
Carrying on Dialog with TEX

Michael J. Downes

November 1994; reprocessed January 2013

Contents

1 Introduction 1
1.1 Terminology 2
1.2 Basic dialog principles 2

2 TEX’s Message-Sending Capabilities 3
2.1 The \message primitive 3
2.2 The \write primitive 4

Nonimmediate \write messages 4
2.3 The \errmessage primitive 5
2.4 The \show and \showthe primitives 5
2.5 The \showbox and \showlists primitives . . 5
2.6 Piggybacking 5

The \showhyphens command 6
Using error context to send messages 6

3 Ways for TEXto receive messages from the user 7
3.1 The \read primitive 7
3.2 Error recovery 7
3.3 Show message ‘recovery’ 9
3.4 “Please type another input file name:” 9

A menu trick 9
3.5 Interrupt key 9

4 Stumbling blocks in the use of \write and
\message 9
4.1 Line breaking 9
4.2 Expanding control sequences 10
4.3 Collapsing spaces 10
4.4 Special characters 10
4.5 Space after a control word 12
4.6 Outer Control Sequences 12
4.7 Semi-verbatim alternative 13
4.8 Presenting information in the best possible form 13

5 Stumbling blocks in the use of \read 14
5.1 An example: AMS-TEX’s \printoptions

command . 14
5.2 ^^M at the end of a line 15
5.3 Uppercasing input 15
5.4 Default responses 15
5.5 A new \printoptions 16
5.6 Matching braces 16
5.7 Outer macros 16
5.8 Catcodes . 16
5.9 Latex.tex: \typeout and \typein 17
5.10 Docstrip.tex: \typeout, \typein, progress

reports . 17

5.11 emTEX8-bit output 18
5.12 User Help . 19

6 Summary 19
6.1 Sending messages 19
6.2 Reading user input 19

Appendix A Basix.tex 20

Appendix B Tables.tex 20

Appendix C Fontmenu.tex 20

1 Introduction

A common task in any programming language is to send a
question to the user, and to read (and act on) the user’s
response. In TEX, this usually involves the \read, \message,
and \write commands. The use of these commands,
however, is beset at every turn by odd hindrances and
technical stumbling blocks, so that even experienced macro
writers, faced with an application that requires a bit of
dialog, usually find it troublesome to make that bit of dialog
good-looking, reliable, convenient for the user, and tolerant
of typical human mistakes such as minor mistyping in a
response. The purpose of this article is to analyze the
capabilities that TEX has for dialog and survey all the best
relevant macro-writing techniques that fall within the scope
of my experience and research.1

In The TEXbook, near the end of Chapter 20, Knuth writes

It’s easy to have dialogs with the user, by using
\read together with the \message command

and there follows a brief example involving reading the user’s
name into a macro \myname. It’s clear from this passage that
Knuth means, by dialog, ordinary communication between
computer programs and users at the early-1980s level of
technology: printing character-based information on a video
screen, displaying menus, asking questions, and handling user
responses. (Speech recognition and voice synthesis are not
part of the picture for most TEX users, yet.) For the purposes
of this article, I define dialog as any communication between
TEX and the user that takes place while TEX is running.
Forms of communication that do not take place while TEX is
running are excluded: for example, the black box that TEX
prints to indicate an overfull line in a paragraph is useful
information, but not dialog because the communication
occurs after TEX has stopped running.2 On the other hand,
the Overfull \hbox message printed on screen whenever
TEX adds a black box to the current paragraph is dialog,
because it does occur while TEX is running.

Since the entire section of The TEXbook where Knuth’s
dialog example appears is marked off with double dangerous
bend signs, it seems that Knuth didn’t intend his words “It’s

1This is an overhauled and amplified version of my paper “Dialog
with TEX” in TUGboat, vol 12 no 3, Part 2, December 1991 (proceedings
of the 1991 TUG conference in Dedham, Massachusetts).

2This distinction is blurring, however, with the advent of software
like Blue Sky Research’s Lightning Textures.

CARRYING ON DIALOG WITH TEX 2

easy” to be taken completely literally—particularly when we
look at the next thing in that section, Exercise 20.18, which
reads,

The \myname example just given doesn’t work
quite right, because the 〈return〉 at the end of
the line gets translated into a space. Figure out
how to fix that glitch.

That line-ending space is only one of a number of
complications that can hamper the efforts of macro writers
to write dialog for practical applications. In fact, the word
easy is far from the first adjective that comes to mind when
I remember my own early attempts at writing dialogical
macros. Though my thrashing and floundering for the most
part took place behind the scenes, invisible to others, it
eventually reached the point of threatening my secret belief
that I was a hot-shot macro writer. That spurred me to start
paying special attention to anything related to the idea of
dialog in TEX, and accumulating scraps and pieces of assorted
useful techniques. This article is more or less a survey of what
I’ve learned so far. Sections 2 and 3 review the functions TEX
provides to support dialog; sections 4 and 5 discuss common
difficulties and how to handle them.

1.1 Terminology

Rather than assume all readers know well enough the
meaning of terms like primitive, token, or control word that
will be bandied about hereinafter, I offer a quick review of
some standard TEX terminology, to aid those who want it,
and to be skipped by the rest of you.

A TEX command is either a control sequence—a string
of characters starting with an escape character—or a single
active character, such as ~. The usual escape character is the
backslash, \. A control sequence that consists of a backslash
plus one nonletter character is called a control symbol; a
control sequence that consists of a backslash plus one or
more letters is called a control word. Spaces are ignored after
a control word, but not after a control symbol. A control
sequence is either a TEX primitive—a command built into
the TEX program—or a macro: a composition of primitives
or other macros, defined by the user or by a macro package
such as LATEX or plainTEX. A control sequence may require
one or more following arguments; an argument is a piece of
text that is grabbed up by the control sequence in order to do
something with it. Arguments typically are enclosed in curly
braces { and }. For example, the command \sqrt is a macro
with one argument, and is used thus: \sqrt{x^2+y^2},
producing the printed output

√
x2 + y2.

Macros are expandable; some primitives are expandable,
more are not. An expandable control sequence will be
replaced by its expansion if it is used inside the argument
of a \message command, or anywhere else where TEX is in
an expansive mood (\write, \errmessage, \edef, \xdef,
\mark, \special [The TEXbook, p216]).

The term parameter is used to mean a numeric or
dimensional variable such as \hyphenpenalty, \hsize,
or \baselineskip. A token is eithera character (with
associated catcode) or a control sequence, after it has been

read by TEX from some file and entered into TEX’s active
memory. Character tokens can only have category codes 1–
4, 6–8, or 10–13; there’s no such thing as a ‘character token’
with category code 0, 5, 9, 14, or 15: those catcodes only
control the process of creating tokens, they aren’t designed
for permanent association to a token.

Under normal circumstances, each line in a file is
understood by TEX to have a ^^M character, ascii 13, at the
end of it, even if your text editor actually puts some other
character, or no character, at the end of a line when you press
the return or enter key.

1.2 Basic dialog principles

It’s not hard to identify a number of principles that make for
good dialog:

1. When asked a yes/no question, users should be able to
enter y, yes, or even ye, in lowercase, uppercase, or
even mixed case, and have the answer understood to
be “yes”.

2. For any menu or question, a default answer should
be provided (when this makes sense), and the default
answer should be made as easy as possible to select.

3. Users’ answers should be repeated back to them, to
allow them to verify that the program’s impression of
the answer entered by the user is indeed correct.

4. Users should be given a chance to undo mistakes, e.g.,
by going back to a specified point earlier in the dialog
and starting over from there. For example, it shouldn’t
be necessary to stop TEX and restart just to fix a typing
error.

5. When practical, users’ answers should be checked
to make sure they’re not nonsense; for example, if
a program requests an integer, it should check the
response to make sure the user didn’t enter something
else entirely, rather than assume an integer was entered
and start to perform operations on it. In TEX
this would create a risk of losing control to low-
level errors such as Missing number, treated as 0

or Arithmetic overflow.

6. Information given to users should be provided in the
“best possible form”, where the meaning of “best
possible” must be determined by common sense from
the circumstances of a particular application and the
targeted user group. For example, a straightforward
use of the \the command to report the value of a TEX
dimension parameter such as \vsize to the user will
produce the value in points, down to five or six decimal
places. It will normally be more useful to report the
value rounded to the nearest whole point, or to report
it in picas, inches, or centimeters—whatever is most
convenient for the user. A typographical designer or
compositor would probably prefer picas, while someone
with little knowledge of typography would probably
prefer inches or centimeters.

CARRYING ON DIALOG WITH TEX 3

Table A: Commands that can be used for sending messages

Command Example Result

\message \message{Hey you} ... Hey you ...

\write \immediate\write{Hey you} ...

Hey you

...

\errmessage \errmessage{Hey you} ! Hey you.

l.217 \errmessage{Hey you}

\show \show\footnote > \footnote=macro:

->\@ifnextchar [{\@xfootnote } ...

l.218 \show\footnote

\showthe \showthe\textwidth > 570.93257pt.

l.219 \showthe\textwidth

\showbox \showbox 0 > \box0=

\hbox(0.0+0.0)x15.0

! OK.

l.220 \showbox0

\showlists \showlists ### vertical mode entered at line 0

current page:

\glue(\topskip) 3.75

...

total height 403.47491 plus 14.64996 minus 8.77498

goal height 751.60756

prevdepth 0.0, prevgraf 2 lines

! OK.

l.221 \showlists

2 TEX’s Message-Sending Capabilities

Table A lists the various means in TEX for sending messages
to the user.

Although it could be argued that the token register
\errhelp is another way of sending a message, it is excluded
from Table A on the grounds that it is passive rather than
active, unlike the other commands listed. To put it another
way, \errhelp is merely a storage area associated with
\errmessage, where auxiliary text can be placed; the user
won’t ever see \errhelp except by way of \errmessage.

2.1 The \message primitive

The \message command is a TEX primitive that prints its
argument on screen. If the current screen position is not
at the beginning of a line, TEX will add a blank space at
the beginning of the message text to separate it from the
preceding material—except that if there isn’t enough room on
the current line to fit the entire message text, then TEX will go
to the next line before starting to print the message, and not
add an extra blank at the beginning. The maximum length
of message lines is controlled by the constant max_print_line,
which is compiled into TEX; the normal value is 79. (In
a windowing environment the width of the current window
may also affect the maximum length of message lines.)

Thus one way to force a message to start on a new line is

to add lots of \space’s at the end. But a better way to start a
message on a new line, or break up a long message into lines,
is to indicate line breaks with the current \newlinechar

character. For example, we can set the newline character
to be + and use it in a message as follows:

\begingroup \newlinechar=‘+3

\message{+This is a+three-line+message ...}
\endgroup

which produces on screen (regardless of the length of any
immediately preceding message)

This is a
three-line
message ...

