
A new implementation of LATEX’s tabular and array
environment∗

Frank Mittelbach David Carlisle†

Printed June 14, 2024

This file is maintained by the LATEX Project team.
Bug reports can be opened (category tools) at
https://latex-project.org/bugs.html.

Abstract
This article describes an extended implementation of the LATEX array– and tab-

ular–environments. The special merits of this implementation are further options
to format columns and the fact that fragile LATEX–commands don’t have to be
\protect’ed any more within those environments.
The major part of the code for this package dates back to 1988—so does some of
its documentation.

1 Introduction
This new implementation of the array– and tabular–environments is part of a larger project
in which we are trying to improve the LATEX-code in some aspects and to make LATEX
even easier to handle.

The reader should be familiar with the general structure of the environments men-
tioned above. Further information can be found in [3] and [1]. The additional options
which can be used in the preamble as well as those which now have a slightly different
meaning are described in table 1.

Additionally we introduce a new parameter called \extrarowheight. If it takes a\extrarowheight
positive length, the value of the parameter is added to the normal height of every row
of the table, while the depth will remain the same. This is important for tables with
horizontal lines because those lines normally touch the capital letters. For example, we
used \setlength{\extrarowheight}{1pt} in table 1.

We will discuss a few examples using the new preamble options before dealing with
the implementation.

• If you want to use a special font (for example \bfseries) in a flushed left column,
this can be done with >{\bfseries}l. You do not have to begin every entry of the
column with \bfseries any more.

∗This file has version number v2.6d, last revised 2024/06/14.
†David kindly agreed on the inclusion of the \newcolumntype implementation, formerly in

newarray.sty into this package.

1

https://latex-project.org/bugs.html

Unchanged options
l Left adjusted column.
c Centered adjusted column.
r Right adjusted column.

p{width} Equivalent to \parbox[t]{width}.
@{decl.} Suppresses inter-column space and inserts decl. instead.

New options

m{width}
Defines a column of width width. Every entry will be cen-
tered in proportion to the rest of the line. It is somewhat
like \parbox{width}.

b{width} Coincides with \parbox[b]{width}.

>{decl.}
Can be used before an l, r, c, p, m or a b option. It inserts
decl. directly in front of the entry of the column.

<{decl.}
Can be used after an l, r, c, p{..}, m{..} or a b{..}
option. It inserts decl. right after the entry of the column.

|
Inserts a vertical line. The distance between two columns
will be enlarged by the width of the line in contrast to the
original definition of LATEX.

!{decl.}

Can be used anywhere and corresponds with the | option.
The difference is that decl. is inserted instead of a vertical
line, so this option doesn’t suppress the normally inserted
space between columns in contrast to @{...}.

w{align}{width}

Sets the cell content in a box of the specified width aligned
according to the align parameter which could be either l, c
or r. Works essentially like \makebox[width][align]{cell}
so silently overprints if the cell content is wider than the
specified width. If that is not desired use W instead.

W{align}{width}

Like w but spits out an overfull box warning (and an over-
fullrule marker in draft mode) when the cell content is too
wide to fit. This also means that the alignment is different
if there is too much material, because it then always pro-
trudes to the right!

Table 1: The preamble options.

• In columns which have been generated with p, m or b, the default value of
\parindent is 0pt. This can be changed with
>{\setlength{\parindent}{1cm}}p.

• The >– and <–options were originally developed for the following application:
>{$}c<{$} generates a column in math mode in a tabular–environment. If you
use this type of a preamble in an array–environment, you get a column in LR mode
because the additional $’s cancel the existing $’s.

• One can also think of more complex applications. A problem which has
been mentioned several times in TEXhax can be solved with >{\centerdots}c
<{\endcenterdots}. To center decimals at their decimal points you (only?) have

2

to define the following macros:

\catcode‘\.\active\gdef.{\egroup\setbox2\hbox\bgroup}}
def\centerdots{\catcode‘\.\active\setbox0\hbox\bgroup}
def\endcenterdots{\egroup\ifvoid2 \setbox2\hbox{0}\fi

\ifdim \wd0>\wd2 \setbox2\hbox to\wd0{\unhbox2\hfill}\else
\setbox0\hbox to\wd2{\hfill\unhbox0}\fi

\catcode‘\.12 \box0.\box2}

Warning: The code is bad, it doesn’t work with more than one dot in a cell and
doesn’t work when the tabular is used in the argument of some other command. A
much better version is provided in the dcolumn.sty by David Carlisle.

• Using c!{\hspace{1cm}}c you get space between two columns which is enlarged by
one centimeter, while c@{\hspace{1cm}}c gives you exactly one centimeter space
between two columns.

• A declaration like w{l}{3cm} (or even shorter wl{3cm}) works like an l column
except that the width will always be 3cm regardless of the cell content. Same with
w{c} or w{r}. This means that it is easy to set up tables in which all columns have
predefined widths.

1.1 The behavior of the \\ command
In the basic tabular implementation of LATEX the \\ command ending the rows of the
tabular or array has a somewhat inconsistent behavior if its optional argument is used.
The result then depends on the type of rightmost column and as remarked in Leslie
Lamport’s LATEX manual [3] may not always produce the expected extra space.

Without the array package the extra space requested by the optional argument of
\\ is measured from the last baseline of the rightmost column (indicated by “x” in the
following example). As a result, swapping the column will give different results:

\begin{tabular}[t]{lp{1cm}}
1 & 1\newline x \\[20pt] 2 & 2 \end{tabular}

\begin{tabular}[t]{p{1cm}l}
1\newline 1 & x \\[20pt] 2 & 2 \end{tabular}

3

If you run this without the array package you will get the following result:

1 1
x

2 2

1
1

x

2 2

In contrast, when the array package is loaded, the requested space in the optional ar-
gument is always measured from the baseline of the whole row and not from the last
baseline of the rightmost column, thus swapping columns doesn’t change the spacing and
we same table height with an effective 8pt of extra space (as the second line already takes
up 12pt of the requested 20pt):

1 1
x

2 2

1
1

x

2 2

This correction of behavior only makes a difference if the rightmost column is a p-
column. Thus if you add the array package to an existing document, you should verify
the spacing in all tables that have this kind of structure.

1.2 Defining new column specifiers
Whilst it is handy to be able to type\newcolumntype

>{⟨some declarations⟩}{c}<{⟨some more declarations⟩}

if you have a one-off column in a table, it is rather inconvenient if you often use columns
of this form. The new version allows you to define a new column specifier, say x, which
will expand to the primitives column specifiers.1 Thus we may define

\newcolumntype{x}{>{⟨some declarations⟩}{c}<{⟨some more declarations⟩}}

One can then use the x column specifier in the preamble arguments of all array or
tabular environments in which you want columns of this form.

It is common to need math-mode and LR-mode columns in the same alignment. If
we define:

\newcolumntype{C}{>{$}c<{$}}
\newcolumntype{L}{>{$}l<{$}}
\newcolumntype{R}{>{$}r<{$}}

Then we can use C to get centred LR-mode in an array, or centred math-mode in a
tabular.

The example given above for ‘centred decimal points’ could be assigned to a d spec-
ifier with the following command.

\newcolumntype{d}{>{\centerdots}c<{\endcenterdots}}

1This command was named \newcolumn in the newarray.sty. At the moment \newcolumn is still
supported (but gives a warning). In later releases it will vanish.

4

The above solution always centres the dot in the column. This does not look too
good if the column consists of large numbers, but to only a few decimal places. An
alternative definition of a d column is

\newcolumntype{d}[1]{>{\rightdots{#1}}r<{\endrightdots}}

where the appropriate macros in this case are:2

\def\coldot{.}% Or if you prefer, \def\coldot{\cdot}
{\catcode‘\.=\active

\gdef.{$\egroup\setbox2=\hbox to \dimen0 \bgroup$\coldot}}
\def\rightdots#1{%

\setbox0=\hbox{1}\dimen0=#1\wd0
\setbox0=\hbox{\coldot}\advance\dimen0 \wd0
\setbox2=\hbox to \dimen0 {}%
\setbox0=\hbox\bgroup\mathcode‘\.="8000 $}

\def\endrightdots{$\hfil\egroup\box0\box2}

Note that \newcolumntype takes the same optional argument as \newcommand which
declares the number of arguments of the column specifier being defined. Now we can
specify d{2} in our preamble for a column of figures to at most two decimal places.

A rather different use of the \newcolumntype system takes advantage of the fact
that the replacement text in the \newcolumntype command may refer to more than one
column. Suppose that a document contains a lot of tabular environments that require
the same preamble, but you wish to experiment with different preambles. Lamport’s
original definition allowed you to do the following (although it was probably a mis-use of
the system).

\newcommand{\X}{clr}
\begin{tabular}{\X} . . .

array.sty takes great care not to expand the preamble, and so the above does not work
with the new scheme. With the new version this functionality is returned:

\newcolumntype{X}{clr}
\begin{tabular}{X} . . .

The replacement text in a \newcolumntype command may refer to any of the
primitives of array.sty see table 1 on page 2, or to any new letters defined in other
\newcolumntype commands.

A list of all the currently active \newcolumntype definitions is sent to the terminal\showcols
and log file if the \showcols command is given.

1.3 Special variations of \hline

The family of tabular environments allows vertical positioning with respect to the base-
line of the text in which the environment appears. By default the environment appears
centered, but this can be changed to align with the first or last line in the environment
by supplying a t or b value to the optional position argument. However, this does not
work when the first or last element in the environment is a \hline command—in that
case the environment is aligned at the horizontal rule.

2The package dcolumn.sty contains more robust macros based on these ideas.

5

Here is an example:

Tables with no
hline
commands
used

versus

tables
with some
hline
commands

used.

Tables
\begin{tabular}[t]{l}
with no\\ hline \\ commands \\ used

\end{tabular} versus tables
\begin{tabular}[t]{|l|}
\hline
with some \\ hline \\ commands \\

\hline
\end{tabular} used.

Using \firsthline and \lasthline will cure the problem, and the tables will align\firsthline
\lasthline properly as long as their first or last line does not contain extremely large objects.

Tables with no
line
commands
used

versus

tables with some
line
commands

used.

Tables
\begin{tabular}[t]{l}

with no\\ line \\ commands \\ used
\end{tabular} versus tables
\begin{tabular}[t]{|l|}
\firsthline
with some \\ line \\ commands \\

\lasthline
\end{tabular} used.

The implementation of these two commands contains an extra dimension, which is called\extratabsurround
\extratabsurround, to add some additional space at the top and the bottom of such an
environment. This is useful if such tables are nested.

2 Final Comments
2.1 Handling of rules
There are two possible approaches to the handling of horizontal and vertical rules in
tables:

1. rules can be placed into the available space without enlarging the table, or

2. rules can be placed between columns or rows thereby enlarging the table.

For vertical rules array.sty implements the second possibility while the default imple-
mentation in the LATEX kernel implements the first concept. Both concepts have their
merits but one has to be aware of the individual implications.

• With standard LATEX adding vertical rules to a table will not affect the width of the
table (unless double rules are used), e.g., changing a preamble from lll to l|l|l
does not affect the document other than adding rules to the table. In contrast, with
array.sty a table that just fit the \textwidth might now produce an overfull box.

• With standard LATEX modifying the width of rules could result in ugly looking
tables because without adjusting the \tabcolsep, etc. the space between rule and
column could get too small (or too large). In fact even overprinting of text is
possible. In contrast, with array.sty modifying any such length usually works
well as the actual visual white space (from \tabcolsep, etc.) does not depend on
the width of the rules.

6

• With standard LATEX boxed tabulars actually have strange corners because the
horizontal rules end in the middle of the vertical ones. This looks very unpleasant
when a large \arrayrulewidth is chosen. In that case a simple table like

setlength{\arrayrulewidth}{5pt}
begin{tabular}{|l|}
\hline A \\ \hline

end{tabular}

will produce something like

A instead of A

Horizontal rules produced with \hline add to the table height in both implementa-
tions but they differ in handling double \hlines. In contrast a \cline does not change
the table height.3

2.2 Comparisons with older versions of array.sty

There are some differences in the way version 2.1 treats incorrect input, even if the source
file does not appear to use any of the extra features of the new version.

