\\\{\},
breaklines, breaknonspaceingroup, breakanywhere}

3 General options

fvextra adds several general options to fancyvrb. All options related to automatic
line breaking are described separately in section 7. All options related to syntax
highlighting using Pygments are described in section 8.

(boolean) (default: false)
Give the < and > characters their normal text meanings, so that beamer
overlays of the form \only<i>{...} will work. Note that something like
commandchars=\\\{\} is required separately to enable macros. This is not in-
corporated in the beameroverlays option because essentially arbitrary command
characters could be used; only the < and > characters are hard-coded for overlays.

With some font encodings and language settings, beameroverlays prevents
literal (non-overlay) < and > characters from appearing correctly, so they must be
inserted using commands.

(boolean) (default: false)
Unlike fancyvrb, fvextra requires the upquote package, so the backtick () and
typewriter single quotation mark (') always appear literally by default, instead
of becoming the left and right curly single quotation marks (¢?). This option
allows these characters to be replaced by the curly quotation marks when that is
desirable.

\begin{Verbatim}
“quoted text' “quoted text'
\end{Verbatim}

extra

fontencoding

highlightcolor

highlightlines

\begin{Verbatim} [curlyquotes]
“quoted text' ‘quoted text’
\end{Verbatim}

(boolean) (default: true)
Use fvextra reimplementations of fancyvrb commands and environments when
available. For example, use fvextra’s reimplemented \Verb that works (with a few
limitations) inside other commands, rather than the original fancyvrb implementa-
tion that essentially functions as \texttt inside other commands.

(string) (default: (document font encoding))
Set the font encoding inside fancyvrb commands and environments. Setting
fontencoding=none resets to the default document font encoding.

(string) (default: LightCyan)
Set the color used for highlightlines, using a predefined color name from color
or xcolor, or a color defined via \definecolor.

(string) (default: (nome))
This highlights a single line or a range of lines based on line numbers. The line
numbers refer to the line numbers that fancyvrb would show if numbers=left,
etc. They do not refer to original or actual line numbers before adjustment by
firstnumber.

The highlighting color can be customized with highlightcolor.

\begin{Verbatim} [numbers=1left, highlightlines={1, 3-4}]
First line

Second line

Third line

Fourth line

Fifth line

\end{Verbatim}

1 First line
2 Second line
3 Third line
4 Fourth line
5 Fifth line

The actual highlighting is performed by a set of commands. These may be
customized for additional fine-tuning of highlighting. See the default definition of
\FancyVerbHighlightLineFirst as a starting point.

e \FancyVerbHighlightLineFirst: First line in a range.

e \FancyVerbHighlightLineMiddle: Inner lines in a range.

e \FancyVerbHighlightLineLast: Last line in a range.

e \FancyVerbHighlightLineSingle: Single highlighted lines.

e \FancyVerbHighlightLineNormal: Normal lines without highlighting.

linenos

mathescape

numberfirstline

numbers

If these are customized in such a way that indentation or inter-line spacing is
changed, then \FancyVerbHighlightLineNormal may be modified as well to make
all lines uniform. When working with the First, Last, and Single commands,
keep in mind that fvextra merges all numbers ranges, so that {1, 2-3, 3-5} is
treated the same as {1-5%}.

Highlighting is applied after \FancyVerbFormatText, so any text formatting
defined via that command will work with highlighting. Highlighting is applied before
\FancyVerbFormatLine, so if \FancyVerbFormatLine puts a line in a box, the
box will be behind whatever is created by highlighting. This prevents highlighting
from vanishing due to user-defined customization.

(boolean) (default: false)
fancyvrb allows line numbers via the options numbers=(position). This is essentially
an alias for numbers=left. It primarily exists for better compatibility with the
minted package.

(boolean) (default: false)
This causes everything between dollar signs $...$ to be typeset as math. The
ampersand &, caret ~, and underscore _ have their normal math meanings.

This is equivalent to

codes={\catcode \$=3\catcode \&=4\catcode \"=7\catcode _=8}

mathescape is always applied before codes, so that codes can be used to override
some of these definitions.

Note that fvextra provides several patches that make math mode within verbatim
as close to normal math mode as possible (section 9.3).

(boolean) (default: false)
When line numbering is used with stepnumber # 1, the first line may not always
be numbered, depending on the line number of the first line. This causes the first
line always to be numbered.

\begin{Verbatim} [numbers=1left, stepnumber=2,
numberfirstline]

First line

Second line

Third line

Fourth line

\end{Verbatim}

1 First line

2 Second line
Third line

4+ Fourth line

(none | left | right | both) (default: none)
fvextra adds the both option for line numbering.

\begin{Verbatim} [numbers=both]
First line 1 First line 1
Second line > Second line 2
Third line 3 Third line 3
Fourth line 4+ Fourth line 4
\end{Verbatim}

retokenize (boolean) (default: false)

By default, \UseVerb inserts saved verbatim material with the catcodes (commandchars,
codes, etc.) under which it was originally saved with \SaveVerb. When
retokenize is used, the saved verbatim material is retokenized under the set-
tings in place at \UseVerb.