In any one message, a given character can either produce
newlines, or represent itself, but not both. As a consequence,
if we wanted a plus character in a message to actually print
on screen instead of causing a line break, we would have
to set \newlinechar to some other value before sending
the message. From this knowledge it’s a short step to the
insight that for general message-sending purposes it would
be convenient to set \newlinechar to the character that is
least likely to be needed in a message text. The nonprinting
ASCII characters in the range 0–31 are obvious candidates.

3Use of \+ instead of + here would normally be recommended but the
outerness of \+ in plainTEX makes this an exception.

CARRYING ON DIALOG WITH TEX 4

But here we encounter an inconvenient idiosyncrasy of
TEX: A control character—such as control-J, or ^^J (using
TEX’s double caret notation), which is the default value for
\newlinechar in AMS-TEX and LATEX—doesn’t ever produce
line breaks in a \message, even if it is currently selected as
\newlinechar.4 Instead, it will always be printed as three
characters using the double caret convention.5 Therefore, if
you want to use \message as your normal message-sending
function, you should choose one of the seldom-used printable
characters as your default \newlinechar. One possibility
would be to use the double quote character for this purpose,
since single quote characters can normally be substituted for
double quote characters in message texts. Testfont.tex

[Knuth, 1986c] uses the @ character.
Unlike \message, however, the \write command is

capable of using a control character as a newline character
(see §2.2). By using \write for multiline messages, and
making ^^J the default newline character, AMS-TEX and
LATEX avoid taking any of the printable characters out of
circulation for dialog purposes.

If no line breaks are indicated in a \message that is longer
than max_print_line, TEX will introduce arbitrary breaks at
the screen column equal to max_print_line, which usually
means

random brea

ks in the m

iddle of wo

rds.

Those of you who use \tracingmacros will have noticed that
its output also has line breaks like this. Which can make it
rather difficult to search for instances of a given string in
the trace log; to find all instances of xyz you need a regular
expression something like

x\n?y\n?z

(\n meaning ‘newline’, ? meaning 0 or 1 occurrences of the
preceding subpattern).

2.2 The \write primitive

The \write command, like \message, just prints a message.
But the message doesn’t necessarily appear on screen,
because communication with the user is not the purpose for
which \write was originally designed: Its initial purpose was
to send index or table of contents information, including
the associated page number, to an auxiliary file for later
processing. Because this kind of use is closely linked to
page numbering, \write commands on the current page are
normally saved up to be executed when the page is actually
shipped out, after the page break has been determined. If
such postponement is not wanted, \write must be used with
the \immediate prefix.

In order to allow intersequential writing to different
output files, the \write command takes an extra first

4Or rather, it didn’t up until version 3.141 or so of TEX. See also
the mention of emTEX’s /r option (which allows you to use control
characters for output purposes) in §5.11.

5This suggests the following experiment: set \newlinechar=‘\^ and
send a \message containing a ^^J character.

argument, a number between −1 and 16 inclusive, to indicate
the output file to which the text should be sent. Output files
0–15 can be associated with a particular file on your system
by the \openout command; output file −1 is the TEX log file,
and output file 16 is the user’s terminal screen (echoed in the
log file as well).

Line breaks in the argument of a \write command can
be obtained by inserting \newlinechar characters; unlike
\message (§2.1) and \errmessage (§2.3), \write will always
start a new line for each newline character, even when it is
a control character such as ^^J. Also, the text of a \write

command always starts on a new line and finishes on a new
line. The existence of the final newline may be observed in
the on-screen result of a \message following a \write: the
message text will always start on the next line regardless of
the total length of the \message and \write texts, whereas
a \message following another \message or one of TEX’s
internally generated messages (such as input file names)
will not start on a new line unless there isn’t enough room
remaining on the current line.

Corollary: If you prompt the user for some input and
you want the user’s input to appear on the same line as the
prompt text, use \message instead of \write to send the
prompt text—or at least the last line of the prompt text.

Nonimmediate \write messages

Sometimes it’s useful to leave off the \immediate prefix of
a \write command even when not writing information to
an index file or table of contents file: For instance, if you
are working on page breaks in a long document and want
to find out, without previewing or printing, if a nonforcing
pagebreak command had the effect that you wanted, you
could insert a nonimmediate \write16 just before and just
after the intended page break:

\write16{Before the attempted pagebreak.}
\penalty-9999
\write16{After the attempted pagebreak.}

The message from a nonimmediate \write16 will appear
before the closing] of the [] pair that enclose the relevant
page number. So if all went well, one of the above messages
will appear with one page number and the next message with
the next page number, like this:

[4] [5
Before the attempted pagebreak.
] [6
After the attempted pagebreak.
] [7] [8] [9] ...

In producing this article (using LATEX) I had some trouble
getting good placement for the floating tables and examples;
to help me experiment, I added some code that would print
on screen the page numbers. At the beginning of Example 2
(for example) there is a line that says

\write16{Example 2: Page \thepage}%

The \immediate prefix must be omitted in order to get the
page number correct.

CARRYING ON DIALOG WITH TEX 5

2.3 The \errmessage primitive

The \errmessage command prints its argument on screen,
starting on a new line, with an exclamation point and a space
added at the beginning, and a period added at the end. For
example, \errmessage{Surprise} produces

! Surprise.

on screen. \errmessage also shows the current context,
which means the current line from the current input file,
along with the line number, and additional information if
there is any (such as the surrounding parts of current macro
expansions).6 So the Surprise error message would show
additional information on screen. Suppose we define

\def\test{\errmessage{Surprise}\relax}

Then the additional information will look something like:

! Surprise.
\test ->\errmessage {Surprise}

\relax
l.454 \test

and some more text.
?

This example may be interpreted as follows: Line 454 of the
current file consists of

\test and some more text.

The line break in the context listing means that TEX is
processing \test and has not yet started to typeset the word
‘and’. Above the l.454, the expansion of \test is shown.
The line break after {Surprise} indicates that TEX has not
yet executed the \relax command.

The behavior of \errmessage with respect to newline
characters and control characters is the same as for
\message—i.e., \errmessage will start a new line for each
\newlinechar in its argument [unless the current value of
\newlinechar is outside the visible ascii range 32–126 and
the version of TEX is less than 3.141].

At the end of an error message, the user is presented with
a question-mark prompt, and a choice of several possible
responses. These will be discussed later in the section on
TEX’s capabilities for receiving user input (§3.2).

2.4 The \show and \showthe primitives

The \show command, used for showing the current meaning
of a control sequence (or indeed of any token), is rather
similar to the \errmessage command in what it produces
on screen. The prefix is a greater-than character instead
of an exclamation point. Here’s the result of \newcount\C
\show\C:

> \C=\count78.
l.1 \newcount\C \show\C

?

6If the parameter \errorcontextlines is set high enough.

As with \errmessage, TEX displays the surrounding context
of a \show command; it also offers the same question-mark
prompt with the same range of possible responses (well,
almost—the H option only gives a generic help message about
\show, not specific help about the item being shown.).

The \showthe command is like \show, but is applied to
certain kinds of things such as count registers and token
registers, that have not only a meaning but also a current
value. For instance, here’s the result of \C=5 \showthe\C,
using the counter defined above:

> 5.
l.3 \C=5 \showthe\C

?

2.5 The \showbox and \showlists primitives

The commands \showbox and \showlists are similar to
\show in what they produce on screen (see Table A). Because
of their specialized nature they don’t ordinarily have much
application in dialog between TEX and the user.

2.6 Piggybacking

Many messages printed on screen by TEX do not involve any
of the commands listed in Table A. These other messages
are emitted directly by TEX, outside the control of the macro
writer. However, with a little imagination, you can often
find ways to attach useful information to those “inaccessible”
messages. This is what I mean by piggybacking.

For example, whenever TEX inputs a file, a message is
printed on screen containing the name of the file, enclosed in
parentheses. So one way to send a short message would be
to create an empty file whose name was equal to the desired
message, and then input the file.

File name messages, apart from the parentheses, behave
the same as messages produced by the \message command:
in particular, a file name message will be appended to the
current line, with a preceding space, unless the length of the
message (including the two parentheses) will cause it to cross
the max_print_line boundary.

If your computer system allows longer file names you
could actually get pretty fancy with a filename message. For
example, on a Unix system suppose you have a file named
test.tex whose contents are

\newwrite\msgfile
\immediate\openout\msgfile=Fred.your.fly.is.open
\immediate\write\msgfile{\relax}
\immediate\closeout\msgfile
\input Fred.your.fly.is.open
\end

When test.tex is processed by TEX the screen output will
be something like:

This is TeX, C Version 3.1 (format=plain 91.1.4) ...
(test.tex (Fred.your.fly.is.open))
No pages of output.

However, getting spaces in the message would be problematic
since TEX treats a space as a file name terminator. And

CARRYING ON DIALOG WITH TEX 6

if your message doesn’t include a period, TEX is likely to
add .tex at the end of the file name when \openout is
invoked. Not to mention that this method would quickly
lead to inconvenient file clutter since TEX can’t delete files,
only create new files or change the contents of pre-existing
ones.

Or consider the count registers 1–9; if any of these is
nonzero, its value is reported on screen whenever TEX ships
out a page. One way of using this feature might be to report
the accumulation of index terms for a document, by having
each index command increment count register number 1:

\countdef\indexcount=1
\def\index{...

\global\advance\indexcount 1 ...}

Incrementing count 1 like that would result in TEX displaying
on screen something like

[1.2] [2.7] [3.14] [4.15] [5.27] [6.38] ...

instead of the more usual

[1] [2] [3] [4] [5] [6] ...

as each page is shipped out.
These two examples don’t seem extremely practical—

the total number of index terms reported in the latter
example won’t necessarily be correct page for page, until
the end of the document, because ordinary means for
incrementing the counter are immediate in their effect rather
than synchronized with the \write commands used for
creating the index file—but the point is to realize that the
messages coming out of TEX’s innards aren’t totally beyond
reach, and they can sometimes provide a better way of
achieving a given result than ordinary methods. A couple
of better-known examples, from the hands of Donald E.
Knuth, can be found in the \showhyphens command and
in hyphen.tex at the point where \patterns is called.