• A preamble of the form {wx*{0}{abc}yz} was treated by versions prior to 2.1 as
{wx}. Version 2.1 treats it as {wxyz}

• An incorrect positional argument such as [Q] was treated as [c] by array.sty,
but is now treated as [t].

• A preamble such as {cc*{2}} with an error in a ∗-form will generate different errors
in the new version. In both cases the error message is not particularly helpful to
the casual user.

• Repeated < or > constructions generated an error in earlier versions, but are
now allowed in this package. >{⟨decs1⟩}>{⟨decs2⟩} is treated the same as
>{⟨decs2⟩⟨decs1⟩}.

• The \extracolsep command does not work with the old versions of array.sty,
see the comments in array.bug. With version 2.1 \extracolsep may again be
used in @-expressions as in standard LATEX, and also in !-expressions (but see the
note below).

Prior to version 2.4f the space added by the optional argument to \\ was added
inside an m-cell if the last column was of type m. As a result that cell was vertically
centered with that space inside, resulting in a strange offset. Since 2.4f, this space is now
added after centering the cell.

A similar problem happened when \extrarowheight was used. For that reason
m-cells now manually position the cell content which allows to ignore this extra space
request during the vertical aligment.

3All a bit inconsistent, but nothing that can be changed after being 30+ years in existence.

7

2.3 Bugs and Features
• Error messages generated when parsing the column specification refer to the pream-

ble argument after it has been re-written by the \newcolumntype system, not to
the preamble entered by the user. This seems inevitable with any system based on
pre-processing and so is classed as a feature.

• The treatment of multiple < or > declarations may seem strange at first. Earlier
implementations treated >{⟨decs1⟩}>{⟨decs2⟩} the same as >{⟨decs1⟩⟨decs2⟩}.
However this did not give the user the opportunity of overriding the settings of
a \newcolumntype defined using these declarations. For example, suppose in an
array environment we use a C column defined as above. The C specifies a centred
text column, however >{\bfseries}C, which re-writes to >{\bfseries}>{$}c<{$}
would not specify a bold column as might be expected, as the preamble would
essentially expand to \hfil\bfseries#$ $\hfil and so the column entry would
not be in the scope of the \bfseries ! The present version switches the order of
repeated declarations, and so the above example now produces a preamble of the
form \hfil$ $\bfseries#$ $\hfil, and the dollars cancel each other out without
limiting the scope of the \bfseries.

• The use of \extracolsep has been subject to the following two restrictions.
There must be at most one \extracolsep command per @, or ! expression
and the command must be directly entered into the @ expression, not as
part of a macro definition. Thus \newcommand{\ef}{\extracolsep{\fill}}
. . . @{\ef} does not work with this package. However you can use something like
\newcolumntype{e}{@{\extracolsep{\fill}} instead.

• As noted by the LATEX book, for the purpose of \multicolumn each column with
the exception of the first one consists of the entry and the following inter-column
material. This means that in a tabular with the preamble |l|l|l|l| input such
as \multicolumn{2}{|c|} in anything other than the first column is incorrect.
In the standard array/tabular implementation this error is not so noticeable as that
version contains negative spacing so that each | takes up no horizontal space. But
since in this package the vertical lines take up their natural width one sees two lines
if two are specified.

3 Support for tagged PDF
With version 2.6a the package is made tagging aware, which means that it will auto-
matically produce tagged tables (necessary, for example, for accessibility) if tagging is
requested via \DocumentMetadata.

More granular control, e.g., explicitly deciding which cells are header cells, etc., is
currently under development, but syntax for this will not appear in this package. Instead
it will become available across all tabular-generating packages and then automatically
apply here as well.

Enabling LATEX to automatically produce tagged PDF is a long-term project and this
is a tiny step in this puzzle. For more information on the project and already available
functionality, see https://latex-project.org/publications/indexbytopic/pdf and
https://github.com/latex3/tagging-project.

8

https://latex-project.org/publications/indexbytopic/pdf
https://github.com/latex3/tagging-project

4 The documentation driver file
The first bit of code contains the documentation driver file for TEX, i.e., the file that will
produce the documentation you are currently reading. It will be extracted from this file
by the docstrip program.

1 ⟨∗driver⟩
2 \NeedsTeXFormat{LaTeX2e}[2024/06/01]

We switched from ltxdoc to l3doc to get support for code written in the L3 program-
ming layer. The first is that we are currently missing \MaintainedByLaTeXTeam, so we
have to provide that for now.

3 \documentclass{l3doc}
4

5 % currently missing in l3doc
6 \makeatletter
7 \def\MaintainedBy#1{\gdef\@maintainedby{#1}}
8 \let\@maintainedby\@empty
9 \def\MaintainedByLaTeXTeam#1{%

10 {\gdef\@maintainedby{%
11 This file is maintained by the \LaTeX{} Project team.\\%
12 Bug reports can be opened (category \texttt{#1}) at\\%
13 \url{https://latex-project.org/bugs.html}.}}}
14 \def\@maketitle{%
15 \newpage
16 \null
17 \vskip 2em%
18 \begin{center}%
19 \let \footnote \thanks
20 {\LARGE \@title \par}%
21 \vskip 1.5em%
22 {\large
23 \lineskip .5em%
24 \begin{tabular}[t]{c}%
25 \@author
26 \end{tabular}\par}%
27 \vskip 1em%
28 {\large \@date}%
29 \ifx\@maintainedby\@empty
30 \else
31 \vskip 1em%
32 \fbox{\fbox{\begin{tabular}{@{}l@{}}\@maintainedby\end{tabular}}}%
33 \fi
34 \end{center}%
35 \par
36 \vskip 1.5em}
37 \makeatother
38

39 % undo the default is not used:
40

41 \IfFormatAtLeastTF {2020/10/01}
42 {\AtBeginDocument[ltxdoc]{\DeleteShortVerb{\|}} }
43 {\AtBeginDocument{\DeleteShortVerb{\|}} }
44

45 \usepackage{array}

9

46

47 % Allow large table at bottom
48 \renewcommand{\bottomfraction}{0.7}
49

50 \EnableCrossrefs
51 %\DisableCrossrefs % Say \DisableCrossrefs if index is ready
52

53 \RecordChanges % Gather update information
54

55 \CodelineIndex % Index code by line number
56

57 %\OnlyDescription % comment out for implementation details
58 %\OldMakeindex % use if your MakeIndex is pre-v2.9
59

60 \begin{document}
61 \DocInput{array.dtx}
62 \end{document}
63 ⟨/driver⟩

5 A note on the updates done December 2023
We introduced support for tagged PDf and at the same time we added code to determine
row and column numbers for each cell in preparation for supporting formatting or type
specifications for individual cells (or group of cells) from the outside, e.g., “rows 1, 2, and
10 are header rows” (syntax to be decided).

This new code is already written with L3 programming layer conventions while most
of the legay code is still as it was before. This make the code currently somewhat
clattered, unfortunately. Eventually this will all move to L3 programming layer but this
will take time.

64 ⟨@@=tbl⟩
65 \ExplSyntaxOn

6 The construction of the preamble
It is obvious that those environments will consist mainly of an \halign, because TEX
typesets tables using this primitive. That is why we will now take a look at the algorithm
which determines a preamble for a \halign starting with a given user preamble using
the options mentioned above.

The current version is defined at the top of the file looking something like this
66 ⟨∗package⟩
67 %\NeedsTeXFormat{LaTeX2e}[1994/05/13]
68 %\ProvidesPackage{array}[\filedate\space version\fileversion]

The most interesting macros of this implementation are without doubt those which
are responsible for the construction of the preamble for the \halign. The underlying
algorithm was developed by Lamport (resp. Knuth, see texhax V87#??), and it has
been extended and improved.

The user preamble will be read token by token. A token is a single character
like c or a block enclosed in {...}. For example the preamble of \begin{tabular}
{lc||c@{\hspace{1cm}}} consists of the token l, c, |, |, @ and \hspace{1cm}.

10

The currently used token and the one, used before, are needed to decide on
how the construction of the preamble has to be continued. In the example men-
tioned above the l causes the preamble to begin with \hskip\tabcolsep. Further-
more # \hfil would be appended to define a flush left column. The next token is
a c. Because it was preceded by an l it generates a new column. This is done
with \hskip \tabcolsep & \hskip \tabcolsep. The column which is to be cen-
tered will be appended with \hfil # \hfil. The token | would then add a space of
\hskip \tabcolsep and a vertical line because the last tokens was a c. The following
token | would only add a space \hskip \doublerulesep because it was preceded by the
token |. We will not discuss our example further but rather take a look at the general
case of constructing preambles.

The example shows that the desired preamble for the \halign can be constructed
as soon as the action of all combinations of the preamble tokens are specified. There are
18 such tokens so we have 19 · 18 = 342 combinations if we count the beginning of the
preamble as a special token. Fortunately, there are many combinations which generate
the same spaces, so we can define token classes. We will identify a token within a class
with a number, so we can insert the formatting (for example of a column). Table 2 lists
all token classes and their corresponding numbers.

token \@chclass \@chnum

c 0 0
l 0 1
r 0 2

m-arg 0 3
p-arg 0 4
b-arg 0 5

| 1 0
!-arg 1 1
<-arg 2 —
>-arg 3 —

token \@chclass \@chnum

Start 4 —
@-arg 5 —

! 6 —
@ 7 —
< 8 —
> 9 —
m 10 3
p 10 4
b 10 5

Table 2: Classes of preamble tokens

\@chclass
\@chnum

\@lastchclass

The class and the number of the current token are saved in the count registers \@chclass
and \@chnum, while the class of the previous token is stored in the count register
\@lastchclass. All of the mentioned registers are already allocated in the LATEX for-
mat, which is the reason why the following three lines of code are commented out. Later
throughout the text I will not mention it again explicitly whenever I use a % sign. These
parts are already defined in the LATEX format.

69 % \newcount \@chclass
70 % \newcount \@chnum
71 % \newcount \@lastchclass

(End of definition for \@chclass , \@chnum , and \@lastchclass. These functions are documented on
page ??.)

\@addtopreamble We will save the already constructed preamble for the \halign in the global macro
\@preamble. This will then be enlarged with the command \@addtopreamble.

72 \def\@addtopreamble#1{\xdef\@preamble{\@preamble #1}}

11

(End of definition for \@addtopreamble. This function is documented on page ??.)

6.1 The character class of a token
\@testpach With the help of \@lastchclass we can now define a macro which determines the class

and the number of a given preamble token and assigns them to the registers \@chclass
and \@chnum.

73 \ExplSyntaxOff
74 \def\@testpach{\@chclass

First we deal with the cases in which the token (#1) is the argument of !, @, < or >. We
can see this from the value of \@lastchclass:

75 \ifnum \@lastchclass=6 \@ne \@chnum \@ne \else
76 \ifnum \@lastchclass=7 5 \else
77 \ifnum \@lastchclass=8 \tw@ \else
78 \ifnum \@lastchclass=9 \thr@@

Otherwise we will assume that the token belongs to the class 0 and assign the correspond-
ing number to \@chnum if our assumption is correct.

79 \else \z@

If the last token was a p, m or a b, \@chnum already has the right value. This is the reason
for the somewhat curious choice of the token numbers in class 10.

80 \ifnum \@lastchclass = 10 \else

Otherwise we will check if \@nextchar is either a c, l or an r. Some applications
change the catcodes of certain characters like “@” in amstex.sty. As a result the tests
below would fail since they assume non-active character tokens. Therefore we evaluate
\@nextchar once thereby turning the first token of its replacement text into a char. At
this point here this should have been the only char present in \@nextchar which put into
via a \def.

81 \edef\@nextchar{\expandafter\string\@nextchar}%
82 \@chnum
83 \if \@nextchar c\z@ \else
84 \if \@nextchar l\@ne \else
85 \if \@nextchar r\tw@ \else

If it is a different token, we know that the class was not 0. We assign the value 0 to
\@chnum because this value is needed for the |–token. Now we must check the remaining
classes. Note that the value of \@chnum is insignificant here for most classes.