This only applies to the reimplemented \UseVerb, when paired with the reim-
plemented \SaveVerb. It may be extended to environments (\UseVerbatim, etc.)
in the future, if the relevant commands and environments are reimplemented.

space (macro) (default:)
Redefine the visible space character. Note that this is only used if showspaces=true.
The color of the character may be set with spacecolor.

spacebreak (macro) (default: \discretionary{}{}{})
This determines the break that is inserted around spaces when breaklines=true
and one or more of the following conditions applies: breakcollapsespaces=false,
showspaces=true, or the space is affected by breakbefore or breakafter. If it
is redefined, it should typically be similar to \FancyVerbBreakAnywhereBreak,
\FancyVerbBreakBeforeBreak, and \FancyVerbBreakAfterBreak to obtain con-
sistent breaks.

spacecolor (string) (default: none)
Set the color of visible spaces. By default (none), they take the color of their
surroundings.
\color{gray}

\begin{Verbatim} [showspaces, spacecolor=red]
One two three
\end{Verbatim}

One._._.two._.three

stepnumberfromfirst (boolean) (default: false)
By default, when line numbering is used with stepnumber # 1, only line numbers
that are a multiple of stepnumber are included. This offsets the line numbering
from the first line, so that the first line, and all lines separated from it by a multiple
of stepnumber, are numbered.

stepnumberoffsetvalues

tab

\begin{Verbatim} [numbers=1left, stepnumber=2,
stepnumberfromfirst]

First line

Second line

Third line

Fourth line

\end{Verbatim}

1 First line
Second line
3 Third line
Fourth line

(boolean) (default: false)
By default, when line numbering is used with stepnumber # 1, only line numbers
that are a multiple of stepnumber are included. Using firstnumber to offset the
numbering will change which lines are numbered and which line gets which number,
but will not change which numbers appear. This option causes firstnumber
to be ignored in determining which line numbers are a multiple of stepnumber.
firstnumber is still used in calculating the actual numbers that appear. As a result,
the line numbers that appear will be a multiple of stepnumber, plus firstnumber
minus 1.

This option gives the original behavior of fancyvrb when firstnumber is used
with stepnumber # 1 (section 10.2).

\begin{Verbatim} [numbers=1left, stepnumber=2,
firstnumber=4, stepnumberoffsetvalues]

First line

Second line

Third line

Fourth line

\end{Verbatim}

First line
5 Second line
Third line
7 Fourth line

(macro) (default: fancyvrb’s \FancyVerbTab,)
Redefine the visible tab character. Note that this is only used if showtabs=true.
The color of the character may be set with tabcolor.

When redefining the tab, you should include the font family, font shape, and
text color in the definition. Otherwise these may be inherited from the surrounding
text. This is particularly important when using the tab with syntax highlighting,
such as with the minted or pythontex packages.

10

fvextra patches fancyvrb tab expansion so that variable-width symbols such as
\rightarrowfill may be used as tabs. For example,

\begin{Verbatim} [obeytabs, showtabs, breaklines,
tab=\rightarrowfill, tabcolor=orange]
JFirst -ISecond JThird -IAnd more text that goes on for a
— while until wrapping is needed
JFirst -ISecond -IThird -Forth
\end{Verbatim}

First Second—Third——And more text that goes on for a
— while until wrapping is needed
First Second—Third—Forth

tabcolor (string) (default: none)
Set the color of visible tabs. By default (none), they take the color of their
surroundings.

4 General commands

4.1 Inline-only settings with \fvinlineset

\fvinlineset{({options)}

This is like \fvset, except that options only apply to commands that typeset
inline verbatim, like \Verb and \EscVerb. Settings from \fvinlineset override
those from \fvset.

Note that \fvinlineset only works with commands that are reimplemented,
patched, or defined by fvextra; it is not compatible with the original fancyvrb
definitions.

4.2 Custom formatting for inline commands like \Verb with
\FancyVerbFormatInline

\FancyVerbFormatInline

This can be used to apply custom formatting to inline verbatim text cre-
ated with commands like \Verb. It only works with commands that are reim-
plemented, patched, or defined by fvextra; it is not compatible with the origi-
nal fancyvrb definitions. The default definition does nothing; it is equivalent to
\newcommand{\FancyVerbFormatInlinel} [1]{#1}.

This is the inline equivalent of \FancyVerbFormatLine and \FancyVerbFormatText.
In the inline context, there is no need to distinguish between entire line formatting
and only text formatting, so only \FancyVerbFormatInline exists.

4.3 Custom formatting for environments like Verbatim with
\FancyVerbFormatLine and \FancyVerbFormatText

\FancyVerbFormatLine
\FancyVerbFormatText

11

fancyvrb defines \FancyVerbFormatLine, which can be used to apply custom
formatting to each individual line of text in environments like Verbatim. By
default, it takes a line as an argument and inserts it with no modification. This is
equivalent to \newcommand{\FancyVerbFormatLine} [1]{#1}.!

fvextra introduces line breaking, which complicates line formatting. We might
want to apply formatting to the entire line, including line breaks, line continuation
symbols, and all indentation, including any extra indentation provided by line
breaking. Or we might want to apply formatting only to the actual text of the
line. fvextra leaves \FancyVerbFormatLine as applying to the entire line, and
introduces a new command \FancyVerbFormatText that only applies to the text
part of the line.? By default, \FancyVerbFormatText inserts the text unmodified.
When it is customized, it should not use boxes that do not allow line breaks to
avoid conflicts with line breaking code.