The \showhyphens command

The \showhyphens command (defined in plain.tex) works
by exploiting TEX’s messages about underfull boxes. When
an underfull line of a paragraph is reported, TEX prints on
screen the elements of that line, including any discretionary
hyphens inserted by TEX while attempting to find good line
breaks. The key insight for thinking up the \showhyphens

command is to realize that if you can typeset a one-line
paragraph, and make sure that the line is underfull, then any
word in that line will have its hyphenation points displayed
on screen. That’s exactly what Knuth defined \showhyphens

to do:

\def\showhyphens#1{\setbox0\vbox{\parfillskip\z@skip
\hsize\maxdimen \tenrm \pretolerance\m@ne \tolerance\m@ne
\hbadness0\showboxdepth0\ #1}}

The settings of \parfillskip and \hsize ensure that the
paragraph will be all on one line, and underfull. (For extra
bullet-proofing,

\leftskip\z@skip \rightskip\z@skip

should probably be included too.)
The switch to font \tenrm makes sure—or at least

reasonably sure—that the current font is not one for which
hyphenation has been inhibited by setting \hyphenchar to
an out-of-range value. The settings of \pretolerance and
\tolerance ensure that hyphenation points will be added
(in making up a paragraph, TEX normally tries first to get
by without adding hyphenation points, if it can find good
line breaks using only the stretchability and shrinkability
of interword glue). The setting of \hbadness ensures that
an Underfull \hbox message will be sent (otherwise, if
the surrounding environment had \hbadness = 10000 when
\showhyphens was called, the message would be suppressed).
The setting of \showboxdepth limits the information in the
message to top level; otherwise compound structures like
accented letters or special composites (e.g. \AA) would be
shown in full detail—more detail than the user normally
wants to see. And finally the \ command forces entry
into horizontal mode and, more importantly, provides a
glue item before the first word, without which it would
not be hyphenated (see the rules by which TEX looks for
hyphenatable words, The TEXbook, Appendix H).

Note that the values of \language, \lefthyphenmin, and
\righthyphenmin are inherited from context; and this is
probably what you want for the \showhyphens command
(perhaps indeed the current font should also be inherited from
context instead of being set always to \tenrm).

Using error context to send messages

The standard hyphen.tex containing U.S. English hyphen-
ation patterns has a comment after the \patterns command:

\patterns{ % just type <return> if you’re not using INITEX

Ordinarily the macro writer can’t use comments to commu-
nicate with the user, because comments within the text of a
macro are discarded by TEX as the macro is defined. The
beauty of the comment in hyphen.tex is that it appears pre-
cisely when needed, because of the way TEX displays context
with error messages: if you \input hyphen.tex when not us-
ing initex, TEX will give an error message when it encoun-
ters the \patterns command, and as usual, will show the
context around the point of the error, like this:

! Patterns can be loaded only by INITEX.
l.2 \patterns

{ % just type <return> if you’re not using INITEX
?

Since learning this technique, I’ve had occasion more than
once to apply it in similar situations. One such application
had to do with the LATEX circle fonts. I had an assignment to
create a LATEX documentstyle whose installation procedures
involved rebuilding the LATEX format file, which meant calling
for the .tfm files of the circle fonts. However, there was
at that time (1990–1991) a bit of confusion surrounding the
names; the trend among distributors of TEX appears to be
away from the original names circle10 and circlew10 and
toward the names lcircle10 and lcirclew10. The .tfm

files are the same under either names, but I had to deal with

CARRYING ON DIALOG WITH TEX 7

Table B: Receiving

Method Prompt displayed by TEX
\read \controlseq=

error message
interaction

?

‘show’ message
interaction

?

input file not found Please type another input

file name:

output file not
writable

Please type another output

file name:

interrupt key none

the possibility that some users of the documentstyle I was
working on would have the fonts under the older names, while
others would have them under the new names.

My solution was to use the newer names lcircle10 and
lcirclew10 and put comments on the same lines as the font
assignments, so that the comments would appear to the user
if TEX were unable to find the .tfm files and emitted an error
message.

\font\tencirc=
lcircle10\relax% Type x to exit; see sei.prl for further info.

Additional comments in the file sei.prl explained how to
change the font names to their older variants. The \relax

is necessary so that TEX won’t proceed to the next line,
bypassing the comment, in the process of looking for a
modifier such as scaled or at. And the reason for the line
break after the equals sign is to fit a few more characters in
the comment, which would be elided by TEX if too long.

3 Ways for TEX to receive messages from
the user

Table B lists the various means in TEX for reading input from
the user. The primary input facility is the \read command;
the others are special cases applicable only under limited
circumstances.

The purpose of getting input from the user is essentially
always the same: to give the user an opportunity to change
the outcome of the TEX run, which would otherwise be totally
predetermined by the contents of the files read by TEX. (Well,
and perhaps by a few system variables such as \time, \day,
etc.)

3.1 The \read primitive

The form of the \read command is

\read 16 to \controlseq

where the number 16 is the input stream number, which
might be any value from −1 to 16; a number between 0 and 15
would indicate reading from a file stored on disk, while 16 and
−1 indicate reading from the user’s keyboard. \controlseq

can be any control sequence chosen by the macro writer. If
the input stream number is 16, TEX will display a prompt of

\controlseq=

If the input stream is −1, this prompt will be omitted.
In either case, a \read 16 or \read -1 command should
normally be preceded by a message that lets the user know
what kind of input to provide.

The action of the \read command is similar to that
of the \def primitive. Both of them create a new macro
containing an unexpanded token list, which must contain
balanced braces. The balancing required in the response
to a \read command, however, is slightly different than for
a \def; as long as there an equal number of opening and
closing braces, it doesn’t matter how they’re distributed—
TEX will be perfectly happy with the response

a}}}b{{c}{{

as can be verified using \show\answer after reading the above
string into \answer.7 TEX will read more than one line, if
necessary, if the first line contains an unmatched brace. This
is a useful property if you want to read more than one line
at a time, as is sometimes the case: write the information in
the form { . . . }, and you can have as many lines between the
curly braces as you want.

TEX always reads line by line, rather than character by
character; unlike some other programming languages, TEX
provides no way to read a single character and act on it
immediately; the user must always press the return key
before anything will happen.

3.2 Error recovery

As mentioned earlier, after an error message TEX presents the
user with a question-mark prompt. Typing a second question
mark in reply to the prompt will cause TEX to list the options
that are available:

! Error message.
...

? ?
Type <return> to proceed, S to scroll future error messages,
R to run without stopping, Q to run quietly,
I to insert something, E to edit your file,
1 or ... or 9 to ignore the next 1 to 9 tokens of input,
H for help, X to quit.
?

Choosing the H option causes TEX to print a help
message containing additional information related to the
error message. If the error message was generated using
\errmessage, then the help message will consist of the
current contents of the token register \errhelp (which
should be filled with something useful by the macro writer,
immediately before the call to \errmessage). Otherwise,

7See also §5.7. I questioned the behavior of \read with respect to
extra closing braces and outer control sequences in a letter to Donald
Knuth (December 1991); his response was to make a change in TEX
(version 3.141?) that causes a \read operation to terminate decisively
if an extra } or outer control sequence is encountered. So backwards
balancing of braces will no longer be permitted.

CARRYING ON DIALOG WITH TEX 8

Example 1: Using error interaction possibilities to get
past a potentially bad error: a missing \\ before an
\hline in a LATEX tabular environment.

! Misplaced \noalign.
\hline ->\noalign

{\ifnum 0=‘}\fi \hrule...
l.120 \hline

?

Let’s see what the help information is:

? h
I expect to see \noalign only after the \cr of an alignment.
Proceed, and I’ll ignore this case.

?

Let’s try skipping one token to verify what LATEX is going
to process next:

? 1

\hline ->\noalign {
\ifnum 0=‘}\fi \hrule...

l.120 \hline

?

All right, the opening curly brace has just gone by. We
need to insert the \\ that was forgotten, and also replace
the two tokens \noalign and { that have slipped by.

? i\\ \noalign{

And now LATEX will be able to continue with the rest of
the table.

for a built-in error message, the corresponding built-in help
message (from tex.pool) is displayed.

The intended use of the insertion (I) and token deletion
(1...9) options is for error recovery; after you look at the
context of an error, you may be able to temporarily repair
the damage and continue processing the remainder of the
document, by removing some tokens and/or inserting others.
Then if any other errors are uncovered later, they can be
fixed at the same time as the first error, instead of requiring
a second TEX run to find them. Example 1 illustrates this.
You can actually delete up to 99 tokens at a time in all
implementations of TEX that I know of, even though the help
message suggests that 9 is the maximum.

The token deletion option can also serve as the basis of
a crude menu facility. The idea is to use \errmessage to
present a menu with choices labeled by numbers. If the user
responds by entering, say, 3 to choose item 3, then we must
arrange things so that after \errmessage does its normal
thing of deleting three tokens, the following token that was
not deleted should do something to ensure that item 3 will
be selected. This isn’t too hard if we use something like the
following sequence:

\errmessage{...}\0\1\2\3\4\5\6\7 ...\stop

Clearly the deletion of three tokens after the error message
will leave \3 as the next command to be executed, and so
if we define \3 to do the right thing and then skip over the
following \4\5... corresponding to unselected menu choices,
we get what we want.

If the user just presses return without entering a
number, it will be \0 that is executed—therefore \0 should
be defined to produce the default selection.

One thing that makes me call this crude is the fact that
TEX pauses after any token deletion operation instead of
barging ahead. This means that if the user chooses anything
other than the default selection, they will have to press
return twice after typing the number, instead of just once.

Some other crudities are introduced by the bits and pieces
of an \errmessage that cannot be suppressed. These include:

• Exclamation point and space at the beginning of the
error message.

• Period at the end of the error message.

• The expansion of the current macro (if the error
message is contained in a macro), on two lines with the
line break immediately after the token that was last
processed by TEX. This includes, at the beginning, the
macro name followed either by ->, if the first part of
the expansion text is relatively short, or by ellipsis dots
... plus the tail end of the first part of the expansion
text.

• The current line of the current file, on two lines with
the break immediately after the token that was last
processed by TEX.

• The question mark and space prompting the user for a
response.

I would have hoped that setting \errorcontextlines to
0 or −1 would cause the ‘innermost’ two lines of the error
context to be suppressed but apparently there is no value for
\errorcontextlines that will suppress them. The following
example illustrates all of the nonsuppressable parts.

! Error.
\CM ->\errmessage {Error}

\CM
l.38 \CM

% A comment in the file, line 38
? x

Except for the ellipsis dots alternative, that is. Here’s how
that looks:

! Longer message text, forcing elision.
\CM ...sage {Longer message text, forcing elision}

\CM
l.38 \CM

% A comment in the file, line 38
?

Although the exact number can vary (depending on how
your particular version of TEX is configured at compile time),
the maximum length of the first line of context is normally
between 40 and 50 characters, and if the expansion text would

CARRYING ON DIALOG WITH TEX 9

make the line longer than this, it is truncated at the beginning
and the ellipsis dots are inserted.