86 \z@ \@chclass
87 \if\@nextchar |\@ne \else
88 \if \@nextchar !6 \else
89 \if \@nextchar @7 \else
90 \if \@nextchar <8 \else
91 \if \@nextchar >9 \else

The remaining permitted tokens are p, m and b (class 10).
92 10
93 \@chnum
94 \if \@nextchar m\thr@@ \else
95 \if \@nextchar p4 \else
96 \if \@nextchar b5 \else

12

Now the only remaining possibility is a forbidden token, so we choose class 0 and number
0 and give an error message. Then we finish the macro by closing all \if’s.

97 \z@ \@chclass \z@ \@preamerr \z@ \fi \fi \fi \fi
98 \fi \fi \fi \fi \fi \fi \fi \fi \fi \fi \fi \fi}
99 \ExplSyntaxOn

(End of definition for \@testpach. This function is documented on page ??.)

6.2 Multiple columns (∗–form)
\@xexpast
\the@toks

\the@toksz

Now we discuss the macro that deletes all forms of type *{N}{String} from a user
preamble and replaces them with N copies of String. Nested ∗–expressions are dealt with
correctly, that means ∗–expressions are not substituted if they are in explicit braces, as
in @{*}.

This macro is called via \@xexpast⟨preamble⟩*0x\@@@@. The ∗–expression *0x is
being used to terminate the recursion, as we shall see later, and \@@@@ serves as an
argument delimiter. \@xexpast has four arguments. The first one is the part of the user
preamble before the first ∗–expression while the second and third ones are the arguments
of the first ∗–expression (that is N and String in the notation mentioned above). The
fourth argument is the rest of the preamble.
100 \def\@xexpast#1*#2#3#4\@@{%

The number of copies of String (#2) that are to be produced will be saved in a count
register.
101 \@tempcnta #2

We save the part of the preamble which does not contain a ∗–form (#1) in a Plain TEX
token register. We also save String (#3) using a LATEX token register.
102 \toks@={#1}\@temptokena={#3}%

Now we have to use a little trick to produce N copies of String. We could try
\def\@tempa{#1} and then N times \edef\@tempa{\@tempa#3}. This would have the
undesired effect that all macros within #1 and #3 would be expanded, although, for ex-
ample, constructions like @{..} are not supposed to be changed. That is why we \let
two control sequences to be equivalent to \relax.
103 \let\the@toksz\relax \let\the@toks\relax

Then we ensure that \@tempa contains {\the@toksz\the@toks...\the@toks} (the
macro \the@toks exactly N times) as substitution text.
104 \def\@tempa{\the@toksz}%
105 \ifnum\@tempcnta >0 \@whilenum\@tempcnta >0\do
106 {\edef\@tempa{\@tempa\the@toks}\advance \@tempcnta \m@ne}%

If N was greater than zero we prepare for another call of \@xexpast. Otherwise we assume
we have reached the end of the user preamble, because we had appended *0x\@@@@ when
we first called \@xexpast. In other words: if the user inserts *{0}{..} in his preamble,
LATEX ignores the rest of it.
107 \let \@tempb \@xexpast \else
108 \let \@tempb \@xexnoop \fi

Now we will make sure that the part of the user preamble, which was already dealt with,
will be saved again in \@tempa.
109 \def\the@toksz{\the\toks@}\def\the@toks{\the\@temptokena}%
110 \edef\@tempa{\@tempa}%

13

We have now evaluated the first ∗–expression, and the user preamble up to this point
is saved in \@tempa. We will put the contents of \@tempa and the rest of the user
preamble together and work on the result with \@tempb. This macro either corresponds
to \@xexpast, so that the next ∗–expression is handled, or to the macro \@xexnoop,
which only ends the recursion by deleting its argument.
111 \expandafter \@tempb \@tempa #4\@@}

(End of definition for \@xexpast , \the@toks , and \the@toksz. These functions are documented on page
??.)

\@xexnoop So the first big problem is solved. Now it is easy to specify \@xexnoop. Its argument is
delimited by \@@@@ and it simply expands to nothing.
112 % \def\@xexnoop#1\@@{}

(End of definition for \@xexnoop. This function is documented on page ??.)

7 The insertion of declarations (>, <, !, @)
The preamble will be enlarged with the help of \xdef, but the arguments of >, <, ! and
@ are not supposed to be expanded during the construction (we want an implementation
that doesn’t need a \protect). So we have to find a way to inhibit the expansion of
those arguments.

We will solve this problem with token registers. We need one register for every !
and @, while we need two for every c, l, r, m, p or b. This limits the number of columns
of a table because there are only 256 token registers. But then, who needs tables with
more than 100 columns?

One could also find a solution which only needs two or three token registers by
proceeding similarly as in the macro \@xexpast (see page 13). The advantage of our
approach is the fact that we avoid some of the problems that arise with the other method4.

So how do we proceed? Let us assume that we had !{foo} in the user preamble
and say we saved foo in token register 5. Then we call \@addtopreamble{\the@toks5}
where \the@toks is defined in a way that it does not expand (for example it could
be equivalent to \relax). Every following call of \@addtopreamble leaves \the@toks5
unchanged in \@preamble. If the construction of the preamble is completed we change
the definition of \the@toks to \the\toks and expand \@preamble for the last time.
During this process all parts of the form \the@toks⟨Number⟩ will be substituted by the
contents of the respective token registers.

As we can see from this informal discussion the construction of the preamble has
to take place within a group, so that the token registers we use will be freed later on.
For that reason we keep all assignments to \@preamble global; therefore the replacement
text of this macro will remain the same after we leave the group.

\count@ We further need a count register to remember which token register is to be used next.
This will be initialized with −1 if we want to begin with the token register 0. We use
the Plain TEX scratch register \count@ because everything takes place locally. All we
have to do is insert \the@toks \the \count@ into the preamble. \the@toks will remain
unchanged and \the\count@ expands into the saved number.

(End of definition for \count@. This function is documented on page ??.)

4Maybe there are also historical reasons.

14

\prepnext@tok The macro \prepnext@tok is in charge of preparing the next token register. For that
purpose we increase \count@ by 1:
113 \def\prepnext@tok{\advance \count@ \@ne

Then we locally delete any contents the token register might have.
114 \toks\count@{}}

(End of definition for \prepnext@tok. This function is documented on page ??.)

\save@decl During the construction of the preamble the current token is always saved in the macro
\@nextchar (see the definition of \@mkpream on page 17). The macro \save@decl saves
it into the next free token register, i.e. in \toks\count@.
115 \def\save@decl{\toks\count@ \expandafter{\@nextchar}}

The reason for the use of \relax is the following hypothetical situation in the preamble:
..\the\toks1\the\toks2.. TEX expands \the\toks2 first in order to find out if the
digit 1 is followed by other digits. E.g. a 5 saved in the token register 2 would lead TEX
to insert the contents of token register 15 instead of 1 later on.

The example above referred to an older version of \save@decl which inserted a
\relex inside the token register. This is now moved to the places where the actual token
registers are inserted (look for \the@toks) because the old version would still make @
expressions to moving arguments since after expanding the second register while looking
for the end of the number the contents of the token register is added so that later on
the whole register will be expanded. This serious bug was found after nearly two years
international use of this package by Johannes Braams.

(End of definition for \save@decl. This function is documented on page ??.)
How does the situation look like, if we want to add another column to the preamble,

i.e. if we have found a c, l, r, p, m or b in the user preamble? In this case we have the
problem of the token register from >{..} and <{..} having to be inserted at this moment
because formatting instructions like \hfil have to be set around them. On the other
hand it is not known yet, if any <{..} instruction will appear in the user preamble at
all.

We solve this problem by adding two token registers at a time. This explains, why
we have freed the token registers in \prepnext@tok.

\insert@column
\@sharp

\textonly@unskip

We now define the macro \insert@column which will do this work for us.
116 \def\insert@column{%

For tagging we insert as special socket, that adds the necessary PDF tag at the
beginning of the cell if tagging is enabled.
117 \UseTaggingSocket{tbl/cell/begin}%

Here, we assume that the count register \@tempcnta has saved the value \count@ − 1.
118 \the@toks \the \@tempcnta

Next follows the # sign which specifies the place where the text of the column shall be
inserted. To avoid errors during the expansions in \@addtopreamble we hide this sign in
the command \@sharp which is temporarily occupied with \relax during the build-up
of the preamble. To remove unwanted spaces before and after the column text, we set
an \ignorespaces in front and a \unskip afterwards.
119 \ignorespaces \@sharp \textonly@unskip

15

Then the second token register follows whose number should be saved in \count@. We
make sure that there will be no further expansion after reading the number, by finishing
with \relax. The case above is not critical since it is ended by \ignorespaces.
120 \the@toks \the \count@ \relax

And another socket for tagging that adds the necessary closing tag if enabled.
121 \UseTaggingSocket{tbl/cell/end}%
122 }

Do the unskip only if we are in hmode:
123 \protected\def\textonly@unskip{\ifhmode\unskip\fi}

(End of definition for \insert@column , \@sharp , and \textonly@unskip. These functions are docu-
mented on page ??.)

\insert@pcolumn Handling pcolumn-cells needs slightly different handling when doing tagging. Rather
than changing the plugs in \insert@column back and forth, we simply use a different
version of \insert@column that has its own sockets.
124 \def\insert@pcolumn{%
125 \UseTaggingSocket{tbl/pcell/begin}%
126 \the@toks \the \@tempcnta
127 \ignorespaces \@sharp \unskip
128 \the@toks \the \count@ \relax
129 \UseTaggingSocket{tbl/pcell/end}%
130 }

(End of definition for \insert@pcolumn. This function is documented on page ??.)

7.1 The separation of columns
\@addamp In the preamble a & has to be inserted between any two columns; before the first column

there should not be a &. As the user preamble may start with a | we have to remember
somehow if we have already inserted a # (i.e. a column). This is done with the boolean
variable \if@firstamp that we test in \@addamp, the macro that inserts the &.
131 % \newif \@iffirstamp
132 \def\@addamp {
133 \if@firstamp
134 \@firstampfalse
135 \else

If we are after the first column we have to insert a & and also update the cell data.
136 \edef\@preamble{\@preamble &
137 \noexpand\tbl_update_cell_data: }
138 \fi
139 }

(End of definition for \@addamp. This function is documented on page ??.)

\@acol
\@acolampacol

\col@sep

We will now define some abbreviations for the extensions, appearing most often in
the preamble build-up. Here \col@sep is a dimen register which is set equivalent to
\arraycolsep in an array–environment, otherwise it is set equivalent to \tabcolsep.
140 \newdimen\col@sep
141 \def\@acol{\@addtopreamble{\hskip\col@sep}}
142 % \def\@acolampacol{\@acol\@addamp\@acol}

(End of definition for \@acol , \@acolampacol , and \col@sep. These functions are documented on page
??.)

16

7.2 The macro \@mkpream

\@mkpream The code below has been replaced long time ago by an extended version further down but
the code and its documentation was left here for reference. It is now commented out to
avoid confusion.

\the@toks
Now we can define the macro which builds up the preamble for the \halign. First we
initialize \@preamble, \@lastchclass and the boolean variable \if@firstamp.
143 %\def\@mkpream#1{\gdef\@preamble{}\@lastchclass 4 \@firstamptrue

During the build-up of the preamble we cannot directly use the # sign; this would lead
to an error message in the next \@addtopreamble call. Instead, we use the command
\@sharp at places where later a # will be. This command is at first given the meaning
\relax; therefore it will not be expanded when the preamble is extended. In the macro
\@array, shortly before the \halign is carried out, \@sharp is given its final meaning.