\renewcommand{\FancyVerbFormatLine} [1]{%
\fcolorbox{DarkBlue}{LightGray}{#1}}
\renewcommand{\FancyVerbFormatText}[1]{\textcolor{Green}{#1}}

\begin{Verbatim} [breaklines]
Some text that proceeds for a while and finally wraps onto another line
Some more text
\end{Verbatim}

Some text that proceeds for a while and finally wraps onto
— another line

Some more text

5 Reimplemented commands

fvextra reimplements parts of fancyvrb. These new implementations stay close to
the original definitions while allowing for new features that otherwise would not be
possible. Reimplemented versions are used by default. The original implementations
may be used via \fvset{extra=false} or by using extra=false in the optional
arguments to a command or environment.

Reimplemented commands restrict the scope of catcode-related options com-
pared to the original fancyvrb versions. This prevents catcode-related options from
interfering with new features such as \FancyVerbFormatInline. With fvextra, the
codes option should only be used for catcode modifications. Including non-catcode
commands in codes will typically have no effect, unlike with fancyvrb. If you want

IThe actual definition in fancyvrb is \def\FancyVerbFormatLine#1{\FV@ObeyTabs{#1}}. This
is problematic because redefining the macro could easily eliminate \FV@0ObeyTabs, which governs
tab expansion. fvextra redefines the macro to \def\FancyVerbFormatLine#1{#1} and patches all
parts of fancyvrb that use \FancyVerbFormatLine so that \FV@0ObeyTabs is explicitly inserted at
the appropriate points.

2When breaklines=true, each line is wrapped in a \parbox. \FancyVerbFormatLine is outside
the \parbox, and \FancyVerbFormatText is inside.

12

to customize verbatim content using general commands, consider formatcom.

5.1 \Verb

\Verb*[(options)](delim char or {)(text)(delim char or })

The new \Verb works as expected (with a few limitations) inside other com-
mands. It even works in movable arguments (for example, in \section), and is
compatible with hyperref for generating PDF strings (for example, PDF bookmarks).
The fancyvrb definition did work inside some other commands, but essentially func-
tioned as \texttt in that context.

\Verb is compatible with breaklines and the relevant line-breaking options.

Like the original fancyvrb implementation, the new \Verb can be starred
(\Verb*) and accepts optional arguments. While fancyvrb’s starred command
\Verb* is a shortcut for showspaces, fvextra’s \Verb#* is a shortcut for both
showspaces and showtabs. This is more similar to the current behavior of BTEX’s
\verbx*, except that \verb* converts tabs into visible spaces instead of displaying
them as visible tabs.

Delimiters A repeated character like normal \verb, or a pair of curly braces
{...}. If curly braces are used, then (text) cannot contain unpaired curly
braces. Note that curly braces should be preferred when using \Verb inside
other commands, and curly braces are required when \Verb is in a movable
argument, such as in a \section. Non-ASCII characters now work as delim-
iters under pdfTeX with inputenc using UTF-8.% For example, \Verb§verb§
now works as expected.

Limitations inside other commands While the new \Verb does work inside
arbitrary other commands, there are a few limitations.

o # and % cannot be used. If you need them, consider \EscVerb or perhaps
\SaveVerb plus \UseVerb.

e Curly braces are only allowed in pairs.
o Multiple adjacent spaces will be collapsed into a single space.

o Be careful with backslashes. A backslash that is followed by one or more
ASCIT letters will cause a following space to be lost, if the space is not
immediately followed by an ASCII letter. For example, \Verb{\r \n}
becomes \r\n, but \Verb{\r n} becomes \r n. Basically, anything
that looks like a TEX command (control word) will gobble following
spaces, unless the next character after the spaces is an ASCII letter.

e A single ~ is fine, but avoid =~ because it will serve as an escape sequence
for an ASCII command character.

Using in movable arguments \Verb works automatically in movable argu-
ments, such as in a \section. \protect or similar measures are not needed
for \Verb itself, or for any of its arguments, and should not be used. \Verb
performs operations that amount to applying \protect to all of these auto-
matically.

3Under pdfTeX, non-ASCII code points are processed at the byte rather than code point level,
so \Verb must treat a sequence of multiple bytes as the delimiter.

13

hyperref PDF strings \Verb is compatible with hyperref for generating PDF
strings such as PDF bookmarks. Note that the PDF strings are always a
literal rendering of the verbatim text, with all fancyvrb options ignored. For
example, things like showspaces and commandchars have no effect. If you
need options to be applied to obtain desired PDF strings, consider a custom
approach, perhaps using \texorpdfstring.

Line breaking breaklines allows breaks at spaces. breakbefore, breakafter,
and breakanywhere function as expected, as do things like breakaftersymbolpre
and breakaftersymbolpost. Break options that are only applicable to block
text like a Verbatim environment do not have any effect. For example,
breakindent and breaksymbol do nothing.