Very well then. Since we have !, ., and -> or ...

in the first two lines (the lines that will be nearest our
menu text), and we cannot get rid of them, the next best
thing is to camouflage them. One possibility is setting
\newlinechar=‘\! just before sending the \errmessage, so
that the ! character will cause a blank line rather than
printing on screen, and then putting a bunch of periods in
the menu text to camouflage the other periods.

Appendix C exhibits fontmenu.tex, a more extensive
working-out of this idea in which I tried to pound the
recalcitrant \errmessage into the most presentable shape
possible, using every macro hack I could think of.

3.3 Show message ‘recovery’

After a \show, \showthe, \showbox, or \showlists

command, TEX offers a question-mark prompt, and the same
menu of options as after an error message. There is only
one slight difference: The H option provides no access to the
\errhelp token register; only a generic help message about
the \show... commands is available.

3.4 “Please type another input file name:”

When you see this prompt, displayed by TEX when it’s unable
to find an input file, you have strayed into one of the less
friendly byways of TEX. If you can’t think up a good file
name to give as an answer, you could get stuck in an endless
loop. Even simply pressing the return key causes TEX, on
most computer systems, to look for a file called ‘.tex’ which
will most likely be nonexistent. Power users know that on
many systems you can enter a file name of ‘nul’ to cause TEX
to read in an empty file named nul.tex. But it is precisely
power users who are likely to know other ways of getting past
this prompt (for example, on some systems typing a ^^Z or
^^D character also does something useful), and it is precisely
the users with no other clue what to try next who won’t know
about nul.tex.

It seems that it would be useful for all standard
distributions of TEX to provide files named .tex, h.tex,
help.tex, and ?.tex in the standard TEX inputs path, so
that when users type h or help or ? or just press return,
they will get the corresponding file. (Unfortunately, most
operating systems don’t permit the question mark in file
names, which means that only the other three files will
normally be viable.) Help.tex and its clones could contain
something as simple as:

\errmessage{Type ? to see your options; X to exit}

which would give the user access to the full menu of normal
error recovery options.8

A menu trick

The Please type another input file name prompt is
used to implement a sort of menu in the file lfonts.new of

8This idea is discussed at greater length in a recent TUGboat article
of mine (to appear, late 1994).

the Mittelbach/Schöpf font selection scheme (LATEX version),
which has a statement \input fontdef.tex, where the
file fontdef.tex is normally missing, intentionally, and
the user is supposed to substitute another file name such
as fontdef.ori or fontdef.max. The idea of comments
designed to appear through TEX’s display of error context
(§2.6) could be used to good advantage here, to tell the user
what other file names are likely candidates:

\input fontdef.tex % Try fontdef.ori or fontdef.max

In this kind of application, additional help information in a
message preceding the \input statement could also be useful.

3.5 Interrupt key

The interrupt key is a key (system-dependent, but ^^C on
many systems) that allows you to interrupt TEX when it is in
the middle of doing something else. The normal reaction of
TEX when the interrupt key is pressed is to print a message

! Interruption.
... % current context
?

in the same form as an error message, complete with a
question-mark prompt, with the usual options available to
the user.

It’s stretching the concept a bit to claim that the interrupt
key is a way for users to send information to TEX; it has
the flavor of the story about the farmer who had to whack
his mule over the head with an axe handle “just to get his
attention”. When you interrupt TEX you could easily find
yourself in the middle of some complex macro where it would
be inadvisable to do anything except use the X option to exit.
However, this in itself is frequently useful.

4 Stumbling blocks in the use of \write and
\message

4.1 Line breaking

As explained elsewhere (§2.1) it is impossible to use a
control character as a newline character in the argument of a
\message or \errmessage command. [Note (30-Oct-1993):
that’s no longer true, as of TEX version 3.141.] LATEX and
AMS-TEX use \immediate\write instead of \message in
their all-purpose message macros (\typeout and \W@), which
allows them to have ^^J as the default newline character,
thus leaving all of the printable characters usable in message
texts. (If a given character is the current \newlinechar,
there really is no way for TEX to print it on screen. Try
setting \newlinechar=‘\(and see what happens to the file
name messages for input files.)

There is a minor inconvenience with the use of ^^J

as the newline character. Under current conditions (as of
1993), it is usually wise to limit the length of all lines in
a macro file to 72 characters, in order to avoid truncation
problems that occasionally occur in, e.g., electronic mail
transmission. When constructing a long message, if you leave
\endlinechar at its normal value of ^^M and put ^^J’s at

CARRYING ON DIALOG WITH TEX 10

the end of each message line, you get four extra characters at
the end of each line, three for the ^^J9 and one for a percent
sign to eliminate the space that would otherwise be produced
on screen at the beginning of the next message line, by the
^^M. This means that the effective limit on the length of each
message line is 68 characters rather than 72.

But the clutter of four extra characters at the end of a
line can be avoided by temporarily assigning \endlinechar

= \newlinechar while a message is being constructed. This
is assuming, however, that a useful value of \newlinechar

has been established and that the same value will be in effect
when the message is sent. If the construction and sending
are simultaneous, the code can be as simple as this:

\begingroup \endlinechar=\newlinechar
\immediate\write16{Line 1
Line 2
Line 3
}%
\endgroup% this percent sign is necessary

And then the actual message text in each line can run to
the full 72-character length if necessary. If a useful value
of \newlinechar has not been established (e.g., when using
plainTEX without modifications), then rewrite the first line
above as:

\begingroup \newlinechar=\endlinechar
\catcode\endlinechar=12 % Make it ’other’

Here we make the reasonable assumption that \endlinechar
has its normal value of 13 (^^M); even this assumption could
be done without by adding the statement \endlinechar =

13 before the other assignments.
The percent sign is necessary after the \endgroup in

the first variant, because the endline character for a given
line is added when the line is initially read, before TEX
begins to execute the line. Therefore by the time TEX
processes the \endgroup and reverts to the previous value
of \endlinechar, it is too late to prevent getting a newline
character at the end of the current line.

For the same reason, a percent sign is not needed after
the line that contains

\endlinechar=\newlinechar

The endline character for that line has already been tacked
on by TEX and cannot be changed by any statements within
that line. (The \catcode, however, of the \endlinechar can
be changed by statements within the line.)

4.2 Expanding control sequences

In messages to a TEX user it’s frequently necessary to refer
to control sequences or characters that have special category
codes. This can sometimes be problematic because of the
expansion that is done in the argument of a \message or
\write command. For example, the line

9Although the ^^J combination will be resolved to a single character
by TEX, it is three characters when writing it and when sending it
through mail. Assuming, that is, that you use TEX’s double caret
notation and don’t try to insert a ^^J byte directly (not a good idea,
because of system-dependent interpretation of ^^J).

\message{Beware of \footnote in a \message!}

will typically generate a hundred or so error messages
when TEX reaches \footnote. (Although plainTEX, AMS-
TEX, LATEX, and other macro packages define \footnote

differently, all the definitions are equally explosive inside a
\message.) And the line

\message{Beware of \endinput in a \message!}

will cause the current input file to terminate immediately!
(\endinput is an expandable control sequence, for reasons
that are too technical to be worth discussing here.)

Thus to talk about an expandable control sequence in a
message, you must do something to inhibit the expansion.
Ordinarily you apply \string or \noexpand to the control
sequence; or you could put it into a token register and
use \the〈token register〉 in the message. Nonexpandable
control sequences can be printed in a message without special
protection, except that, if you do nothing to avoid it, you
will always get an extra space after a control word, even in
some cases where it is undesirable, as when the next thing is
punctuation. For example, the message

\message{Enter desired value for \hangindent: }

will print on screen with a space before the colon:

Enter desired value for \hangindent :

Table C shows what happens to various sorts of things in
a \message or \write argument, as well as various methods
for suppressing expansion.

4.3 Collapsing spaces

If you want to print on screen a menu or similar message
consisting of multiple columns nicely arranged, you have to
deal with the fact that TEX normally condenses multiple
spaces and tab characters to a single space. The easiest
way to handle this difficulty is to change the catcode of the
space character to, say, 12 before reading the argument of a
\message or \write command.

4.4 Special characters

The space character is but one example of a larger class:
‘special’ characters, that is, ones that don’t have category 11
or 12. An obvious question to ask is, “What other special
characters are difficult to use in a message?” Table C shows
how a few special characters are affected by the expansion
process in a message: an & (category 4) passes through
unharmed, a # (category 6) gets doubled, and a ~ (category
13) gets expanded.10 Table D is a complete list of the various
categories of characters, along with ways to produce those
characters that cannot simply be used as is. A few categories
deserve more extensive comment.

10To be more precise, an active character like ~ will be treated like
a control sequence; it will be expanded if expandable, otherwise it will
be printed as is. After an assignment such as \newcount ~, or \let ~ =

\relax, the ~ is not expandable.

CARRYING ON DIALOG WITH TEX 11

Table C: Expansion of \message and \write arguments

This input Produces this on screen
\message{E} E

\message{&} &

\message{#} ##

\message{[\relax]} [\relax]

\message{[\string\relax]} [\relax]

\message{[\empty]} []

\message{[\noexpand\empty]} [\empty]

\message{[\string\empty]} [\empty]

\message{[\space]} []

\message{[]} []

\def\spaces{\space\space\space\space

\space\space\space\space}

\message{[\spaces]} []

\message{[\romannumeral 37]} [xxxvii]

\message{[\uppercase{a}]} [\uppercase {a}]

\message{[~]} [\penalty \@M \]

\message{[\ifnum\time<600 Too early for me

\else Let’s go\fi]} [Too early for me]

Category 0—Escape Character It’s normally not a
problem to print an escape character because it usu-
ally occurs as part of a control sequence, which can be
printed using \string (and even that may not be nec-
essary if the control sequence is nonexpandable). Even
when the escape character is not, logically speaking,
part of a control sequence, it can be sent in a message
by letting it combine from TEX’s point of view with the
following character(s). For example, to send the mes-
sage Commands in TeX normally begin with a ‘\’

character, the backslash doesn’t need to be treated
as an isolated character; combined with the following
apostrophe, it forms a control symbol to which \string

can be applied.

The only time this fails is when the backslash must be
sent as the very last character of a message. Although
this case is extremely unlikely, the solution involves a
rather useful little macro:

\def\xstring{\expandafter\gobble\string}
\def\gobble#1{}% if this is not already defined

With this definition,11 \xstring not only turns a
control sequence into a string of characters, it also
removes the leading backslash, so that \xstring\\

will produce a single backslash character, as desired.
Another solution that involves setting \escapechar

temporarily to −1 would also be possible, provided
that the remainder of the message doesn’t need to
use \string in a normal way, with a printable escape
character.