In a similar way, we deal with the commands \@startpbox and \@endpbox, although
the reason is different here: these macros expand in many tokens which would delay the
build-up of the preamble.
144 % \let\@sharp\relax\let\@startpbox\relax\let\@endpbox\relax

Two more are needed to deal with the code that handles struts for extra space after a
row from \\[<space>] (\do@row@strut) and code that manages m-cells depending on
their heights (\ar@align@mcell).
145 % \let\do@row@strut\relax
146 % \let\ar@align@mcell\relax

Now we remove possible ∗-forms in the user preamble with the command \@xexpast. As
we already know, this command saves its result in the macro \@tempa.
147 % \@xexpast #1*0x\@@

Afterwards we initialize all registers and macros, that we need for the build-up of the
preamble. Since we want to start with the token register 0, \count@ has to contain the
value −1.
148 % \count@\m@ne
149 % \let\the@toks\relax

Then we call up \prepnext@tok in order to prepare the token register 0 for use.
150 % \prepnext@tok

To evaluate the user preamble (without stars) saved in \@tempa we use the LATEX–macro
\@tfor. The strange appearing construction with \expandafter is based on the fact
that we have to put the replacement text of \@tempa and not the macro \@tempa to this
LATEX–macro.
151 % \expandafter \@tfor \expandafter \@nextchar
152 % \expandafter :\expandafter =\@tempa \do

The body of this loop (the group after the \do) is executed for one token at a time,
whereas the current token is saved in \@nextchar. At first we evaluate the current token
with the already defined macro \@testpach, i.e. we assign to \@chclass the character
class and to \@chnum the character number of this token.
153 % {\@testpach

17

Then we branch out depending on the value of \@chclass into different macros that
extend the preamble respectively.
154 % \ifcase \@chclass \@classz \or \@classi \or \@classii
155 % \or \save@decl \or \or \@classv \or \@classvi
156 % \or \@classvii \or \@classviii \or \@classix
157 % \or \@classx \fi

Two cases deserve our special attention: Since the current token cannot have the character
class 4 (start) we have skipped this possibility. If the character class is 3, only the
content of \@nextchar has to be saved into the current token register; therefore we call
up \save@decl directly and save a macro name. After the preamble has been extended
we assign the value of \@chclass to the counter \@lastchclass to assure that this
information will be available during the next run of the loop.
158 % \@lastchclass\@chclass}%

After the loop has been finished space must still be added to the created preamble,
depending on the last token. Depending on the value of \@lastchclass we perform the
necessary operations.
159 % \ifcase\@lastchclass

If the last class equals 0 we add a \hskip \col@sep.
160 % \@acol \or

If it equals 1 we do not add any additional space so that the horizontal lines do not
exceed the vertical ones.
161 % \or

Class 2 is treated like class 0 because a <{...} can only directly follow after class 0.
162 % \@acol \or

Most of the other possibilities can only appear if the user preamble was defective. Class
3 is not allowed since after a >{..} there must always follow a c, l, r, p,m or b. We
report an error and ignore the declaration given by {..}.
163 % \@preamerr \thr@@ \or

If \@lastchclass is 4 the user preamble has been empty. To continue, we insert a # in
the preamble.
164 % \@preamerr \tw@ \@addtopreamble\@sharp \or

Class 5 is allowed again. In this case (the user preamble ends with @{..}) we need not
do anything.
165 % \or

Any other case means that the arguments to @, !, <, >, p, m or b have been forgotten. So
we report an error and ignore the last token.
166 % \else \@preamerr \@ne \fi

Now that the build-up of the preamble is almost finished we can insert the token registers
and therefore redefine \the@toks. The actual insertion, though, is performed later.
167 % \def\the@toks{\the\toks}}

(End of definition for \@mkpream and \the@toks. These functions are documented on page ??.)

18

8 The macros \@classz to \@classx

The preamble is extended by the macros \@classz to \@classx which are called by
\@mkpream depending on \@lastchclass (i.e. the character class of the last token).

\@classx First we define \@classx because of its important rôle. When it is called we find that
the current token is p, m or b. That means that a new column has to start.
168 \def\@classx{%

Depending on the value of \@lastchclass different actions must take place:
169 \ifcase \@lastchclass

If the last character class was 0 we separate the columns by \hskip\col@sep followed
by & and another \hskip\col@sep.
170 \@acolampacol \or

If the last class was class 1 — that means that a vertical line was drawn, — before this
line a \hskip\col@sep was inserted. Therefore there has to be only a & followed by
\hskip\col@sep. But this & may be inserted only if this is not the first column. This
process is controlled by \if@firstamp in the macro \addamp.
171 \@addamp \@acol \or

Class 2 is treated like class 0 because <{...} can only follow after class 0.
172 \@acolampacol \or

Class 3 requires no actions because all things necessary have been done by the preamble
token >.
173 \or

Class 4 means that we are at the beginning of the preamble. Therefore we start the
preamble with \hskip\col@sep and then call \@firstampfalse. This makes sure that
a later \@addamp inserts the character & into the preamble.
174 \@acol \@firstampfalse \or

For class 5 tokens only the character & is inserted as a column separator. Therefore we
call \@addamp.
175 \@addamp

Other cases are impossible. For an example \@lastchclass = 6—as it might appear
in a preamble of the form ...!p...—p would have been taken as an argument of ! by
\@testpach.
176 \fi}

(End of definition for \@classx. This function is documented on page ??.)

\@classz If the character class of the last token is 0 we have c, l, r or an argument of m, b or p.
In the first three cases the preamble must be extended the same way as if we had class
10. The remaining two cases do not require any action because the space needed was
generated by the last token (i.e. m, b or p). Since \@lastchclass has the value 10 at this
point nothing happens when \@classx is called. So the macro \@chlassz may start like
this:
177 \def\@classz{\@classx

According to the definition of \insert@column we must store the number of the token
register in which a preceding >{..} might have stored its argument into \@tempcnta.
178 \@tempcnta \count@

19

To have \count@ = \@tmpcnta + 1 we prepare the next token register.
179 \prepnext@tok

Now the preamble must be extended with the column whose format can be determined
by \@chnum.
180 \@addtopreamble{\ifcase \@chnum

If \@chnum has the value 0 a centered column has to be generated. So we begin with
stretchable space.
181 \hfil

We also add a space of 1sp just in case the first thing in the cell is a command doing an
\unskip.
182 \hskip1sp%

The command \d@llarbegin follows expanding into \begingroup (in the tabular–
environment) or into $. Doing this (provided an appropriate setting of \d@llarbegin)
we achieve that the contents of the columns of an array–environment are set in math
mode while those of a tabular–environment are set in LR mode.
183 \d@llarbegin

Now we insert the contents of the two token registers and the symbol for the column
entry (i.e. # or more precise \@sharp) using \insert@column.
184 \insert@column

We end this case with \d@llarend and \hfil where \d@llarend again is either $ or
\endgroup. The strut to enforce a regular row height is placed between the two.
185 \d@llarend \do@row@strut \hfil \or

The templates for l and r (i.e. \@chnum 1 or 2) are generated the same way. Since one
\hfil is missing the text is moved to the relevant side. The \kern\z@ is needed in case of
an empty column entry. Otherwise the \unskip in \insert@column removes the \hfil.
Changed to \hskip1sp so that it interacts better with \@bsphack.
186 \hskip1sp\d@llarbegin \insert@column \d@llarend \do@row@strut \hfil \or
187 \hfil\hskip1sp\d@llarbegin \insert@column \d@llarend \do@row@strut \or

The templates for p, m and b mainly consist of a box. In case of m it is generated by
\vcenter. This command is allowed only in math mode. Therefore we start with a $.
188 \setbox\ar@mcellbox\vbox

The part of the templates which is the same in all three cases (p, m and b) is built by
the macros \@startpbox and \@endpbox. \@startpbox has an argument: the width
of the column which is stored in the current token (i.e. \@nextchar). Between these
two macros we find the well known \insert@column or rather the variant for tagging:
\insert@pcolumn. The strut is placed after the box.
189 \@startpbox{\@nextchar}\insert@pcolumn \@endpbox
190 \ar@align@mcell
191 \do@row@strut \or

The templates for p and b are generated in the same way though we do not need the $
characters because we use \vtop or \vbox.
192 \vtop \@startpbox{\@nextchar}\insert@pcolumn \@endpbox\do@row@strut \or
193 \vbox \@startpbox{\@nextchar}\insert@pcolumn \@endpbox\do@row@strut

20

Other values for \@chnum are impossible. Therefore we end the arguments to \@addtopreamble
and \ifcase. Before we come to the end of \@classz we have to prepare the next token
register.
194 \fi}\prepnext@tok}

(End of definition for \@classz. This function is documented on page ??.)

\ar@mcellbox When dealing with m-cells we need a box to measure the cell height.
195 \newbox\ar@mcellbox

(End of definition for \ar@mcellbox. This function is documented on page ??.)

\ar@align@mcell M-cells are supposed to be vertically centered within the table row. In the original
implementation that was done using \vcenter but the issue with that approach is that
it centers the material based on the math-axis. In most situations that comes out quit
right, but if, for example, an m-cell has only a single line worth of material inside it will
be positioned differently to a l, c or r cell or to a p or b cell with the same content.

For that reason the new implementation does the centering manually: First we check
the height of the cell and if that is less or equal to \ht\strutbox we assume that this is
a single line cell. In that case we don’t do any vertical maneuvre and simply output the
box, i.e., make it behave like a single line p-cell.

We use the height of \strutbox not \@arstrutbox in the comparison, because
\box\ar@mcellbox does not have any strut incorporated and if \arraystretch is made
very small the test would otherwise incorrectly assume a multi-line cell.
196 \def\ar@align@mcell{%
197 \ifdim \ht\ar@mcellbox > \ht\strutbox

Otherwise we realign vertically by lowering the box. The question is how much do we
need to move down? If there is any \arraystretch in place then the first line will have
some unusual height and we don’t want to consider that when finding the middle point.
So we substract from the cell height the height of that strut. But of course we want to
include the normal height of the first line (which would be something like \ht\strutbox)
so we need to add that. On the other hand, when centering around the mid-point of the
cell, we also need to account for the depth of the last line (which is nominally something
like \dp\strutbox). Both together equals \baselineskip so that is what we add and
then lower the cell by half of the resulting value.
198 \begingroup
199 \dimen@\ht\ar@mcellbox
200 \advance\dimen@-\ht\@arstrutbox
201 \advance\dimen@\baselineskip
202 \lower.5\dimen@\box\ar@mcellbox
203 \endgroup
204 \else % assume one line and align at baseline
205 \box\ar@mcellbox
206 \fi}

(End of definition for \ar@align@mcell. This function is documented on page ??.)

\@classix The code below has been replaced long time ago by an extended version further down but
the code and its documentation was left here for reference. It is now commented out to
avoid confusion.

In case of class 9 (>–token) we first check if the character class of the last token was
3. In this case we have a user preamble of the form ..>{...}>{...}.. which is not

21

allowed. We only give an error message and continue. So the declarations defined by the
first >{...} are ignored.
207 %\def\@classix{\ifnum \@lastchclass = \thr@@
208 % \@preamerr \thr@@ \fi

Furthermore, we call up \@class10 because afterwards always a new column is started
by c, l, r, p, m or b.
209 % \@classx}

(End of definition for \@classix. This function is documented on page ??.)

\@classviii The code below has been replaced long time ago by an extended version further down but
the code and its documentation was left here for reference. It is now commented out to
avoid confusion.

If the current token is a < the last character class must be 0. In this case it is not
necessary to extend the preamble. Otherwise we output an error message, set \@chclass
to 6 and call \@classvi. By doing this we achieve that < is treated like !.
210 %\def\@classviii{\ifnum \@lastchclass >\z@
211 % \@preamerr 4\@chclass 6 \@classvi \fi}

(End of definition for \@classviii. This function is documented on page ??.)

\@arrayrule There is only one incompatibility with the original definition: the definition of
\@arrayrule. In the original a line without width5 is created by multiple insertions
of \hskip .5\arrayrulewidth. We only insert a vertical line into the preamble. This is
done to prevent problems with TEX’s main memory when generating tables with many
vertical lines in them (especially in the case of floats).
212 \def\@arrayrule{\@addtopreamble \vline}

(End of definition for \@arrayrule. This function is documented on page ??.)