5.2 \SaveVerb

\SaveVerb[(options)]{(name)}(delim char or {){tezt)(delim char or })
\SaveVerb is reimplemented so that it is equivalent to the reimplemented
\Verb. Like the new \Verb, it accepts (text) delimited by a pair of curly braces
{...}. It supports \fvinlineset. It also adds support for the new retokenize
option for \UseVerb.

5.3 \UseVerb

\UseVerb* [{options)]{(name)}

\UseVerb is reimplemented so that it is equivalent to the reimplemented \Verb.
It supports \fvinlineset and breaklines.

Like \Verb, \UseVerb is compatible with hyperref for generating PDF strings
such as PDF bookmarks. Note that the PDF strings are always a literal rendering
of the verbatim text, with all fancyvrb options ignored. For example, things like
showspaces and commandchars have no effect. The new option retokenize also
has no effect. If you need options to be applied to obtain desired PDF strings,
consider a custom approach, perhaps using \texorpdfstring

There is a new option retokenize for \UseVerb. By default, \UseVerb inserts
saved verbatim material with the catcodes (commandchars, codes, etc.) under
which it was originally saved with \SaveVerb. When retokenize is used, the
saved verbatim material is retokenized under the settings in place at \UseVerb.

For example, consider \SaveVerb{save}{\textcolor{red}{#%}}:

e \UseVerb{save} = \textcolor{red{#/}
e \UseVerb[commandchars=\\\{\}]{save} = \textcolor{red}{#)}

e \UseVerb[retokenize, commandchars=\\\{\}]{save} = #J,

6 New commands and environments

6.1 \EscVerb

\EscVerb* [(options)]{(backslash-escaped tezt)}
This is like \Verb but with backslash escapes to allow for characters such as
and %. For example, \EscVerb{\\Verb{\#\%}} gives \Verb{#}}. It behaves

14

exactly the same regardless of whether it is used inside another command. Like the
reimplemented \Verb, it works in movable arguments (for example, in \section),
and is compatible with hyperref for generating PDF strings (for example, PDF
bookmarks).

Delimiters Text must always be delimited with a pair of curly braces {...}.
This ensures that \EscVerb is always used in the same manner regardless of
whether it is inside another command.

Escaping rules

e Only printable, non-alphanumeric ASCII characters (symbols, punctua-
tion) can be escaped with backslashes.*

o Always escape these characters: \, %, #.

o Escape spaces when there are more than one in a row.
e Escape ~ if there are more than one in a row.

e Escape unpaired curly braces.

« Additional symbols or punctuation characters may require escaping if
they are made \active, depending on their definitions.

Using in movable arguments \EscVerb works automatically in movable argu-
ments, such as in a \section. \protect or similar measures are not needed
for \EscVerb itself, or for any of its arguments, and should not be used.
\EscVerb performs operations that amount to applying \protect to all of
these automatically.

hyperref PDF strings \EscVerb is compatible with hyperref for generating PDF
strings such as PDF bookmarks. Note that the PDF strings are always a literal
rendering of the verbatim text after backslash escapes have been applied,
with all fancyvrb options ignored. For example, things like showspaces
and commandchars have no effect. If you need options to be applied to
obtain desired PDF strings, consider a custom approach, perhaps using
\texorpdfstring.

6.2 VerbEnv

\begin{VerbEnv} [(options)]
(single line) This is an environment variant of \Verb. The environment must contain only
\end{VerbEnv} a single line of text, and the closing \end{VerbEnv} must be on a line by itself.
The (options) and (single line) are read and then passed on to \Verb internally
for actual typesetting.

While VerbEnv can be used by document authors, it is primarily intended for
package creators. For example, it is used in minted to implement \mintinline. In
that case, highlighted code is always generated within a Verbatim environment.
It is possible to process this as inline rather than block verbatim by \letting
\Verbatim to \VerbEnv.

4 Allowing backslash escapes of letters would lead to ambiguity regarding spaces; see \Verb.

15

\begin{VerbatimWrite} [{opt)]
(lines)

BEFORE\begin{VerbEnv}

inline BEFORE_inline AFTER
\end{VerbEnv}

AFTER

VerbEnv is not implemented using the typical fancyvrb environment implemen-
tation style, so it is not compatible with \RecustomVerbatimEnvironment.

6.3 VerbatimWrite

This writes environment contents verbatim to an external file. It is similar

\end{VerbatimWrite} to fancyvrb’s VerbatimOut, except that (1) it allows writing to a file multiple

writefilehandle

writer

times (multiple environments can write to the same file) and (2) by default it uses
\detokenize to guarantee truly verbatim output.

By default, all fancyvrb options except for VerbatimWrite-specific options are
ignored. This can be customized on a per-environment basis via environment
optional arguments.