\begingroup \escapechar=-1

11Cf. the answer to Exercise 7.10 in The TEXbook. The implicit
assumption that \escapechar is in the range 0–255 may not be
completely reliable.

\message{ ...\string\\}%
\endgroup

On the other hand, it might be useful to have
a category-12 backslash character always available
through a macro, not only for messages but for other
purposes as well:

\edef\backslashchar{\xstring\\}

Then \backslashchar could be used in a message
instead of \xstring\\. If you needed to use it
frequently you would presumably give it a shorter
name.

Categories 1 and 2 Characters of category 1 and 2 can be
printed without any problem in a message if they occur
in matching pairs. For these purposes, character codes
are irrelevant;]1 and *2 match up as well as {1 and
}2. If a single, unmatched character of one of these
categories must be printed on screen, \xstring can
be used with the corresponding control symbol, e.g.,
\xstring\{ or \xstring\}.

Categories 5, 9, 14, 15 These categories are similar to
category 0. Characters of category 0 (escape), category
5 (end-of-line), 9 (ignored), 14 (comment), and 15
(invalid character) cannot enter a token list [The
TEXbook, Exercise 7.3], so that, actually, it doesn’t
make much sense to ask what happens to them in the
argument of a \message or \write command, which
do not deal with raw characters from an input stream
but with token lists. The question is not how to print
a character token of category 14 in a message (since
that is impossible) but, how to produce a category-
12 % when the normal catcode of % is 14. The answer is
to use \xstring with the corresponding control symbol,
e.g., \xstring\%.

CARRYING ON DIALOG WITH TEX 12

Table D: Methods for incorporating various categories of
characters in a \message or \write argument

Catcode Example Method
0 \ Normally handled as part of a

control sequence, except at the
very end of a message, in which
case use \xstring\\

1 { \xstring\{ if unmatched
2 } \xstring\} if unmatched
3 $ as is
4 & as is
5 ^^M \xstring\^^M (see the note below)
6 # \string# to avoid doubling, or

\xstring\#

7 ^ as is (except in rare combinations
like ^^>)

8 _ as is
9 ^^@ \xstring\^^@ (see the note below)

10 space as is, except use \space’s to
produce multiple spaces

11 a as is
12 / as is
13 ~ \string~, \noexpand~
14 % \xstring\%

15 ^^? \xstring\^^? (see the note below)

Note: Because of the way \string operates, something like
\xstring\Γ will not produce a single character but three category-
12 characters, ^ ^ @. This may normally be what you want, but
it won’t be satisfactory if the character in question has a special
purpose—perhaps to cause a newline, or to print on-screen as an
accented letter.

Then again, a better idea might be to pick one character,
make it active (probably ~ since it’s already active in
most macro packages), and define it to produce category-
12 characters by their hexadecimal value. With preliminary
definitions such as:

\escapechar=-1
\def\twelvechar#1#2{\csname hex#1#2\endcsname}
\expandafter\edef\csname hex5c\endcsname{\string\\}
\expandafter\edef\csname hex25\endcsname{\string\%}
\expandafter\edef\csname hex7e\endcsname{\string\~}
...
\escapechar=‘\\

it would become possible to write, for example,

\begingroup
\let~=\twelvechar
\message{Printing backslash ~5e, percent ~25, and tilde ~7e.}
\endgroup

and thus send all manner of special characters by substituting
a three-character sequence starting with ~.

4.5 Space after a control word

In §4.2 it was pointed out that an unwanted space may
be printed at the end of a control word under some
circumstances. It’s equally possible that a wanted space

at the end of a control word may disappear under other
circumstances. For example, it is not uncommon to see macro
writers use the combination \string\controlseq\space

when a control word occurs as an isolated word in the middle
of a message; the final \space is necessary because a plain
space after \controlseq would simply disappear according
to TEX’s normal rules for finding the end of a control sequence
name.

The solution to both of these difficulties is easy: use
\string if you don’t want a space after the control word, and
use \noexpand if you do want a space.12 Note: The character
tokens produced by \string can be passed without harm
through any number of subsequent steps, including expansion
via \edef or similar operators, while \noexpand only protects
an expandable macro through the first expansion step.

4.6 Outer Control Sequences

You can’t send an \outer control sequence in a \message

unless you do something to get around the outerness. To
illustrate, I present a transcript of TEX’s reaction to the
following line:

\message{Control-L: ^^L}

along with various attempts to recover from the resulting
error message. (^^L is defined as an active character with
the ‘outer’ attribute in both plainTEX and LATEX.)

Runaway text?
Control-L:
! Forbidden control sequence found while scanning text of \message.
<inserted text>

}
<to be read again>

^^L
l.149 \message{Control-L: ^^L

}
? 1
Type <return> to proceed, S to scroll future error messages,
R to run without stopping, Q to run quietly,
I to insert something, E to edit your file,
H for help, X to quit.
? h
I suspect you have forgotten a ‘}’, causing me
to read past where you wanted me to stop.
I’ll try to recover; but if the error is serious,
you’d better type ‘E’ or ‘X’ now and fix your file.
?

Notice that when I tried to type a 1 to delete the offending
\outer token, I got instead a help message indicating that
token deletion is not an option at this point. (The reason
behind this lack of token deletion is fairly technical: TEX
was in the middle of a procedure called get token when it
stumbled over the ^^L character; but since token deletion
itself involves calling get token, allowing token deletion here
would mean calling get token from inside itself—something it
was not designed for.)

12I hadn’t noticed the usefulness of \noexpand for this purpose until
Michael Spivak drew it to my attention, in a conversation at the 1991
TUG meeting in Boston.

CARRYING ON DIALOG WITH TEX 13

4.7 Semi-verbatim alternative

An alternative way of handling message texts, that eliminates
the need to remember special methods for various kinds of
message elements, is to temporarily change the catcodes of all
special characters while reading the argument of a message.
With the following definitions:

\def\verbwrite{\begingroup
\def\do##1{\catcode‘##1=12}%
\do\ \dospecials
\catcode\endlinechar=12
\newlinechar=\endlinechar
\verbcontinue}

\begingroup \lccode‘\/=‘\\
\lowercase{\endgroup
\def\verbcontinue##1/}endverbwrite{%

\immediate\write16{#1}\endgroup}

you could send messages like

\verbwrite !#$%$%#^%&*~@^^"<?:}{>|+
^+\footnote|)\\90\
\bye ^^L \endinput
\endverbwrite

without regard to the contents. The main limitation of this
approach is that in order for the handling of the special
characters to work, \verbwrite has to be executed directly
in a file; it cannot be embedded in a macro. Furthermore,
the message text is unalterable: it cannot contain a context-
dependent part, as in a message to display the current font
name on screen:

\message{Current font is \fontname\font.}

This message could not be generated with \verbwrite

because \verbwrite would not expand \fontname.

4.8 Presenting information in the best
possible form

Example: In reporting a dimension to the user, it is usually
desirable to report the value rounded to tenths or hundredths,
in units that are convenient for the user: points for a font
size or line spacing value; centimeters, picas, or inches for
the height or width of a page or of an included figure.

The file cnvunits.tex gives some examples of what
is possible in this vein, including conversions from points
to picas, inches, and centimeters. The conversions from
points to other units are the most important ones because
when \the is applied to a dimension or skip register TEX
always reports the value in pt units. (Not counting \muskip

registers, where the reported unit is mu.)

% Copyright 1994 Michael John Downes

% Copyright 2013 TeX Users Group

% This file is part of the dialogl package, released under the LPPL;

% see dialogl.ins for details.

\newdimen\zdim \newdimen\tempdim \newdimen\tempdima

% Conversion factors:

%

% According Scaled Rational Prime

% Unit to TeX Points Form Factorization

%---

% 1 sp 0.00002 pt 1 1/65536 pt 1 / 2^16

% 1 mm 2.84526 pt 186467 7227/2540 pt 3*3*11*73 / 2*2*5*127

% 1 cm 28.45274 pt 1864679 7227/254 pt 3*3*11*73 / 2*127

% 1 pt 1.0 pt 65536 100/7227 in 2*2*5*5 / 3*3*11*73

% 1 pc 12.0 pt 786432 12/1 pt

% 1 dd 1.07 pt 70124 1238/1157 pt 2*619 / 13*89

% 1 cc 12.8401 pt 841489 14856/1157 pt 2*2*2*3*619 / 13*89

% 1 bp 1.00374 pt 65781 803/800 pt 11*73 / 2*2*2*2*2*5*5

% [1/72 in]

% 1 in 72.2699 pt 4736286 7227/100 pt 3*3*11*73 / 2*2*5*5

% [2.54 cm] [254/100 cm]

\def\points#1#2#3{\tempdim#2\relax

\edef#3{\csname cnvunits#1\expandafter\endcsname\the\tempdim}%

}

\def\inches#1#2#3{%

\tempdim=#2\relax

\tempdima=\ifdim\tempdim<\zdim -\fi\tempdim % absolute value

\roundup\tempdima{#1}{in}%

% In the interest of maximum accuracy we push \tempdima as near

% to \maxdimen as possible before dividing, using the prime

% factorization of the fraction 7227/100 which is the

% points/inches conversion factor.

\ifdim\tempdima<.01\maxdimen

\multiply\tempdima 100 \divide\tempdima 7227

\else

\ifdim\tempdima<.1\maxdimen

\multiply\tempdima 10 \divide\tempdima 11

\multiply\tempdima 10 \divide\tempdima 657

\else

\divide\tempdima 9 \multiply\tempdima 5

\divide\tempdima 803 \multiply\tempdima 20

\fi

\fi

\tempdim=\ifdim\tempdim<\zdim -\fi \tempdima

\edef#3{%

\csname cnvunits#1\expandafter\endcsname\the\tempdim}%

}

% Function \roundup for rounding upward. #1 must be a dimension

% register. If it holds a negative value it will be rounded

% ‘outward’ away from zero rather than ‘upward’ toward zero. #3

% is a TeX units string such as "pt" or "in". If #2 = 0 then

% this will round up to the nearest tenth; if #2 = 00, nearest

% hundredth; and so forth (up to 5 zeros). If #2 is empty then

% full accuracy up to TeX’s limits will be used.

%

% The rounded result will be returned in the dimension register

% #1.