\@classvii As a consequence it follows that in case of class 7 (@ token) the preamble need not
to be extended. In the original definition \@lastchclass = 1 is treated by inserting
\hskip .5\arrayrulewidth. We only check if the last token was of class 3 which is
forbidden.
213 \def\@classvii{\ifnum \@lastchclass = \thr@@

If this is true we output an error message and ignore the declarations stored by the last
>{...}, because these are overwritten by the argument of @.
214 \@preamerr \thr@@ \fi}

(End of definition for \@classvii. This function is documented on page ??.)

\@classvi If the current token is a regular ! and the last class was 0 or 2 we extend the preamble
with \hskip\col@sep. If the last token was of class 1 (for instance |) we extend with
\hskip \doublerulesep because the construction !{...} has to be treated like |.
215 \def\@classvi{\ifcase \@lastchclass
216 \@acol \or
217 \@addtopreamble{\hskip \doublerulesep}\or
218 \@acol \or

5So the space between cc and c|c is equal.

22

Now \@preamerr... should follow because a user preamble of the form ..>{..}!. is not
allowed. To save memory we call \@classvii instead which also does what we want.
219 \@classvii

If \@lastchclass is 4 or 5 nothing has to be done. Class 6 to 10 are not possible. So we
finish the macro.
220 \fi}

(End of definition for \@classvi. This function is documented on page ??.)

\@classii
\@classiii

In the case of character classes 2 and 3 (i.e. the argument of < or >) we only have
to store the current token (\@nextchar) into the corresponding token register since the
preparation and insertion of these registers are done by the macro \@classz. This is
equivalent to calling \save@decl in the case of class 3. To save command identifiers we
do this call up in the macro \@mkpream.

Class 2 exhibits a more complicated situation: the token registers have already been
inserted by \@classz. So the value of \count@ is too high by one. Therefore we decrease
\count@ by 1.
221 \def\@classii{\advance \count@ \m@ne

Next we store the current token into the correct token register by calling \save@decl and
then increase the value of \count@ again. At this point we can save memory once more
(at the cost of time) if we use the macro \prepnext@tok.
222 \save@decl\prepnext@tok}

(End of definition for \@classii and \@classiii. These functions are documented on page ??.)

\@classv The code below has been replaced long time ago by an extended version further down but
the code and its documentation was left here for reference. It is now commented out to
avoid confusion.

If the current token is of class 5 then it is an argument of a @ token. It must be
stored into a token register.
223 %\def\@classv{\save@decl

We extend the preamble with a command which inserts this token register into the pream-
ble when its construction is finished. The user expects that this argument is worked out
in math mode if it was used in an array–environment. Therefore we surround it with
\d@llar...’s.
224 % \@addtopreamble{\d@llarbegin\the@toks\the\count@\relax\d@llarend}%

Finally we must prepare the next token register.
225 % \prepnext@tok}

(End of definition for \@classv. This function is documented on page ??.)

\@classi In the case of class 0 we were able to generate the necessary space between columns by
using the macro \@classx. Analogously the macro \@classvi can be used for class 1.
226 \def\@classi{\@classvi

Depending on \@chnum a vertical line
227 \ifcase \@chnum \@arrayrule \or

or (in case of !{...}) the current token — stored in \@nextchar — has to be inserted
into the preamble. This corresponds to calling \@classv.
228 \@classv \fi}

23

(End of definition for \@classi. This function is documented on page ??.)

\@startpbox In \@classz the macro \@startpbox is used. The width of the parbox is passed as an
argument. \vcenter, \vtop or \vbox are already in the preamble. So we start with the
braces for the wanted box.
229 \def\@startpbox#1{\bgroup
230 \color@begingroup

The argument is the width of the box. This information has to be assigned to \hsize.
Then we assign default values to several parameters used in a parbox.
231 \setlength\hsize{#1}\@arrayparboxrestore

Our main problem is to obtain the same distance between succeeding lines of the parbox.
We have to remember that the distance between two parboxes should be defined by
\@arstrut. That means that it can be greater than the distance in a parbox. Therefore
it is not enough to set a \@arstrut at the beginning and at the end of the parbox. This
would dimension the distance between first and second line and the distance between the
two last lines of the parbox wrongly. To prevent this we set an invisible rule of height
\@arstrutbox at the beginning of the parbox. This has no effect on the depth of the first
line. At the end of the parbox we set analogously another invisible rule which only affects
the depth of the last line. It is necessary to wait inserting this strut until the paragraph
actually starts to allow for things like \parindent changes via >{...}.
232 \everypar{%
233 \vrule \@height \ht\@arstrutbox \@width \z@
234 \everypar{}}%
235 }

(End of definition for \@startpbox. This function is documented on page ??.)

\@endpbox If there are any declarations defined by >{...} and <{...} they now follow in the macro
\@classz — the contents of the column in between. So the macro \@endpbox must insert
the specialstrut mentioned earlier and then close the group opened by \@startpbox.
236 \def\@endpbox{\@finalstrut\@arstrutbox \par \color@endgroup \egroup\hfil}

(End of definition for \@endpbox. This function is documented on page ??.)

9 Building and calling \halign

\@array After we have discussed the macros needed for the evaluation of the user preamble we
can define the macro \@array which uses these macros to create a \halign. It has two
arguments. The first one is a position argument which can be t, b or c; the second one
describes the wanted preamble, e.g. it has the form |c|c|c|.
237 \def\@array[#1]#2{

First we define a strut whose size basically corresponds to a normal strut multiplied by the
factor \arraystretch. This strut is then inserted into every row and enforces a minimal
distance between two rows. Nevertheless, when using horizontal lines, large letters (like
accented capital letters) still collide with such lines. Therefore at first we add to the
height of a normal strut the value of the parameter \extrarowheight.
238 \@tempdima \ht \strutbox
239 \advance \@tempdima by\extrarowheight
240 \setbox \@arstrutbox \hbox{\vrule

24

241 \@height \arraystretch \@tempdima
242 \@depth \arraystretch \dp \strutbox
243 \@width \z@}%

The total number of table columns of the current table is determined in \tbl_count_-
table_cols: but this is called in a group, so local settings do not survive. Thus, to save
away the outer value of \g__tbl_table_cols_tl we do it before the group.
244 \tbl_save_outer_table_cols:

Then we open a group, in which the user preamble is evaluated by the macro \@mkpream.
As we know this must happen locally. This macro creates a preamble for a \halign and
saves its result globally in the control sequence \@preamble.
245 \begingroup
246 \@mkpream{#2}%

Figure out how many columns this table has:
247 \tbl_count_table_cols:

We again redefine \@preamble so that a call up of \@preamble now starts the \halign.
Thus also the arguments of >, <, @ and !, saved in the token registers are inserted into
the preamble. The \tabskip at the beginning and end of the preamble is set to 0pt (in
the beginning by the use of \ialign). Also the command \@arstrut is build in, which
inserts the \@arstrutbox, defined above. Of course, the opening brace after \ialign
has to be implicit as it will be closed in \endarray or another macro.

The \noexpand in front of \ialign does no harm in standard LATEX and was added
since some experimental support for using text glyphs in math redefines \halign with
the result that is becomes expandable with disastrous results in cases like this. In the
kernel definition for this macro the problem does not surface because there \protect is
set (which is not necessary in this implementation as there is no arbitrary user input that
can get expanded) and the experimental code made the redefinition robust. Whether this
is the right approach is open to question; consider the \noexpand a courtesy to allow
an unsupported redefinition of a TEX primitive for the moment (as people rely on that
experimental code).
248 \xdef\@preamble{

\ialign in the original definition is replaced by \ar@ialign defined below. This does
what \ialign does but additionally handles the tagging structure for the whole table if
necessary.
249 \noexpand \ar@ialign
250 \@halignto
251 \bgroup \@arstrut

What we have not explained yet is the macro \@halignto that was just used. Depending
on its replacement text the \halign becomes a \halign to ⟨dimen⟩.

Next, a tagging support socket is inserted adding the start row tag.
252 \UseTaggingSocket{tbl/row/begin}

At the start of the preamble for the first column we call \tbl_init_cell_data_for_row:
to initialize the cell index data. In later columns this data is updated via \tbl_update_-
cell_data:.
253 \tbl_init_cell_data_for_row:

254 \@preamble
255 \tabskip \z@ \cr}

25

Now we close the group again. Thus \@startpbox and \@endpbox as well as all token
registers get their former meaning back.
256 \endgroup

To support the delarray.sty package we include a hook into this part of the code which
is a no-op in the main package.
257 \@arrayleft

Now we decide depending on the position argument in which box the \halign is to be
put. (\vcenter may be used because we are in math mode.)
258 \if #1t\vtop \else \if#1b\vbox \else \vcenter \fi \fi

Now another implicit opening brace appears; then definitions which shall stay local follow.
While constructing the \@preamble in \@mkpream the # sign must be hidden in the
macro \@sharp which is \let to \relax at that moment (see definition of \@mkpream on
page 17). All these now get their actual meaning.
259 \bgroup
260 \let \@sharp ##\let \protect \relax

With the above defined struts we fix down the distance between rows by setting \lineskip
and \baselineskip to 0pt. Since there have to be set $’s around every column in the
array–environment the parameter \mathsurround should also be set to 0pt. This prevents
additional space between the rows.
261 \lineskip \z@
262 \baselineskip \z@

Don’t use \m@th here as that signals to the math taggingg code that this is fake math
that should not be tagged.
263 \mathsurround \z@

Beside, we have to assign a special meaning (which we still have to specify) to the line
separator \\. We also have to redefine the command \par in such a way that empty lines
in \halign cannot do any damage. We succeed in doing so by choosing something that
will disappear when expanding. After that we only have to call up \@preamble to start
the wanted \halign.
264 \let\\\@arraycr \let\tabularnewline\\\let\par\@empty

Another socket for tagging. TODO: what about \arrayleft above?
265 \UseTaggingSocket{tbl/init}

266 \@preamble
267 }

(End of definition for \@array. This function is documented on page ??.)

\ar@ialign A new command that replaces \ialign used previously. \everycr is also applied to the
\cr ending the preamble so we have to program around that.
268 \def\ar@ialign{%

Before starting a table we have to initialize the variables holding row and column infor-
mation for cells. We also have locally store the information related to the current cell (if
we are already inside a table) so that we can restore it once the inner table is finished.
269 \tbl_init_cell_data_for_table:

270 \everycr{%
271 \noalign{%

26

If this \cr was at the end of a real row (e.g., not at the end of the table preamble) we
have add a row end tag.
272 \tbl_if_row_was_started:T { \UseTaggingSocket{tbl/row/end} }

The we prepare for the next row.
273 \tbl_update_cell_data_for_next_row:
274 }%
275 }%
276 \tabskip\z@skip\halign}

(End of definition for \ar@ialign. This function is documented on page ??.)

\arraybackslash Restore \\ for use in array and tabular environment (after \raggedright etc.).
277 \def\arraybackslash{\let\\\tabularnewline}

(End of definition for \arraybackslash. This function is documented on page ??.)

\extrarowheight The dimen parameter used above also needs to be allocated. As a default value we use
0pt, to ensure compatibility with standard LATEX.
278 \newdimen \extrarowheight
279 \extrarowheight=0pt

(End of definition for \extrarowheight. This function is documented on page ??.)

\@arstrut Now the insertion of \@arstrutbox through \@arstut is easy since we know exactly in
which mode TEX is while working on the \halign preamble.
280 \def\@arstrut{\unhcopy\@arstrutbox}

(End of definition for \@arstrut. This function is documented on page ??.)

10 The line separator \\

\@arraycr In the macro \@array the line separator \\ is \let to the command \@arraycr.
281 \protected\def\@arraycr {

Add code that figures out if the current table row is incomplete (not enough &s). It can
then do extra actions, such as inserting missing cell tags.
282 \tbl_count_missing_cells:n {@arraycr}

TODO: maybe this is also the right place to add a socket that could be used to actually
enter missing cells instead of just adding tagging structures for them later. This would
be optional but in many cases it would be the right thing to do (for example if tables
contain vertical lines or similar visual structures that require fully specified rows.