Options defined specifically for VerbatimWrite:

(file handle) (default: (nome))
File handle for writing. For example,

\newwrite\myfile
\immediate\openout\myfile=myfile.txt\relax

\begin{VerbatimWrite} [writefilehandle=\myfile]
\end{VerbatimWrite}

\immediate\closeout\myfile

(macro) (default: \FancyVerbDefaultWriter)
This is the macro that processes each line of text in the environment and then
writes it to file. This is the default implementation:

\def\FancyVerbDefaultWriter#1{/
\immediate\write\FancyVerbWriteFileHandle{\detokenize{#1}}}

6.4 VerbatimBuffer

\begin{VerbatimBuffer}[{opt)]

(lines)

This environment stores its contents verbatim in a “buffer,” a sequence of num-

\end{VerbatimBuffer} bered macros each of which contains one line of the environment. The “buffered”

lines can then be looped over for further processing or later use. This is similar to fan-
cyvrb’s SaveVerbatim, which saves an environment for later use. VerbatimBuffer
offers additional flexibility by capturing truly verbatim environment contents using
\detokenize and saving environment contents in a format designed for further
processing.

16

By default, all fancyvrb options except for VerbatimBuffer-specific options
are ignored. This can be customized on a per-environment basis via environment
optional arguments.

Below is an extended example that demonstrates what is possible with
VerbatimBuffer combined with \VerbatimInsertBuffer. This uses \ifdefstring
from the etoolbox package.

o \setformatter defines an empty \formatter macro. Then it loops over the
lines in a buffer looking for a line containing only the text “red”. If this is
found, it redefines \formatter to \color{red}. FancyVerbBufferIndex isa
counter that is always available for buffer looping. FancyVerbBufferLength
is the default counter containing the buffer length (number of lines).
\FancyVerbBufferLineName contains the base name for buffer line macros
(default FancyVerbBufferLine).

o afterbuffer involves two steps: (1) \setformatter loops through the
buffer and defines \formatter based on the buffer contents, and (2)
\VerbatimInsertBuffer typesets the buffer, using formatcom=\formatter
to format the text based on whether any line contains only the text “red”.

\def\setformatter{/

\def\formatter{}”

\setcounter{FancyVerbBufferIndex}{1}/

\loop\unless\ifnum\value{FancyVerbBufferIndex}>\value{FancyVerbBufferLength}\relax
\expandafter\let\expandafter\bufferline

\csname\FancyVerbBufferLineName\arabic{FancyVerbBufferIndex}\endcsname

\ifdefstring{\bufferline}{red}{\def\formatter{\color{red}}}{}/”
\stepcounter{FancyVerbBufferIndex}/

\repeat}

\begin{VerbatimBuffer}[
afterbuffer={\setformatter\VerbatimInsertBuffer [formatcom=\formatter]}
]
first
second
red
\end{VerbatimBuffer}

first
second
red

Here is the same example, but rewritten to use a global buffer with custom
buffer names instead.

17

\begin{VerbatimBuffer}[globalbuffer, bufferlinename=exbuff, bufferlengthname=exbuff]
first

second

red

\end{VerbatimBuffer}

\def\formatter{}

\setcounter{FancyVerbBufferIndex}{1}

\loop\unless\ifnum\value{FancyVerbBufferIndex}>\value{exbuff}\relax
\expandafter\let\expandafter\bufferline

\csname exbuff\arabic{FancyVerbBufferIndex}\endcsname

\ifdefstring{\bufferline}{red}{\def\formatter{\color{red}}}{}
\stepcounter{FancyVerbBufferIndex}

\repeat

\VerbatimInsertBuffer[
formatcom=\formatter,
bufferlinename=exbuff,
bufferlengthname=exbuff

]
first
second
red
Options defined specifically for VerbatimBuffer:
afterbuffer (macro) (default: (nome))
Macro or macros invoked at the end of the environment, after all lines of the
environment have been buffered. This is outside the \begingroup. . .\endgroup
that wraps verbatim processing, so fancyvrb settings are no longer active. However,
the buffer line macros and the buffer length counter are still accessible.
bufferer (macro) (default: \FancyVerbDefaultBufferer)

This is the macro that adds lines to the buffer. The default is designed to create
a truly verbatim buffer via \detokenize. This can be customized if you wish to
use fancyvrb options related to catcodes to create a buffer that is only partially
verbatim (that contains macros).

\def\FancyVerbDefaultBufferer#1{/
\expandafter\xdef\csname\FancyVerbBufferLineName\arabic{FancyVerbBufferIndex}\endcsname{%
\detokenize{#1}}}

A custom bufferer must take a single argument #1 (a line of the environment
text) and ultimately store the processed line in a macro called

\csname\FancyVerbBufferLineName\arabic{FancyVerbBufferIndex}\endcsname

This macro must be defined globally, so \xdef or \gdef is necessary (this does not
interfere with scoping from globalbuffer). Otherwise, there are no restrictions.
The \xdef and \detokenize in the default definition guarantee that the buffer

18

consists only of the literal text from the environment, but this is not required for a
custom bufferer.

bufferlengthname (string) (default: FancyVerbBufferLength)
Name of the counter (\newcounter) storing the length of the buffer. This is the
number of lines stored.

bufferlinename (string) (default: FancyVerbBufferLine)
The base name of the buffer line macros. The default is FancyVerbBufferLine,
which will result in buffer macros \FancyVerbBufferLine<n> with integer n greater
than or equal to one and less than or equal to the number of lines (one-based
indexing). Since buffer macro names contain a number, they must be accessed
differently than typical macros:

\csname FancyVerbBufferLine<n>\endcsname
\@nameuse{FancyVerbBufferLine<n>}

Typically the buffer macros will be looped over with a counter that is incremented,
in which case <n> should be the counter value \arabic{<counter>}.

buffername (string) (default: (nome))
Shortcut for setting bufferlengthname and bufferlinename simultaneously, using
the same root name. This sets bufferlengthname to <buffername>length and
bufferlinename to <buffername>line.

globalbuffer (bool) (default: false)
This determines whether buffer line macros are defined globally, that is, whether
they are accessible after the end of the VerbatimBuffer environment. It does
not affect any afterbuffer macro, since that is invoked inside the environment.
globalbuffer also determines whether the buffer length counter contains the
buffer length or is reset to zero after the end of the VerbatimBuffer environment.

When buffered lines are used immediately, consider using afterbuffer instead
of globalbuffer. When buffered lines must be used later in a document, consider
using globalbuffer with custom (and perhaps unique) bufferlinename and
bufferlengthname.

When globalbuffer=false, at the end of the environment all buffer line
macros based on the current bufferlinename are “deleted” (\let to an undefined
macro), and the buffer length counter from bufferlengthname is set to zero. This
means that a VerbatimBuffer environment with globalbuffer=false will clear
the buffer created by any previous VerbatimBuffer that had globalbuffer=true
and shared the same bufferlinename.

6.5 \VerbatimInsertBuffer

\VerbatimInsertBuffer[{options)]

This inserts an existing buffer created by VerbatimBuffer as a Verbatim
environment. It customizes Verbatim internals to function with a buffer in a
command context. See the VerbatimBuffer documentation for an example of
usage.

Options related to catcodes cause the buffer to be retokenized during typesetting.
That is, the fancyvrb options used for \VerbatimInsertBuffer are not restricted by
those that were in effect when VerbatimBuffer originally created the buffer, so long

19

as the buffer contains a complete representation of the original VerbatimBuffer
environment contents.

\VerbatimInsertBuffer is not implemented using the typical fancyvrb com-
mand and environment implementation styles, so it is not compatible with
\RecustomVerbatimCommand or \RecustomVerbatimEnvironment.

7 Line breaking

Automatic line breaking may be turned on with breaklines=true. By default,
breaks only occur at spaces. Breaks may be allowed anywhere with breakanywhere,
or only before or after specified characters with breakbefore and breakafter.
Many options are provided for customizing breaks. A good place to start is the
description of breaklines.

When a line is broken, the result must fit on a single page. There is no support
for breaking a line across multiple pages.

7.1 Line breaking options

Options are provided for customizing typical line breaking features. See section 7.3
for details about low-level customization of break behavior.

breakafter (string) (default: (nome))
Break lines after specified characters, not just at spaces, when breaklines=true.
For example, breakafter=-/ would allow breaks after any hyphens or slashes.
Special characters given to breakafter should be backslash-escaped (usually #,
4} % [,], and the comma ,; the backslash \ may be obtained via \\ and the
space via \space).’

For an alternative, see breakbefore. When breakbefore and breakafter are
used for the same character, breakbeforeinrun and breakafterinrun must both
have the same setting.

Note that when commandchars or codes are used to include macros within
verbatim content, breaks will not occur within mandatory macro arguments by
default. Depending on settings, macros that take optional arguments may not
work unless the entire macro including arguments is wrapped in a group (curly
braces {2}, or other characters specified with commandchars). See section 7.3 for
details, and consider breaknonspaceingroup as a solution in simple cases.

\begin{Verbatim} [breaklines, breakafter=d]
some_string = 'SomeTextThatGoesOnAndOnForSoLongThatItCouldNeverFitOnOnelLine'
\end{Verbatim}

some_string = 'SomeTextThatGoesOnAndOnForSoLongThatItCould
— NeverFitOnOneLine'

Spreakafter expands each token it is given once, so when it is given a macro like \¥%, the
macro should expand to a literal character that will appear in the text to be typeset. fvextra
defines special character escapes that are activated for breakafter so that this will work with
common escapes. The only exception to token expansion is non-ASCII characters under pdfTeX;
these should appear literally. breakafter is not catcode-sensitive.

20

breakafterinrun (boolean) (default: false)
When breakafter is used, insert breaks within runs of identical characters. If
false, treat sequences of identical characters as a unit that cannot contain
breaks. When breakbefore and breakafter are used for the same character,
breakbeforeinrun and breakafterinrun must both have the same setting.

breakaftersymbolpre (string) (default: \,\footnotesize\ensuremath{_\rfloor},)
The symbol inserted pre-break for breaks inserted by breakafter. This does not
apply to breaks inserted next to spaces; see spacebreak.

breakaftersymbolpost (string) (defaultt (none>)
The symbol inserted post-break for breaks inserted by breakafter. This does not
apply to breaks inserted next to spaces; see spacebreak.

breakanywhere (boolean) (default: false)
Break lines anywhere, not just at spaces, when breaklines=true.