\def\roundup#1#2#3{%

\if .#2.\else

\begingroup

\ifdim#1>\zdim

\advance#1-\maxdimen \advance#1.#25#3\relax

\fi

\ifdim#1<\zdim

\endgroup

\advance#1.#25#3

\else

\endgroup

\fi

\fi

}

\begingroup

\catcode‘\P=12 \catcode‘\T=12

\lowercase{%

\expandafter\gdef\csname cnvunits\endcsname#1PT{#1}

\expandafter\gdef\csname cnvunits0\endcsname#1.#2PT{%

#1.\takeone#20\takeone}

\expandafter\gdef\csname cnvunits00\endcsname#1.#2PT{%

CARRYING ON DIALOG WITH TEX 14

#1.\taketwo#200\taketwo}

\expandafter\gdef\csname cnvunits000\endcsname#1.#2PT{%

#1.\takethree#2000\takethree}

\expandafter\gdef\csname cnvunits0000\endcsname#1.#2PT{%

#1.\takefour#20000\takefour}

\expandafter\gdef\csname cnvunits00000\endcsname#1.#2PT{%

#1.\takefive#200000\takefive}

}%

\endgroup

\def\takeone#1#2\takeone{#1}

\def\taketwo#1#2#3\taketwo{#1#2}

\def\takethree#1#2#3#4\takethree{#1#2#3}

\def\takefour#1#2#3#4#5\takefour{#1#2#3#4}

\def\takefive#1#2#3#4#5#6\takefive{#1#2#3#4#5}

\def\showinches#1{\inches{00}{#1}\converted

\immediate\write16{%

#1 = (after conversion) \converted\space inches}}

\showinches{0in} \showinches{1in} \showinches{2.0in}

\showinches{2.2in} \showinches{8.5in} \showinches{1pc}

\showinches{6pc} \showinches{1cm} \showinches{1mm}

\showinches{1bp} \showinches{72bp} \showinches{1cc}

\showinches{1dd} \showinches{72dd} \showinches{5000pt}

\showinches{-5000pt} \showinches{\maxdimen}

\showinches{-\maxdimen} \showinches{.999\maxdimen}

\showinches{1pt} \showinches{.01pt}

\endinput

% From the TeX log:

0in = (after conversion) 0.00 inches

1in = (after conversion) 1.00 inches

2.0in = (after conversion) 2.00 inches

2.2in = (after conversion) 2.20 inches

8.5in = (after conversion) 8.50 inches

1pc = (after conversion) 0.17 inches

6pc = (after conversion) 1.00 inches

1cm = (after conversion) 0.39 inches

1mm = (after conversion) 0.04 inches

1bp = (after conversion) 0.01 inches

72bp = (after conversion) 1.00 inches

1cc = (after conversion) 0.18 inches

1dd = (after conversion) 0.01 inches

72dd = (after conversion) 1.07 inches

5000pt = (after conversion) 69.18 inches

-5000pt = (after conversion) -69.18 inches

\maxdimen = (after conversion) 226.70 inches

-\maxdimen = (after conversion) -226.70 inches

.999\maxdimen = (after conversion) 226.48 inches

1pt = (after conversion) 0.01 inches

.01pt = (after conversion) 0.00 inches

Another example: if you want to report the \mathcode of
a particular character to the user, \number\mathcode‘\x or
\the\mathcode‘\x aren’t too great, because they produce
a decimal number, when it would be more convenient to
get a hexadecimal number filled out to four digits, so
that the class, math family, and font position information
can be read off directly. Extending some ideas from
testfont.tex [Knuth, 1986c], we can write a quite friendly
\reportmathcode function:

% When \meaning is applied to a \mathchar, it produces
% \mathchar"<digits> where <digits> are 1 to 4 hexadecimal digits.
% The function \gethex strips off the prefix and leaves only the
% digits.
\def\gethex#1"{}
% The function \reportmathcode takes a character or control symbol
% argument and reports the associated mathcode in hexadecimal

Example 2: The \printoptions command of AMS-
TEX version 1.1. \W@ is the AMS-TEX abbreviation for
\immediate\write16

\def\S@{S } \def\G@{G } \def\P@{P }
\newif\ifbadans@
\def\printoptions{\W@{Do you want S(yntax check),
G(alleys) or P(ages)?^^JType S, G or P, follow by <return>: }%
\loop \read\m@ne to\ans@

\xdef\next@{\def\noexpand\Ans@{\ans@}}%
\uppercase\expandafter{\next@}%
\ifx\Ans@\S@\badans@false\syntax\else
\ifx\Ans@\G@\badans@false\galleys\else
\ifx\Ans@\P@\badans@false\else
\badans@true\fi\fi\fi
\ifbadans@\W@{Type S, G or P, follow by <return>: }%

\repeat}

% form, filling out to four digits with leading zeros, if
% necessary.
\def\reportmathcode#1{%

\begingroup
\mathchardef\temp=\mathcode‘#1 \relax
\edef\temp{\expandafter\gethex\meaning\temp}%
\count@="\temp\relax
\edef\temp{%

% Fill in leading zeros
\ifnum\count@<"1000 0%
\ifnum\count@<"100 0%
\ifnum\count@<"10 0\fi\fi\fi
\temp}%

\message{The mathcode of \string#1 is: "\temp}%
\endgroup}

5 Stumbling blocks in the use of \read

5.1 An example: AMS-TEX’s \printoptions

command

Consider the \printoptions command of AMS-TEX 1.1
(Example 2): The definition of this command shows one
way of dealing with the extra space at the end of a macro
created using \read: Define some macros consisting of the
expected answers, with the extra space included, and then
use \ifx to compare them to the user’s response. It also
shows how to uppercase the user’s response so that lower- and
uppercase responses will be treated identically. This is the
second method given in the answer to The TEXbook’s Exercise
20.19. One more noteworthy feature of \printoptions is
that it runs a loop that doesn’t quit until the user gives an
acceptable answer.

In \printoptions since \W@ is defined to be \immediate

\write16, and the \write command always starts a new line
after its message text, we can see that the reply typed by the
user will appear on the next line instead of immediately after
the colon. This brings up the question: what if we want the
user’s reply to appear on the same line?

One way to do this is to use \message to send the last line
of the prompt message, and use \write to send the previous
line(s). For example:

CARRYING ON DIALOG WITH TEX 15

\W@{Do you want S(yntax check), G(alleys) or P(ages)?}%
\message{Type S, G or P, follow by <return>: }%

This idea is used in the LATEX option checknum.sty

[Hamilton Kelly, 1991]. An alternative would be to put the
whole prompt in a single \message with embedded newline
characters (as long as you are careful to select a character for
\newlinechar that is not needed in the text of the message).

5.2 ^^M at the end of a line

In \printoptions separate macros \S@, \G@, and \P@ are
defined for each legitimate response. If the menu becomes
more extensive, this technique is rather wasteful of hash size,
main memory, and other useful commodities. The problem
here is that the ^^M character at the end of the user’s response
is included by \read in the macro being read. Under normal
conditions ^^M is converted to a space; however, another
possibility—if the user just enters return without typing
any response—is that the ^^M will produce a \par token
(following the general rule that an empty line is equivalent
to \par). The best approach is to prevent the ^^M character
from getting into the read macro in the first place. This
can be done in two ways: setting the catcode of ^^M to 9
(“ignore”), or setting \endlinechar to −1.

Unfortunately, this immediately raises another difficulty:
we want to keep the catcode change or \endlinechar change
local so that it will affect only the \read. This could be
accomplished by saving the current catcode or \endlinechar
(just in case) and restoring it after the \read is done, but it’s
simpler to enclose the \read in a group:

\begingroup
\endlinechar=-1
\global\read16 to\answer
\endgroup

Here the \global prefix makes \answer retain its definition
beyond the \endgroup.

With this modification the tests done by \printoptions

could be simplified to

\if\Ans@ S ...\else
\if\Ans@ G ...\else
\if\Ans@ P ...\else
...

which renders the macros \S@, \G@, \P@ unnecessary.
On the other hand, we have advanced to some splendid

new complications: \Ans@ might now be completely empty,
if the user just pressed the return key, and an empty \Ans@

would bollix up the \if tests. This case is easy to handle,
though: add an extra branch \ifx\Ans@\empty... at the
beginning. We have the opposite problem if the user types
more than one letter: on the true branch (the ‘none-of-the-
above’ branch, unless the user’s first two letters happen to
be identical), the extra characters could potentially cause
spurious typesetting activity. As it happens, we can kill two
birds with one stone, as we’ll see in §5.4.

5.3 Uppercasing input

Next let’s look at the procedure used by \printoptions for
uppercasing the user’s reply: after reading \ans@, \xdef and
\uppercase are applied to it as follows:

\xdef\next@{\def\noexpand\Ans@{\ans@}}%
\uppercase\expandafter{\next@}%

A more economical version of the same technique would be:

\xdef\ans@{\uppercase{%
\gdef\noexpand\ans@{\ans@}}}%

\ans@

If \ans@ contains s to begin with, then after the
\xdef has been completed, the definition of \ans@ is
\uppercase{\def\ans@{s}}. Then calling \ans@ causes it
to redefine itself, but not before the tokens in the argument
of \uppercase are suitably uppercased.13 With this change,
the auxiliary macro \Ans@ is no longer needed.

To simplify the structure of macros using this uppercasing
process, it could be embodied in a dedicated function of its
own:

\def\uppermac#1{\xdef#1{\uppercase{\gdef\noexpand#1{#1}}}%
#1}

A nonglobal alternative may sometimes be desirable,
however. Also the full expansion may not be wanted in
some cases when the contents of the macro being uppercased
are ‘fragile’. An alternative that is safer with respect to
expansion:

\def\uppermac#1{%
\uppercase\expandafter\expandafter\expandafter{%
\expandafter\toks@\expandafter{#1}}%

\edef#1{\the\toks@}}

5.4 Default responses

One last refinement in \printoptions would be to provide
a default response if the user’s response is empty (that is,
the user only hit the return key). One method involves an
auxiliary macro like the LATEX macro \@car:

\def\@car#1#2\@nil{#1}

A more descriptive name (for those whose knowledge of
Lisp is nil) would be \firsttoken:14

\def\firsttoken#1#2@{#1}

Then, if we want \ans@ to be given a default value of P when
it comes back empty from the user, we do this:

\xdef\ans@{\expandafter\firsttoken\ans@ P@}

At the critical intermediate step, the following cases will arise:

13Only the s is affected because \uppercase operates only on letters,
not on control sequences or nonletters. Well, to be more precise: only
on characters that have a nonzero \uccode; they don’t have to have
catcode 11.

14Using @ as the ending delimiter is pretty safe if we make sure that
it has catcode 11 at the time \firsttoken is defined and some other
catcode at the time of reading user input.

CARRYING ON DIALOG WITH TEX 16

User input Critical step
s \firsttoken s P @

P \firsttoken P P @

〈return〉 \firsttoken P @

This gives exactly what we want.
The application of \firsttoken also gives us a nice way

around the difficulty mentioned earlier if the user types more
than one character. The case

synt \firsttoken s y n t P @

will produce the same result as the first case above, because
everything after the first s, up to the category-11 @ character,
will be discarded.