We then start a special brace which I have directly copied from the original definition.
It is necessary, because the \futurlet in \@ifnextchar might expand a following & token
in a construction like \\ &. This would otherwise end the alignment template at a wrong
time. On the other hand we have to be careful to avoid producing a real group, i.e. {},
because the command will also be used for the array environment, i.e. in math mode. In
that case an extra {} would produce an ord atom which could mess up the spacing. For
this reason we use a combination that does not really produce a group at all but modifies
the master counter so that a & will not be considered belonging to the current \halign
while we are looking for a * or [. For further information see [2, Appendix D].
283 \iffalse{\fi\ifnum 0=‘}\fi

27

Then we test whether the user is using the star form and ignore a possible star (I also
disagree with this procedure, because a star does not make any sense here).
284 \@ifstar \@xarraycr \@xarraycr}

(End of definition for \@arraycr. This function is documented on page ??.)

\@xarraycr In the command \@xarraycr we test if an optional argument exists.
285 \def\@xarraycr{\@ifnextchar [%

If it does, we branch out into the macro \@argarraycr if not we close the special brace
(mentioned above) and end the row of the \halign with a \cr.
286 \@argarraycr {\ifnum 0=‘{}\fi\cr}}

(End of definition for \@xarraycr. This function is documented on page ??.)

\@argarraycr If additional space is requested by the user this case is treated in the macro \@argarraycr.
First we close the special brace and then we test if the additional space is positive.
287 \def\@argarraycr[#1]{\ifnum0=‘{}\fi\ifdim #1>\z@

If this is the case we create an invisible vertical rule with depth \dp\@arstutbox+⟨wanted
space⟩. Thus we achieve that all vertical lines specified in the user preamble by a | are
now generally drawn. Then the row ends with a \cr.

If the space is negative we end the row at once with a \cr and move back up with
a \vskip.

While testing these macros I found out that the \endtemplate created by \cr and
& is something like an \outer primitive and therefore it should not appear in incomplete
\if statements. Thus the following solution was chosen which hides the \cr in other
macros when TEX is skipping conditional text.
288 \expandafter\@xargarraycr\else
289 \expandafter\@yargarraycr\fi{#1}}

(End of definition for \@argarraycr. This function is documented on page ??.)

\@xargarraycr
\@yargarraycr

The following macros were already explained above.
290 \def\@xargarraycr#1{\unskip\gdef\do@row@strut
291 {\@tempdima #1\advance\@tempdima \dp\@arstrutbox
292 \vrule \@depth\@tempdima \@width\z@\global\let\do@row@strut\relax}%

If the last column is a \multicolumn cell then we need to insert the row strut now as it
isn’t inside the template (as that got \omitted).
293 \ifnum\@multicnt >\z@ \do@row@strut \fi
294 \cr}
295 \let\do@row@strut\relax

\@yargarraycr is the same as in the LATEX kernel (depending on the date of the
kernel with one of the two definitions below). We therefore do not define it again.
296 %\def\@yargarraycr#1{\cr\noalign{\@vspace@calcify{#1}}} % 2020-10-01
297 %\def\@yargarraycr#1{\cr\noalign{\vskip #1}}

(End of definition for \@xargarraycr and \@yargarraycr. These functions are documented on page ??.)

28

11 Spanning several columns
\multicolumn If several columns should be held together with a special format the command

\multicolumn must be used. It has three arguments: the number of columns to be
covered; the format for the result column and the actual column entry.
298 \long\def\multicolumn#1#2#3{%

First we combine the given number of columns into a single one; then we start a new
block so that the following definition is kept local.
299 \multispan{#1}\begingroup

For tagging support we have to solve two problems: \multicolumn must handle the row
begin if it is used there, and it must save the numbers of cells it spans so that we can
add a suitable ColSpan attribute. We do this in the next macro (which in turn calls the
tbl/row/begin socket, if necessary).
300 \tbl_update_multicolumn_cell_data:n {#1}

Since a \multicolumn should only describe the format of a result column, we redefine
\@addamp in such a way that one gets an error message if one uses more than one c, l,
r, p, m or b in the second argument. One should consider that this definition is local to
the build-up of the preamble; an array– or tabular–environment in the third argument of
the \multicolumn is therefore worked through correctly as well.
301 \def\@addamp{\if@firstamp \@firstampfalse \else
302 \@preamerr 5\fi}%

Then we evaluate the second argument with the help of \@mkpream. Now we still have
to insert the contents of the token register into the \@preamble, i.e. we have to say
\xdef\@preamble{\@preamble}. This is achieved shorter by writing:
303 \@mkpream{#2}\@addtopreamble\@empty

After the \@preamble is created we forget all local definitions and occupations of the
token registers.
304 \endgroup

Now we update the colspan attribute. This needs setting after the group as it is hidden
inside the plug in \insert@column.
305 \UseTaggingSocket{tbl/colspan}{#1}%

In the special situation of \multicolumn \@preamble is not needed as preamble for a
\halign but it is directly inserted into our table. Thus instead of \sharp there has to
be the column entry (#3) wanted by the user.
306 \def\@sharp{#3}%

Now we can pass the \@preamble to TEX . For safety we start with an \@arstrut. This
should usually be in the template for the first column however we do not know if this
template was overwritten by our \multicolumn. We also add a \null at the right end
to prevent any following \unskip (for example from \\[..]) to remove the \tabcolsep.

307 \@arstrut \@preamble
308 \null
309 \ignorespaces}

(End of definition for \multicolumn. This function is documented on page ??.)

29

12 The Environment Definitions
After these preparations we are able to define the environments. They only differ in the
initialisations of \d@llar..., \col@sep and \@halignto.

\@halignto
\d@llarbegin
\d@llarend

\d@llar has to be locally asigned since otherwise nested tabular and array environments
(via \multicolumn) are impossible. For 25 years or so \@halignto was set globally (to
save space on the save stack, but that was a mistake: if there is a tabular in the output
routine (e.g., in the running header) then that tabular is able overwrite the \@halignto
setting of a tabular in the main text resulting in a very weird error. When the new font
selection scheme is in force we have to we surround all \halign entries with braces. See
remarks in TUGboat 10#2. Actually we are going to use \begingroup and \endgroup.
However, this is only necessary when we are in text mode. In math the surrounding
dollar signs will already serve as the necessary extra grouping level. Therefore we switch
the settings of \d@llarbegin and \d@llarend between groups and dollar signs.
310 \let\d@llarbegin\begingroup
311 \let\d@llarend\endgroup

(End of definition for \@halignto , \d@llarbegin , and \d@llarend. These functions are documented on
page ??.)

\array Our new definition of \array then reads:
312 \def\array{\col@sep\arraycolsep
313 \def\d@llarbegin{$}\let\d@llarend\d@llarbegin\def\@halignto{}%

Since there might be an optional argument we call another macro which is also used by
the other environments.
314 \@tabarray}

(End of definition for \array. This function is documented on page ??.)

\@tabarray The code below has been replaced long time ago by an extended version further down but
the code and its documentation was left here for reference. It is now commented out to
avoid confusion.

This macro tests for a optional bracket and then calls up \@array or \@array[c]
(as default).
315 %\def\@tabarray{\@ifnextchar[{\@array}{\@array[c]}}

(End of definition for \@tabarray. This function is documented on page ??.)

\tabular
\tabular*

The environments tabular and tabular∗ differ only in the initialisation of the command
\@halignto. Therefore we define
316 \def\tabular{\def\@halignto{}\@tabular}

and analogously for the star form. We evaluate the argument first using \setlength so
that users of the calc package can write code like
\begin{tabular*}{(\columnwidth-1cm)/2}...
317 \expandafter\def\csname tabular*\endcsname#1{%
318 \setlength\dimen@{#1}%
319 \edef\@halignto{to\the\dimen@}\@tabular}

(End of definition for \tabular and \tabular*. These functions are documented on page ??.)

30

\@tabular The rest of the job is carried out by the \@tabular macro:
320 \def\@tabular{%

First of all we have to make sure that we start out in hmode. Otherwise we might find
our table dangling by itself on a line.
321 \leavevmode

Now that we know we are in hmode we can add the start tag for the whole table.
322 \UseTaggingSocket{tbl/hmode/begin}%

It should be taken into consideration that the macro \@array must be called in math
mode. Therefore we open a box, insert a $ and then assign the correct values to \col@sep
and \d@llar....
323 \hbox \bgroup $\col@sep\tabcolsep \let\d@llarbegin\begingroup
324 \let\d@llarend\endgroup

Now everything tabular specific is done and we are able to call the \@tabarray macro.
325 \@tabarray}

(End of definition for \@tabular. This function is documented on page ??.)

\endarray The code below has been replaced long time ago by an extended version further down but
the code and its documentation was left here for reference. It is now commented out to
avoid confusion.

When the processing of array is finished we have to close the \halign and after-
wards the surrounding box selected by \@array. To save token space we then redefine
\@preamble because its replacement text isn’t longer needed.

To handle cell indexes, we do not use \crcr but a variant that also handles missing
cells as necessary.
326 \def\endarray {
327 \tbl_crcr:n{endarray} \egroup
328 \UseTaggingSocket{tbl/finalize}

If tables are nested into another then it is necessary to restore information about
the cell the inner table started in. Otherwise, the cell index data structures reflect the
status in the outer table as they are globally manipulated. We restore in all cases even if
we are not in a nesting situation as that makes the code simpler (and probably faster).

\endtabular and \endtabular* inherit from \endarray so we only need to change
that. tabularx uses a similar method.
329 \tbl_restore_outer_cell_data:

330 \egroup
331 \@arrayright \gdef\@preamble{}%
332 }

(End of definition for \endarray. This function is documented on page ??.)

\endtabular
\endtabular*

To end a tabular or tabular∗ environment we call up \endarray, close the math mode
and then the surrounding \hbox. This math mode around the tabular should not be
surrounded by any \mathsurround so we cancel that with \m@th.
333 \def\endtabular{\endarray\m@th $\egroup

334 \UseTaggingSocket{tbl/hmode/end}%
335 }
336 \expandafter\let\csname endtabular*\endcsname=\endtabular

(End of definition for \endtabular and \endtabular*. These functions are documented on page ??.)

31

13 Last minute definitions
If this file is used as a package file we should \let all macros to \relax that were used
in the original but are no longer necessary.
337 \let\@ampacol=\relax \let\@expast=\relax
338 \let\@arrayclassiv=\relax \let\@arrayclassz=\relax
339 \let\@tabclassiv=\relax \let\@tabclassz=\relax
340 \let\@arrayacol=\relax \let\@tabacol=\relax
341 \let\@tabularcr=\relax \let\@@endpbox=\relax
342 \let\@argtabularcr=\relax \let\@xtabularcr=\relax

\@preamerr We also have to redefine the error routine \@preamerr since new kind of errors are
possible. The code for this macro is not perfect yet; it still needs too much memory.
343 \ExplSyntaxOff
344 \def\@preamerr#1{\def\@tempd{{..} at wrong position: }%
345 \PackageError{array}{%
346 \ifcase #1 Illegal pream-token (\@nextchar): ‘c’ used\or %0
347 Missing arg: token ignored\or %1
348 Empty preamble: ‘l’ used\or %2
349 >\@tempd token ignored\or %3
350 <\@tempd changed to !{..}\or %4
351 Only one column-spec. allowed.\fi}\@ehc} %5

(End of definition for \@preamerr. This function is documented on page ??.)

14 Defining your own column specifiers6

\newcolumn In newarray.sty the macro for specifying new columns was named \newcolumn. When
the functionality was added to array.sty the command was renamed \newcolumntype.
Initially both names were supported, but now (In versions of this package distributed for
LATEX 2ε) the old name is not defined.
352 ⟨∗ncols⟩

(End of definition for \newcolumn. This function is documented on page ??.)