Note that when commandchars or codes are used to include macros within
verbatim content, breaks will not occur within mandatory macro arguments by
default. Depending on settings, macros that take optional arguments may not
work unless the entire macro including arguments is wrapped in a group (curly
braces {2}, or other characters specified with commandchars). See section 7.3 for
details, and consider breaknonspaceingroup as a solution in simple cases.

\begin{Verbatim} [breaklines, breakanywhere]
some_string = 'SomeTextThatGoesOnAndOnForSoLongThatItCouldNeverFitOnOnelLine'
\end{Verbatim}

some_string = 'SomeTextThatGoesOnAndOnForSoLongThatItCouldNeve
— rFitOnOnelLine'

breakanywheresymbolpre (string) (default: \,\footnotesize\ensuremath{_\rfloor}, |)
The symbol inserted pre-break for breaks inserted by breakanywhere. This does
not apply to breaks inserted next to spaces; see spacebreak.

breakanywheresymbolpost (String) (default: (none>)
The symbol inserted post-break for breaks inserted by breakanywhere. This does
not apply to breaks inserted next to spaces; see spacebreak.

breakautoindent (boolean) (default: true)
When a line is broken, automatically indent the continuation lines to the indentation
level of the first line. When breakautoindent and breakindent are used together,
the indentations add. This indentation is combined with breaksymbolindentleft
to give the total actual left indentation.

breakbefore (string) (default: (nome))
Break lines before specified characters, not just at spaces, when breaklines=true.
For example, breakbefore=A would allow breaks before capital A’s. Special
characters given to breakbefore should be backslash-escaped (usually #, {, }, %,
[, 1, and the comma ,; the backslash \ may be obtained via \\ and the space via

21

\space).’

For an alternative, see breakafter. When breakbefore and breakafter are
used for the same character, breakbeforeinrun and breakafterinrun must both
have the same setting.

Note that when commandchars or codes are used to include macros within
verbatim content, breaks will not occur within mandatory macro arguments by
default. Depending on settings, macros that take optional arguments may not
work unless the entire macro including arguments is wrapped in a group (curly
braces {}, or other characters specified with commandchars). See section 7.3 for
details, and consider breaknonspaceingroup as a solution in simple cases.

\begin{Verbatim} [breaklines, breakbefore=A]
some_string = 'SomeTextThatGoesOnAndOnForSoLongThatItCouldNeverFitOnOnelLine'
\end{Verbatim}

some_string = 'SomeTextThatGoesOn
— AndOnForSoLongThatItCouldNeverFitOnOneLine'

breakbeforeinrun (boolean) (default: false)
When breakbefore is used, insert breaks within runs of identical characters.
If false, treat sequences of identical characters as a unit that cannot contain
breaks. When breakbefore and breakafter are used for the same character,
breakbeforeinrun and breakafterinrun must both have the same setting.

breakbeforesymbolpre (string) (default: \,\footnotesize\ensuremath{_\rfloor},)
The symbol inserted pre-break for breaks inserted by breakbefore. This does not
apply to breaks inserted next to spaces; see spacebreak.

breakbeforesymbolpost (string) (default: (nome))
The symbol inserted post-break for breaks inserted by breakbefore. This does
not apply to breaks inserted next to spaces; see spacebreak.

breakcollapsespaces (bool) (default: true)
When true (default), a line break within a run of regular spaces (showspaces=false)
replaces all spaces with a single break, and the wrapped line after the break starts
with a non-space character. When false, a line break within a run of regular
spaces preserves all spaces, and the wrapped line after the break may start with
one or more spaces. This causes regular spaces to behave exactly like the visible
spaces produced with showspaces; both give identical line breaks, with the only
difference being the appearance of spaces.

breakindent (dimension) (default: (breakindentnchars))
When a line is broken, indent the continuation lines by this amount. When
breakautoindent and breakindent are used together, the indentations add. This

6preakbefore expands each token it is given once, so when it is given a macro like \%, the
macro should expand to a literal character that will appear in the text to be typeset. fvextra
defines special character escapes that are activated for breakbefore so that this will work with
common escapes. The only exception to token expansion is non-ASCII characters under pdfTeX;
these should appear literally. breakbefore is not catcode-sensitive.

22

indentation is combined with breaksymbolindentleft to give the total actual left
indentation.

breakindentnchars (integer) (default: 0)
This allows breakindent to be specified as an integer number of characters rather
than as a dimension (assumes a fixed-width font).

breaklines (boolean) (default: false)
Automatically break long lines. When a line is broken, the result must fit on a
single page. There is no support for breaking a line across multiple pages.”
By default, automatic breaks occur at spaces (even when showspaces=true).
Use breakanywhere to enable breaking anywhere; use breakbefore and breakafter
for more fine-tuned breaking.