5.5 A new \printoptions

By noticing that the \xdef’s used in the \firsttoken step
and the \uppercase step can be combined, and putting
together everything discussed so far, we come up with a new,
improved version of \printoptions:

\def\printoptions{%
\W@{Do you want S(yntax check), G(alleys) or P(ages)?}%
\message{Type S, G or P, follow by <return>: }%
\begingroup \endlinechar\m@ne
\global\read\m@ne to\ans@
\endgroup
\xdef\ans@{\uppercase{%
\def\noexpand\ans@{%

% Default to ‘P’:
\expandafter\firsttoken\ans@ P@}%

}}%
% Execute \ans@ to uppercase itself:
\ans@
\if S\ans@ \syntax\else
\if G\ans@ \galleys\else
\if P\ans@ % fine, no action needed
\else \message{Unknown option: \ans@;

‘pages’ option will be used}\fi
\fi\fi

}

The loop has been discarded in favor of simply taking the
normal default action if the user’s reply is unintelligible.

5.6 Matching braces

The \read command normally reads only one line, but if
the first line does not contain an equal number of left and
right braces, TEX will continue to read additional lines until
equality is achieved (cf. §3.1). This could be trouble in
interactive use of \read, if the user doesn’t understand what
has happened—it’s difficult to extricate yourself except by
getting the braces right.

On the other hand, if you want to enter more than
one line at a time, you can do it by entering an opening
brace on the first line and the matching closing brace on
the last line; this is illustrated in Example 3. In the
example there are two things worthy of note: (1) The braces
appear in the replacement text of the macro \name; this
may be undesirable, depending on the intended use of the

information. (2) There’s no space between Frank and Henry
in \name.

The loss of the space has two causes. First, \endlinechar
was set to −1 (so that an empty line will not produce
a \par—see §5.2), and second, the space that was typed
at the beginning of the second line of the response didn’t
register either, following TEX’s usual rule of ignoring spaces
at the beginning of a line (The TEXbook, Chapter 8, double
dangerous bends).

5.7 Outer macros

[This section is partly obsolete as of TEX version 3.141; see
§3.1.]

If you enter an \outer macro in response to a \read

prompt, TEX will inform you in an error message that it
has inserted a closing brace. Unfortunately, this is rather
unhelpful, since you will then have the matching brace
problem described in the previous section; your answer now
contains an unmatched right brace, and if you don’t type ‘x’
at the question-mark prompt to exit, you could get stuck.
Fortunately, it is unlikely for anyone to ever enter an outer
macro in response to a prompt, since in plainTEX the set
of such macros is small and used relatively infrequently,
and in LATEX there are almost no \outer macros at all;
accidental typing of a ^^L character (which is active and
outer, in plainTEX and LATEX) is perhaps the least unlikely
possibility.

Some observations:
—If the user checks the help message and stops to ponder

the situation, they have the opportunity, at least, to realize
that E or X to exit is indeed the wise choice. They’re not
really stuck unless they carelessly try to continue.

—If the user doesn’t avail him/herself of the E or X
option, just about anything else that they try will be
ineffective. On some systems even the interrupt key won’t
help here; that leaves essentially two ways out: match up the
closing brace, or type another outer thing to get back to the
? prompt and the associated error recovery opportunity.

5.8 Catcodes

The treatment of a user’s response depends on the use to
which it will be put. LATEX’s \typein command is designed
to take the response and execute it, and therefore reads the
user’s response using normal category codes. On the other
hand, testfont.tex [Knuth, 1986c] changes the category
codes of the special characters to 12 when reading a user
response, because the response will not be executed but
will be processed as simple character data. This approach
is probably the better one for most applications, since it
avoids the possibility of problems with things like mismatched
braces or outer control sequences, and since the \read

command is used more often to read strings of ordinary
characters than to read executable control sequences.

CARRYING ON DIALOG WITH TEX 17

Example 3: Reading multiple lines with a single \read command
First, the input file:

\begingroup \newlinechar=‘\& \endlinechar=-1
\message{&Please enter your name: }\global\read-1 to\name
\message{&And your Social Security number: }\global\read-1 to\ssno
\endgroup
\show\name \show\ssno
...

Now the log file, including the responses (a return was typed after Frank):

Please enter your name: {Joe Bob Willie Clark Mark Raphael Ferguson Frank
Henry James Percival Emerson Elmo Davenport, Jr.}

And your Social Security number: 360-60-6000
> \name=macro:
->{Joe Bob Willie Clark Mark Raphael Ferguson FrankHenry James Percival Emerson
Elmo Davenport, Jr.}.
l.7 \show\name

\show\ssno
?
> \ssno=macro:
->360-60-6000.
l.7 \show\name \show\ssno

?

5.9 Latex.tex: \typeout and \typein

An interesting aspect of the \typeout and \typein

commands in LATEX is that they aren’t private control
sequences (with @ characters in their names); they are
available for use in ordinary document files. One of the
uses suggested in the LATEX manual is for entering an
\includeonly command interactively each time a multipart
document is processed. More commonly, however, \typeout
and \typein are used internally in documentstyle files, or in
special applications such as docstrip.tex [Mittelbach, 1991]
where the distinction between private and public control
sequences is irrelevant.

The purpose of \typein is (a) to print a message on
screen, and (b) to read a response (one line) from the user,
either into the internal macro \@typein, or into a macro
chosen by the macro writer. If \@typein is used to receive
the response, it will be executed as \typein’s final action.
Otherwise the response will be stored in the designated
alternate macro, without execution. (Cf. the LATEX manual,
§4.6.)

I found the definition of \typein in latex.tex more dif-
ficult to understand than almost anything else of compara-
ble length that I have looked at. All the complications in
the definition serve two goals: (1) If the user simply presses
the return key, the resulting \par token needs to be dis-
carded, leaving the macro that holds the user reply empty;
and (2) if the user reply is not empty, it will usually, but not
always, contain a final space which needs to be trimmed off.
The fact that the final space might be missing is the cru-
cial problem.

A simpler version of \@xtypein could be written using a
temporary deassignment of \endlinechar:

\def\@xtypein[#1]#2{\typeout{#2}\let\@typein\relax
\begingroup \endlinechar\m@ne \global\read\z@ to#1\endgroup
\@typein}

This solves both the \par problem and the trailing space
problem.

However, much of the initial development of LATEX took
place in 1982 and 1983, before the ultimate release of TEX82,
version 1.0 (officially: December 3, 1983), and in old TEX
there was no access to \endlinechar. (In fact many features
of TEX82 were added by Knuth in response to reports
from Lamport about various limitations of the language
that he ran into in the course of LATEX’s development.) If
Lamport noticed later that \endlinechar could be applied
in \@xtypein, he probably invoked the principle ‘If it ain’t
broke, don’t fix it’ and left it alone.

5.10 Docstrip.tex: \typeout, \typein,
progress reports

As an example of the use of \typeout and \typein, consider
docstrip.tex [Mittelbach, 1991]. This is a LATEX utility
used for processing a documented macro file to remove
comments (the stripped-down version of a large macro file will
load significantly faster at run-time, at least on less powerful
computers). The use of \typeout in docstrip.tex is
mainly a convenience, to avoid the more cumbersome phrase
\immediate\write16, but \typein has a more significant
advantage—it takes care of removing a space at the end of
the user response, if present.

In the following fragment from docstrip.tex, the user
is informed that an auxiliary file named docstrip.cmd has
been detected, and is asked whether it should be used. The

CARRYING ON DIALOG WITH TEX 18

Example 4: Outer control sequence choking a \read

operation. Compare this to the behavior of ^^L inside
\message as discussed in §4.6.
Input file:

\read16 to\x \show\x
\end

Log file:

\x=^^L
Runaway definition?
->
! Forbidden control sequence found while scanning definition of \x.
<inserted text>

}
<read *> ^^L

l.1 \read16 to\x

? h
I suspect you have forgotten a ‘}’, causing me
to read past where you wanted me to stop.
I’ll try to recover; but if the error is serious,
you’d better type ‘E’ or ‘X’ now and fix your file.

? 1
Type <return> to proceed, S to scroll future error messages,
R to run without stopping, Q to run quietly,
I to insert something, E to edit your file,
H for help, X to quit.
?
a
\
#
{
> \x=macro:
-> } \par a \^^M## { .
l.2 \show\x

?

response is read into the macro \answer.

\typeout{***}
\typeout{* Batch file docstrip.cmd found. Use it ? (y/n) *}
\typein[\answer]

{***}
\def\@tempa{y}%
\ifx\@tempa\answer \process@batchfile \fi

An analysis of the technique in this fragment brings out a
few noteworthy observations.

• In the prompt (line 2) the acceptable responses are
listed: y or n.

• Since \typein doesn’t change the case of the user’s
response, and there’s no code here in docstrip.tex to
change case, we can deduce that a response of Y will be
treated as a No.

• If the user response is yes, then \answer and \@tempa

will have different definitions, and the \ifx test will be
false.

• If the user is expected to enter only a single letter,
we might ask, why is an \ifx test necessary? Why
not just use \if y\answer\process@batchfile and
omit the extra step \def\@tempa{y}? However, this
would invite trouble if the user pressed return without
typing anything. Then \answer would be empty
(because of the special handling with \@defpar in
\typein) and before completing the evaluation of the
\if, TEX would continue beyond \answer to expand
\process@batchfile in search of a character to
compare with the y. Although this would give a correct
result for the \if test, because the first nonexpandable
token in the definition of \process@batchfile is not
a y, the trouble is that the token will be absorbed
by the \if operation, which will throw a wrench into
subsequent processing.

Note. The version of docstrip.tex from which I took
these examples was an early, unperfected version with an
explicit disclaimer from the author that it was a quick hack,
and should not be considered an example of his best macro
writing. I discuss the early version here, however, precisely
because it illustrates so well some of the typical difficulties in
writing TEX dialog.

An interesting feature of docstrip is the ability to see
on screen the progress being made in processing the current
file. If this feature is turned on (with a \showprogress

command), then docstrip prints on screen a percent sign
for each comment removed and a period for each line of code
that is kept. This kind of visual feedback is not just frippery
and ornamentation, bells and whistles. A typical user begins
to get nervous if a running program allows several seconds
to pass by without any observable change on screen. On a
fast system, it’s straightforward to deduce that such a pause
means something has gone wrong, whereupon the user can
press an interrupt key to investigate the problem without
wasting time. But on a slow system the poor user faces the
dilemma: Abort unnecessarily, and a restart will be required,
with all the time consumed so far wasted; or continue waiting
when the program might simply be spinning its wheels and
accomplishing nothing. So when a task might take more than,
say, five seconds, it’s good programming practice to give some
sort of progress reports.