\newcolumntype As described above, the \newcolumntype macro gives users the chance to define letters,
to be used in the same way as the primitive column specifiers, ‘c’ ‘p’ etc.
353 \def\newcolumntype#1{%

\NC@char was added in V2.01 so that active characters, like @ in AMSLATEX may be used.
This trick was stolen from array.sty 2.0h. Note that we need to use the possibly active
token, #1, in several places, as that is the token that actually appears in the preamble
argument.
354 \edef\NC@char{\string#1}%

6The code and the documentation in this section was written by David. So far only the code from
newarray was plugged into array so that some parts of the documentation still claim that this is newarray
and even worse, some parts of the code are unnecessarily doubled. This will go away in a future release.
For the moment we thought it would be more important to bring both packages together.

32

First we check whether there is already a definition for this column. Unlike \newcommand
we give a warning rather than an error if it is defined. If it is a new column, add \NC@do
⟨column⟩ to the list \NC@list.
355 \@ifundefined{NC@find@\NC@char}%
356 {\@tfor\next:=<>clrmbp@!|\do
357 {%

We use \noexpand on the tokens from the list in case one or the other (typically @, ! or
|) has been made active.
358 \if\expandafter\noexpand\next\NC@char
359 \PackageWarning{array}%
360 {Redefining primitive column \NC@char}\fi}%
361 \NC@list\expandafter{\the\NC@list\NC@do#1}}%
362 {\PackageWarning{array}{Column \NC@char\space is already defined}}%

Now we define a macro with an argument delimited by the new column specifier, this is
used to find occurrences of this specifier in the user preamble.
363 \@namedef{NC@find@\NC@char}##1#1{\NC@{##1}}%

If an optional argument was not given, give a default argument of 0.
364 \@ifnextchar[{\newcol@{\NC@char}}{\newcol@{\NC@char}[0]}}
365 \ExplSyntaxOn

(End of definition for \newcolumntype. This function is documented on page ??.)

\newcol@ We can now define the macro which does the rewriting, \@reargdef takes the same
arguments as \newcommand, but does not check that the command is new. For a column,
say ‘D’ with one argument, define a command \NC@rewrite@D with one argument, which
recursively calls \NC@find on the user preamble after replacing the first token or group
with the replacement text specified in the \newcolumntype command. \NC@find will
find the next occurrence of ‘D’ as it will be \let equal to \NC@find@D by \NC@do.
366 \def\newcol@#1[#2]#3{\expandafter\@reargdef
367 \csname NC@rewrite@#1\endcsname[#2]{\NC@find#3}}

(End of definition for \newcol@. This function is documented on page ??.)

\NC@ Having found an occurrence of the new column, save the preamble before the column
in \@temptokena, then check to see if we are at the end of the preamble. (A dummy
occurrence of the column specifier will be placed at the end of the preamble by \NC@do.
368 \def\NC@#1{%
369 \@temptokena\expandafter{\the\@temptokena#1}\futurelet\next\NC@ifend}

(End of definition for \NC@. This function is documented on page ??.)

\NC@ifend We can tell that we are at the end as \NC@do will place a \relax after the dummy column.
370 \def\NC@ifend{%

If we are at the end, do nothing. (The whole preamble will now be in \@temptokena.)
371 \ifx\next\relax

Otherwise set the flag \if@tempswa, and rewrite the column. \expandafter introduced
1n V2.01
372 \else\@tempswatrue\expandafter\NC@rewrite\fi}

(End of definition for \NC@ifend. This function is documented on page ??.)

33

\NC@do If the user has specified ‘C’ and ‘L’ as new columns, the list of rewrites (in the token
register \NC@list) will look like \NC@do * \NC@do C \NC@do L. So we need to define
\NC@do as a one argument macro which initialises the rewriting of the specified column.
Let us assume that ‘C’ is the argument.
373 \def\NC@do#1{%

First we let \NC@rewrite and \NC@find be \NC@rewrite@C and \NC@find@C respectively.
374 \expandafter\let\expandafter\NC@rewrite
375 \csname NC@rewrite@\string#1\endcsname
376 \expandafter\let\expandafter\NC@find
377 \csname NC@find@\string#1\endcsname

Clear the token register \@temptokena after putting the present contents of the register in
front of the token \NC@find. At the end we place the tokens ‘C\relax’ which \NC@ifend
will use to detect the end of the user preamble.
378 \expandafter\@temptokena\expandafter{\expandafter}%
379 \expandafter\NC@find\the\@temptokena#1\relax}

(End of definition for \NC@do. This function is documented on page ??.)

\showcols This macro is useful for debugging \newcolumntype specifications, it is the equivalent of
the primitive \show command for macro definitions. All we need to do is locally redefine
\NC@do to take its argument (say ‘C’) and then \show the (slightly modified) definition
of \NC@rewrite@C. Actually as the list always starts off with \NC@do * and we do not
want to print the definition of the ∗-form, define \NC@do to throw away the first item in
the list, and then redefine itself to print the rest of the definitions.
380 \def\showcols{{\def\NC@do##1{\let\NC@do\NC@show}\the\NC@list}}

(End of definition for \showcols. This function is documented on page ??.)

\NC@show If the column ‘C’ is defined as above, then \show\NC@rewrite@C would output
\long macro: ->\NC@find >{$}c<{$}. We want to strip the long macro: -> and the
\NC@find. So first we use \meaning and then apply the macro \NC@strip to the tokens
so produced and then \typeout the required string.
381 \def\NC@show#1{%
382 \typeout{Column~ #1\expandafter\expandafter\expandafter\NC@strip
383 \expandafter\meaning\csname NC@rewrite@#1\endcsname\@@}}

(End of definition for \NC@show. This function is documented on page ??.)

\NC@strip Delimit the arguments to \NC@strip with ‘:’, ‘->’, a space, and \@@@@ to pull out the
required parts of the output from \meaning.
384 \ExplSyntaxOff
385 \def\NC@strip#1:#2->#3 #4\@@{#2 -> #4}
386 \ExplSyntaxOn

(End of definition for \NC@strip. This function is documented on page ??.)

\NC@list Allocate the token register used for the rewrite list.
387 \newtoks\NC@list

(End of definition for \NC@list. This function is documented on page ??.)

34

14.1 The ∗–form
We view the ∗-form as a slight generalisation of the system described in the previous
subsection. The idea is to define a ∗ column by a command of the form:

\newcolumntype{*}[2]{%
\count@=#1\ifnum\count@>0

\advance\count@ by -1 #2*{\count@}{#2}\fi}

\NC@rewrite@* This does not work however as \newcolumntype takes great care not to expand anything
in the preamble, and so the \if is never expanded. \newcolumntype sets up various
other parts of the rewrite correctly though so we can define:
388 \newcolumntype{*}[2]{}

Now we must correct the definition of \NC@rewrite@*. The following is probably more
efficient than a direct translation of the idea sketched above, we do not need to put a
∗ in the preamble and call the rewrite recursively, we can just put #1 copies of #2 into
\@temptokena. (Nested ∗ forms will be expanded when the whole rewrite list is expanded
again, see \@mkpream)
389 \long\@namedef{NC@rewrite@*}#1#2{%

Store the number.
390 \count@#1\relax

Put #1 copies of #2 in the token register.
391 \loop
392 \ifnum\count@>\z@
393 \advance\count@\m@ne
394 \@temptokena\expandafter{\the\@temptokena#2}%
395 \repeat

\NC@do will ensure that \NC@find is \let equal to \NC@find@*.
396 \NC@find}

(End of definition for \NC@rewrite@*. This function is documented on page ??.)

14.2 Modifications to internal macros of array.sty

\@xexpast
\@xexnoop

These macros are used to expand ∗-forms in array.sty. \let them to \relax to save
space.
397 \let\@xexpast\relax
398 \let\@xexnoop\relax

(End of definition for \@xexpast and \@xexnoop. These functions are documented on page ??.)

\save@decl We do not assume that the token register is free, we add the new declarations to the front
of the register. This is to allow user preambles of the form, >{foo}>{bar}... Users are
not encouraged to enter such expressions directly, but they may result from the rewriting
of \newcolumntype’s.
399 \def\save@decl{\toks \count@ = \expandafter\expandafter\expandafter
400 {\expandafter\@nextchar\the\toks\count@}}

(End of definition for \save@decl. This function is documented on page ??.)

35

\@mkpream The main modification to \@mkpream is to replace the call to \@xexpast (which expanded
∗-forms) by a loop which expands all \newcolumntype specifiers.
401 \ExplSyntaxOff % really oldstyle using \@tfor :=
402 \def\@mkpream#1{\gdef\@preamble{}\@lastchclass 4 \@firstamptrue
403 \let\@sharp\relax

The \@startpbox (which is called for p, m or b columns) receives a user supplied
argument: the width of the paragraph-column. Normally that is something harmless like
a length or a simple length expression, but with the calc package involved it could break
under an \edef operation, which is how the preamble is constructed. We now make
use of \unexpanded here to prevent that. The \expandafter gymnastics is necessary
to expand the #1 at least once (since it will get \@nextchar as its value and need its
content!
404 \def\@startpbox##1{\unexpanded\expandafter{\expandafter
405 \@startpbox\expandafter{##1}}}\let\@endpbox\relax
406 \let\do@row@strut\relax
407 \let\ar@align@mcell\relax

Now we remove possible ∗-forms and user-defined column specifiers in the user preamble
by repeatedly executing the list \NC@list until the re-writes have no more effect. The
expanded preamble will then be in the token register \@temptokena. Actually we need
to know at this point that this is not \toks0.
408 \@temptokena{#1}\@tempswatrue
409 \@whilesw\if@tempswa\fi{\@tempswafalse\the\NC@list}%

Afterwards we initialize all registers and macros, that we need for the build-up of the
preamble.
410 \count@\m@ne
411 \let\the@toks\relax
412 \prepnext@tok

Having expanded all tokens defined using \newcolumntype (including *), we evaluate the
remaining tokens, which are saved in \@temptokena. We use the LATEX–macro \@tfor
to inspect each token in turn.
413 \expandafter \@tfor \expandafter \@nextchar
414 \expandafter :\expandafter =\the\@temptokena \do

\@testpatch does not take an argument since array.sty 2.0h.
415 {\@testpach
416 \ifcase \@chclass \@classz \or \@classi \or \@classii
417 \or \save@decl \or \or \@classv \or \@classvi
418 \or \@classvii \or \@classviii

In newarray.sty class 9 is equivalent to class 10.
419 \or \@classx
420 \or \@classx \fi
421 \@lastchclass\@chclass}%
422 \ifcase\@lastchclass
423 \@acol \or
424 \or
425 \@acol \or
426 \@preamerr \thr@@ \or
427 \@preamerr \tw@ \@addtopreamble\@sharp \or
428 \or
429 \else \@preamerr \@ne \fi

36

430 \def\the@toks{\the\toks}}
431 \ExplSyntaxOn

(End of definition for \@mkpream. This function is documented on page ??.)

\@classix array.sty does not allow repeated > declarations for the same column. This is allowed
in newarray.sty as documented in the introduction. Removing the test for this case
makes class 9 equivalent to class 10, and so this macro is redundant. It is \let to \relax
to save space.
432 \let\@classix\relax

(End of definition for \@classix. This function is documented on page ??.)

\@classviii In newarray.sty explicitly allow class 2, as repeated < expressions are accepted by this
package.
433 \def\@classviii{\ifnum \@lastchclass >\z@\ifnum\@lastchclass=\tw@\else
434 \@preamerr 4\@chclass 6 \@classvi \fi\fi}

(End of definition for \@classviii. This function is documented on page ??.)

\@classv Class 5 is @-expressions (and is also called by class 1) This macro was incorrect in
Version 1. Now we do not expand the @-expression, but instead explicitly replace an
\extracolsep command by an assignment to \tabskip by a method similar to the
\newcolumntype system described above. \d@llarbegin \d@llarend were introduced
in V2.01 to match array.sty 2.0h.
435 \def\@classv{\save@decl
436 \expandafter\NC@ecs\@nextchar\extracolsep{}\extracolsep\@@__tbl
437 \@addtopreamble{\d@llarbegin\the@toks\the\count@\relax\d@llarend}%
438 \prepnext@tok}

(End of definition for \@classv. This function is documented on page ??.)