...text. ...text.
\begin{Verbatim} [breaklines]
def f(x): def f(x):
return 'Some text ' + str(x) return 'Some text ' +

\end{Verbatim} - str(x)

To customize the indentation of broken lines, see breakindent and breakautoindent.
To customize the line continuation symbols, use breaksymbolleft and breaksymbolright.
To customize the separation between the continuation symbols and the text,
use breaksymbolsepleft and breaksymbolsepright. To customize the ex-
tra indentation that is supplied to make room for the break symbols, use
breaksymbolindentleft and breaksymbolindentright. Since only the left-
hand symbol is used by default, it may also be modified using the alias options
breaksymbol, breaksymbolsep, and breaksymbolindent.

An example using these options to customize the Verbatim environment is
shown below. This uses the \carriagereturn symbol from the dingbat package.

"Following the implementation in fancyvrb, each line is typeset within an \hbox, so page breaks
are not possible.

23

\begin{Verbatim} [breaklines,
breakautoindent=false,
breaksymbolleft=\raisebox{0.8ex}{
\small\reflectbox{\carriagereturn}},
breaksymbolindentleft=0pt,
breaksymbolsepleft=0pt,
breaksymbolright=\small\carriagereturn,
breaksymbolindentright=0pt,
breaksymbolsepright=0pt]
def f(x):
return 'Some text ' + str(x) + ' some more text ' +
— str(x) + ' even more text that goes on for a while'

\end{Verbatim}
def f(x):
return 'Some text ' + str(x) + ' some more text ' + >

Gstr(x) + ' even more text that goes on for a while'

Beginning in version 1.6, automatic line breaks work with showspaces=true by
default. Defining breakbefore or breakafter for \space is no longer necessary.
For example,

\begin{Verbatim} [breaklines, showspaces]
some_string = 'Some Text That Goes On And On For So Long That It Could Never Fit'
\end{Verbatim}

some_string.=.'Some.Text.That._ Goes.On_And._On_For_So._Long. That.
— It.Could_Never_Fit'

breaknonspaceingroup (boolean) (default: false)
By using commandchars, it is possible to include BTEX commands within otherwise
verbatim text. In these cases, there can be groups (typically {. ..} but depends on
commandchars) within verbatim. Spaces within groups are treated as potential line
break locations when breaklines=true, but by default no other break locations are
inserted (breakbefore, breakafter, breakanywhere). This is because inserting
non-space break locations can interfere with command functionality. For example,
in \textcolor{red}{text}, breaks shouldn’t be inserted within red.
breaknonspaceingroup allows non-space breaks to be inserted within groups.
This option should only be used when commandchars is including BTEX commands
that do not take optional arguments and only take mandatory arguments that are
typeset. Something like \textit{text} is fine, but \textcolor{red}{text} is not
because one of the mandatory arguments is not typeset but rather provides a setting.
For more complex commands, it is typically better to redefine them to insert breaks
in appropriate locations using \FancyVerbBreakStart. . .\FancyVerbBreakStop.

24

breaksymbol

breaksymbolleft

breaksymbolright

breaksymbolindent

breaksymbolindentnchars

breaksymbolindentleft

(string) (default: breaksymbolleft)
Alias for breaksymbolleft.

(string) (default: \tiny\ensuremath{\hookrightarrow}, -)
The symbol used at the beginning (left) of continuation lines when breaklines=true.
To have no symbol, simply set breaksymbolleft to an empty string (“=,” or “={}”).
The symbol is wrapped within curly braces {} when used, so there is no danger of
formatting commands such as \tiny “escaping.”

The \hookrightarrow and \hookleftarrow may be further customized by the
use of the \rotatebox command provided by graphicx. Additional arrow-type
symbols that may be useful are available in the dingbat (\carriagereturn) and
mnsymbol (hook and curve arrows) packages, among others.

(string) (default: (nome))
The symbol used at breaks (right) when breaklines=true. Does not appear at
the end of the very last segment of a broken line.

(dimension) (default: (breaksymbolindentleftnchars))
Alias for breaksymbolindentleft.

(integer) (default: (breaksymbolindentleftnchars))
Alias for breaksymbolindentleftnchars.

(dimension) (default: (breaksymbolindentleftnchars))
The extra left indentation that is provided to make room for breaksymbolleft.
This indentation is only applied when there is a breaksymbolleft.

breaksymbolindentleftnchars (integer) (default: 4)

breaksymbolindentright

This allows breaksymbolindentleft to be specified as an integer number of
characters rather than as a dimension (assumes a fixed-width font).

(dimension) (default: (breaksymbolindentrightnchars))
The extra right indentation that is provided to make room for breaksymbolright.
This indentation is only applied when there is a breaksymbolright.

breaksymbolindentrightnchars(integer) (default: 4)

breaksymbolsep

breaksymbolsepnchars

breaksymbolsepleft

breaksymbolsepleftnchars

breaksymbolsepright

This allows breaksymbolindentright to be specified as an integer number of
characters rather than as a dimension (assumes a fixed-width font).

(dimension) (default: (breaksymbolsepleftnchars))
Alias for breaksymbolsepleft.

(integer) (default: (breaksymbolsepleftnchars))
Alias for breaksymbolsepleftnchars.

(dimension) (default: (breaksymbolsepleftnchars))
The separation between the breaksymbolleft and the adjacent text.

(integer) (default: 2)

Allows breaksymbolsepleft to be specified as an integer number of characters
rather than as