The progress reports of docstrip use \message which, as
discussed earlier, adds a space between consecutive messages
if the second message is not too long to fit on the current
line. So what you see on screen is something like

% % % % % % % % % % . . . % % % % % . . % . % % . % . %
. . . % % . % . % % % % % % % % % . . % . % % . % % % % . . . % .
. . .

produced by repeated \message{%} or \message{.}. Recall-
ing the newline behavior of \immediate\write, picture what
would happen if it were used instead of \message to see why
\message is necessary for this application.

5.11 emTEX 8-bit output

One interesting feature of emTEX [Mattes, 1992] is the 8-bit
output option. On PCs, the characters between 176 and 223

CARRYING ON DIALOG WITH TEX 19

are box-drawing characters; with the 8-bit output option of
emTEX, putting these characters into a \message or \write
command allows you to draw some fairly elaborate boxes on
screen, for embellishing menus and other bits of dialog. I
have only experimented with this a very little.

5.12 User Help

There is a good deal of room for improvement in the amount
and kind of help information available to the user from within
TEX. Help information provided externally through general
help facilities such as Unix man pages is well and good, but
any help system that’s not TEX-based has one disadvantage:
lack of portability across the whole spectrum of computer
systems that can run TEX.

• Any program should have an announcement near the
beginning of how to quit without destructive side
effects; for TEX this means, among other things, that
each version of the TEX program should have in its
opening message instructions on how to break out of
an infinite loop or in general how to interrupt TEX
before it has finished its current run. In Textures
this requirement is satisfied by the ‘Pause’ button,
always visible. In DOS versions of TEX the interrupt
key is normally the Control-Break or Control-C key
(depending partly on the particular implementation of
TEX); in VAX/VMS it is Control-C or Control-Y, with
the latter reserved for emergency use only, since it will
leave you without a log file for reference.

• Response to the prompt

I can’t find file xxx. Please type another

input file name:

The novice user should be able to type the reasonable
guesses help and h and ?; the easiest way to do this
would be to put files help.tex, h.tex or ?.tex in the
TEX inputs directory/folder/area. (Except that many
OS’s don’t allow ?.tex as a file name). Already many
systems have a file null.tex or nul.tex to allow you to
abort reasonably gracefully if you know enough to enter
null or nul in response to the prompt. Very few TEX
users, however, will ever think of entering nul without
reading about it in the documentation or hearing about
it from a more experienced user.

• Some of TEX’s built-in error/help messages are specific
to plain.tex. Some big macro packages such as
LATEX might prefer to change some of the wording at
least. For example, there are references in some of
TEX’s compiled-in help messages to things like \def

and \eqalign that are documented nowhere in the
LATEX book. And if you press return at a * prompt
after getting into TEX’s interactive mode (intentionally
or accidentally), TEX urges you to enter a command
or type \end—the latter being worse than useless in
LATEX (where \stop or \end{document} are what is
required): after typing \end and return, nothing
happens because LATEX is waiting for the argument of
the \end command.

• Long help and error messages use string pool and main
memory. Storing them in external files would provide
more space (at the cost of slower access; but of course,
once you get an error message, processing speed is
scarcely relevant any longer).

6 Summary

6.1 Sending messages

Recommendations: Until versions of TEX earlier than 3.141
are sufficiently phased out, you had better use \immediate

\write rather than \message for generic message-sending
macros, so that all “printable” characters remain available
for use in the message text. Use \message instead of
\immediate\write for producing a prompt if you want the
user’s response to appear on the same line. Uncatcode all
special characters while constructing the text of a message,
if the message text is completely invariant between one use
and the next. Use \string if you don’t want a space after a
control word, and use \noexpand if you do want a space.

6.2 Reading user input

Recommendations: Set the catcode of \endlinechar

temporarily to 9 while reading a response, to avoid getting
an extra space at the end from the ^^M. Uncatcode all special
characters, especially opening and closing braces. If it is not
uncatcoded, remove the outerness from ^^L, at least while
reading a user response, and similarly, if the backslash is not
uncatcoded and you want to be supremely cautious, remove
the outerness from any other outer control sequences (e.g.,
\newif) if they might reasonably, or even unreasonably, turn
up in a user’s response.

References

[Cowan, 1987] Cowan, Ray. tables.sty. 1987. This is derived
from tables.tex; I found it at sun.soe.clarkson.edu,
directory: pub/tex/latex-style.

[Greene, 1989] Greene, Andrew Marc. “TEXreation—Playing
games with TEX’s mind.” TUGboat 10(4), pages 691–705,
1989. Includes a listing of animals.tex.

[Greene, 1990] Greene, Andrew Marc. “BaSiX: An interpreter
written in TEX.” TUGboat 11(3), pages 381–392, 1990.

[Hamilton Kelly, 1991] Hamilton Kelly, Brian. checknum.sty.
UKTEX 91(1), 4 January 1991.

[Knuth, 1986b] Knuth, Donald E. TEX: The program. Reading,
Mass.: Addison-Wesley, 1986.

[Knuth, 1986c] Knuth, Donald E. testfont.tex. The META-
FONTbook, Appendix H, section 4. Reading, Mass.:
Addison-Wesley, 1986. This file is included in all standard
distributions of METAFONT.

[Lamport, 1985] Lamport, Leslie. latex.tex. Version 2.09
(1985–1992). Main source file for LATEX, included with any
standard distribution.

[Mattes, 1992] Mattes, Eberhard. emTEX. Version 3.1415. A
comprehensive suite of programs including TEX, METAFONT,

CARRYING ON DIALOG WITH TEX 20

printer drivers, previewers, BibTEX, Available by
anonymous ftp from niord.shsu.edu (USA) or ftp.uni-

stuttgart.de (Europe) and other fine archives.

[Mittelbach, 1991] Mittelbach, Frank. docstrip.tex. Version
1.1l, 1991. This file is part of the multicol package available
by anonymous FTP from many archives, including ftp.uni-

stuttgart.de and ymir.claremont.edu.

Appendix A Basix.tex

Another effort by Andrew Marc Greene, with clear relevance
to the subject of dialog in TEX, is his prototype Basic
interpreter described in [Greene, 1990]. I had planned to give
here a closer study of the dialog concepts used by basix.tex

but it seems I will not have enough time.

Appendix B Tables.tex

The file tables.tex [Cowan, 1987] provides table macros
with the unique property that a preamble line specifying the
format of each row is not required; the format is determined
automatically by an analysis of the table contents. The dialog
part consists of a message such as

[Nrows=9, Ncols=2]

that is printed on screen for each table. This provides
confirmation at run-time for the user of the general structure
of each table. In the worst case, if the number of rows or
columns is wildly wrong, the user can press the interrupt key
and go fix up the table before trying again.

Appendix C Fontmenu.tex

The file fontmenu.tex demonstrates a crude menu system
based on the token deletion option after an error message.
There are five tokens \ComputerModern, \Garamond, etc.,
corresponding to the five font choices. They are so defined
and arranged that if the user enters, say, 2 to select
Garamond fonts, then the deletion of two tokens will leave
the \Garamond token showing on screen (as the last token
deleted by the user), and then the next token (\Helvetica)
will define the font base to be ‘Garamond’ and gobble the
remainder of the list. The effect of this arrangement is that
the user sees the ’\Garamond’ on screen as a confirmation of
their selection after they enter the number and before they
press the return key a second time.

% Copyright 1994 Michael John Downes

% Copyright 2013 TeX Users Group

% This file is part of the dialogl package, released under the LPPL;

% see dialogl.ins for details.

\def\ComputerModern{\gdef\fontbase{Times}\gobble}

\def\Garamond{\gdef\fontbase{Computer Modern}\gobble}

\def\Helvetica{\gdef\fontbase{Garamond}\gobble}

\def\Malibu{\gdef\fontbase{Helvetica}\gobble}

\def\Times{\gdef\fontbase{Malibu}\gobble}

\def\gobble#1\endgobble{}

% Make sure we have a reasonable \newlinechar

\newlinechar=‘\^^J \catcode\newlinechar=12

\begingroup

\catcode‘\<=1 \catcode‘\ =2\relax

\gdef\menustart{\errmessage<%

....................................... }%

\endlinechar\newlinechar\catcode‘\ =12\relax

\gdef\menutext{

.......................................

.......................................

Select the font base you wish to use:

[1] Computer Modern [4] Malibu

[2] Garamond [5] Times

[3] Helvetica

(Default: Times)}%

\endgroup% percent here to avoid extra \newlinechar

\begingroup

\immediate\write16{\menutext}

% If the user accidentally types 33 instead of 3 they will get past

% all the legitimate menu choices. So to keep that from causing

% trouble, we throw in a bunch of ~ characters below to perform

% error recovery. The standard maximum number of tokens that TeX

% will delete at one time is 99.

\catcode‘\~=\active % just to make sure

\def~{\newlinechar‘\^^J% restore normal value

\message{%

Whoops! Well, you got Times as your font base, I think}%

\gobble}

% Minimize unwanted error context (note: setting

% this to -1 doesn’t suppress any more information)

\errorcontextlines 0

\newlinechar=‘\! % to hide the automatic ! from \errmessage

\gdef\fontbase{Times}

% Inside the next group we make the space character

% active so that we can use it to call \menustart,

% and then we use \expandafter so that the first

% space on the next line gets that catcode before

% the \endgroup makes it revert to normal. All this

% so that the user does not see ‘\menustart’ on

% screen, only a space.

\begingroup

\catcode‘\ =\active\let =\menustart\expandafter\endgroup%

% Enter a number (1...5) and press Return TWICE

\ComputerModern% Press Return to continue

\Garamond% Press Return to continue

\Helvetica% Press Return to continue

\Malibu% Press Return to continue

\Times% Press Return to continue

\gobble%

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%

\endgobble\endgroup%

\show\fontbase

\end

And here is screen output of a typical run through
fontmenu.tex:

This is emTeX, Version 3.0 [3a] (preloaded format=plain 93.9.20)

30 OCT 1993 23:41

**&plain fontmenu

(fontmenu.tex

.......................................

.......................................

Select the font base you wish to use:

[1] Computer Modern [4] Malibu

[2] Garamond [5] Times

CARRYING ON DIALOG WITH TEX 21

[3] Helvetica

(Default: Times)

..

..

l.56

% Enter a number (1...5) and press Return TWICE

? 4

l.60 \Malibu

% Press Return to continue

?

> \fontbase=macro:

->Malibu.

l.66 \show\fontbase

? x

No pages of output.