\NC@ecs Rewrite the first occurrence of \extracolsep{1in} to \tabskip1in\relax. As a side
effect discard any tokens after a second \extracolsep, there is no point in the user
entering two of these commands anyway, so this is not really a restriction.
439 \def\NC@ecs#1\extracolsep#2#3\extracolsep#4\@@__tbl{\def\@tempa{#2}%
440 \ifx\@tempa\@empty\else\toks\count@={#1\tabskip#2\relax#3}\fi}
441 ⟨/ncols⟩

(End of definition for \NC@ecs. This function is documented on page ??.)

14.3 Support for the delarray.sty

The delarray.sty package extends the array syntax by supporting the notation of de-
limiters. To this end we extend the array parsing mechanism to include a hook which
can be used by this (or another) package to do some additional parsing.

\@tabarray This macro tests for an optional bracket and then calls up \@@@@array or \@@@@array[c]
(as default).
442 ⟨∗package⟩
443 \def\@tabarray{\@ifnextchar[{\@@array}{\@@array[c]}}

(End of definition for \@tabarray. This function is documented on page ??.)

37

\@@array This macro tests could then test an optional delimiter before the left brace of the main
preamble argument. Here in the main package it simply is let to be \@array.
444 \let\@@array\@array

(End of definition for \@@array. This function is documented on page ??.)

\@arrrayleft
\@arrayright

We have to declare the hook we put into \@array above. A similar hook \@arrayright
will be inserted into the \endarray to gain control. Both defaults to empty.
445 \let\@arrayleft\@empty
446 \let\@arrayright\@empty

(End of definition for \@arrrayleft and \@arrayright. These functions are documented on page ??.)

14.4 Support for \firsthline and \lasthline

The Companion [1, p.137] suggests two additional commands to control the alignments
in case of tabulars with horizontal lines. They are now added to this package.

\extratabsurround The extra space around a table when \firsthline or \lasthline are used.
447 \newlength{\extratabsurround}
448 \setlength{\extratabsurround}{2pt}

(End of definition for \extratabsurround. This function is documented on page ??.)

\backup@length This register will be used internally by \firsthline and \lasthline.
449 \newlength{\backup@length}

(End of definition for \backup@length. This function is documented on page ??.)

\firsthline This code can probably be improved but for the moment it should serve.
We start by producing a single tabular row without any visible content that will pro-

duce the external reference point in case [t] is used. We need to suppress the \tabcolsep
in the \multicolumn in case there wasn’t any in the real column.
450 \newcommand{\firsthline}{%
451 \multicolumn1{@{}c@{}}{%

Within this row we calculate \backup@length to be the height plus depth of a standard
line. In addition we have to add the width of the \hline, something that was forgotten
in the original definition.
452 \global\backup@length\ht\@arstrutbox
453 \global\advance\backup@length\dp\@arstrutbox
454 \global\advance\backup@length\arrayrulewidth

Finally we do want to make the height of this first line be a bit larger than usual, for
this we place the standard array strut into it but raised by \extratabsurround
455 \raise\extratabsurround\copy\@arstrutbox

And we should also cancel the guard otherwise we end up with two.
456 \kern-1sp%

Having done all this we end the line and back up by the value of \backup@length and
then finally place our \hline. This should place the line exactly at the right place but
keep the reference point of the whole tabular at the baseline of the first row.
457 }\\[-\backup@length]\hline
458 }

38

(End of definition for \firsthline. This function is documented on page ??.)

\lasthline For \lasthline the situation is even worse and I got it completely wrong initially.
The problem in this case is that if the optional argument [b] is used we do want the

reference point of the tabular be at the baseline of the last row but at the same time do
want the depth of this last line increased by \extratabsurround without changing the
placement \hline.

We start by placing the rule followed by an invisible row. We need to suppress the
\tabcolsep in the multicol in case there wasn’t any in the real column.
459 \newcommand{\lasthline}{\hline\multicolumn1{@{}c@{}}{%

We now calculate \backup@length to be the height and depth of two lines plus the width
of the rule.
460 \global\backup@length2\ht\@arstrutbox
461 \global\advance\backup@length2\dp\@arstrutbox
462 \global\advance\backup@length\arrayrulewidth

This will bring us back to the baseline of the second last row:
463 }\\[-\backup@length]%

Thus if we now add another invisible row the reference point of that row will be at the
baseline of the last row (and will be the reference for the whole tabular). Since this row
is invisible we can enlarge its depth by the desired amount.
464 \multicolumn1{@{}c@{}}{%
465 \lower\extratabsurround\copy\@arstrutbox
466 \kern-1sp%
467 }%
468 }

(End of definition for \lasthline. This function is documented on page ??.)

14.5 Getting the spacing around rules right
Beside a larger functionality array.sty has one important difference to the standard
tabular and array environments: horizontal and vertical rules make a table larger
or wider, e.g., \doublerulesep really denotes the space between two rules and isn’t
measured from the middle of the rules.

\@xhline For vertical rules this is implemented by the definitions above, for horizontal rules we
have to take out the backspace.
469 \CheckCommand*\@xhline{\ifx\reserved@a\hline
470 \vskip\doublerulesep
471 \vskip-\arrayrulewidth
472 \fi
473 \ifnum0=‘{\fi}}
474 \renewcommand*\@xhline{\ifx\reserved@a\hline
475 \vskip\doublerulesep
476 \fi
477 \ifnum0=‘{\fi}}
478 ⟨/package⟩

(End of definition for \@xhline. This function is documented on page ??.)

39

14.6 Implementing column types w and W

In TugBoat 38/2 an extension was presented that implemented two aditional column
types w and W. These have now been added to the package itself.

\ar@cellbox For w and W column types we need a box to temporarily hold the cell content.
479 \newsavebox\ar@cellbox

(End of definition for \ar@cellbox. This function is documented on page ??.)

\newcolumntype␣w The w column type has two arguments: the first holds the alignment which is either l,
c, or r and the second is the nominal width of the column.
480 \newcolumntype{w}[2]{%

Before the cell content we start an lrbox-environment to collect the cell material into the
previously allocated box \ar@cellbox. We add \d@llarbegin (and later \d@llarend)
so that the content is typeset in math mode if we are in an array environment.
481 >{\begin{lrbox}\ar@cellbox\d@llarbegin}%

Then comes a specifier for the cell content. We use c, but that doesn’t matter as in the
end we will always put a box of a specific width (#2) into the cells of that column, so
l or r would give the same result. There is only a difference if there are also very wide
\multicolumn rows overwriting the setting in which case c seems to be slightly better.
482 c%

At the end of the cell we end the lrbox environment so that all of the cell content
is now in box \ar@cellbox. As a final step we put that box into a \makebox using
the optional arguments of that command to achieve the correct width and the desired
alignment within that width. We unbox the collected material so that any stretchable
glue inside can interact with the alignment.
483 <{\d@llarend \end{lrbox}%
484 \makebox[#2][#1]{\unhbox\ar@cellbox}}}

(End of definition for \newcolumntype w. This function is documented on page ??.)

\newcolumntype␣W The W is similar but in this case we want a warning if the cell content is too wide.
485 \newcolumntype{W}[2]
486 {>{\begin{lrbox}\ar@cellbox\d@llarbegin}%
487 c%
488 <{\d@llarend\end{lrbox}%
489 \let\hss\hfil
490 \makebox[#2][#1]{\unhbox\ar@cellbox}}}

This is a bit sneaky, as it temporarily disables \hss, but given that we know what goes
into that box it should be sufficient.
(End of definition for \newcolumntype W. This function is documented on page ??.)

491 \ExplSyntaxOff

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
@@ internal commands:

\@@__tbl 436, 439

40

\| . 42, 43

A
\array . 312
\arraybackslash 277
\arraycolsep 312
\arrayleft . 26
\arrayrulewidth 454, 462, 471
\arraystretch 21, 241, 242
\AtBeginDocument 42, 43

B
\begin 18, 24, 32, 60, 481, 486
\bottomfraction 48
\box . 21, 202, 205

C
\CheckCommand 469
\cline . 7
\CodelineIndex 55
\copy . 455, 465
\cr . 26, 27
\crcr . 31

D
\DeleteShortVerb 42, 43
\DisableCrossrefs 51
\DocInput . 61
\documentclass 3
\DocumentMetadata 8
\doublerulesep 217, 470, 475

E
\EnableCrossrefs 50
\end 26, 32, 34, 62, 483, 488
\endarray 31, 326, 333
\endgroup 203, 256, 304, 311, 324
\endtabular 31, 333
\endtabular* 31, 333
\everycr . 26, 270
\everypar 232, 234
\expandafter 45, 46
\ExplSyntaxOff 73, 343, 384, 401, 491
\ExplSyntaxOn 65, 99, 365, 386, 431
\extracolsep 436, 439
\extrarowheight 1
\extrarowheight 239, 278
\extratabsurround 6
\extratabsurround 447, 455, 465

F
\fbox . 32
\firsthline . 6
\firsthline 45, 450
\footnote . 19

\futurelet . 369

G
\global . . 292, 452, 453, 454, 460, 461, 462

H
\halign . 46, 276
\hfil . 45
\hline 7, 457, 459, 469, 474
\hsize . 46
\hskip . 45, 46
\hss . 489

I
\ialign 25, 26, 46
\iffalse . 283
\IfFormatAtLeastTF 41
\ifhmode . 123

K
\kern . 45

L
\LARGE . 20
\large . 22, 28
\lasthline . 6
\lasthline . 459
\LaTeX . 11
\long 45, 298, 389
\loop . 391
\lower . 202, 465

M
\MaintainedBy . 7
\MaintainedByLaTeXTeam 9, 9
\makeatletter . 6
\makeatother . 37
\makebox 484, 490
\mathsurround 46, 263
\meaning . 383
\multicolumn . . . 29, 38, 298, 451, 459, 464

N
\NeedsTeXFormat 2, 67
\newbox . 195
\newcolumn . 352
\newcolumntype 4
\newcolumntype 353, 388, 480, 485
\newcolumntype␣W 485
\newcolumntype␣w 480
\newcommand 450, 459
\newif . 131
\newlength 447, 449
\newpage . 15
\newsavebox . 479
\newtoks . 387
\next 358, 369, 371

41

next commands:
\next: . 356

\noexpand 33, 46, 137, 249, 358
\null . 45, 16, 308

O
\OldMakeindex 58
\OnlyDescription 57

P
\PackageError 345
\PackageWarning 359, 362
\par 46, 20, 26, 35, 236, 264
\protect . 260
\protected 123, 281
\ProvidesPackage 68

R
\raise . 455
\RecordChanges 53
\relax . 45
\renewcommand 48, 474
\repeat . 395

S
\setlength 46, 231, 318, 448
\showcols . 5
\showcols . 380
\string 81, 354, 375, 377
\strutbox 21, 46

T
\tabcolsep 38, 39, 323
\tabular . 316
\tabular* . 316
\tabularnewline 43, 264, 277
tbl commands:

\tbl_count_missing_cells:n 282
\tbl_count_table_cols: 25, 247
\tbl_crcr:n 327
\tbl_if_row_was_started:TF 272
\tbl_init_cell_data_for_row: 25, 253
\tbl_init_cell_data_for_table: . 269
\tbl_restore_outer_cell_data: . . 329
\tbl_save_outer_table_cols: . . . 244
\tbl_update_cell_data: 25, 137
\tbl_update_cell_data_for_next_-

row: . 273
\tbl_update_multicolumn_cell_-

data:n 300
tbl internal commands:

\g__tbl_table_cols_tl 25
TEX and LATEX 2ε commands:

\@@ 100, 111, 112, 147, 383, 385
\@@array 443, 444

\@@endpbox 341
\@acol 140,

160, 162, 171, 174, 216, 218, 423, 425
\@acolampacol 140, 170, 172
\@addamp 131, 142, 171, 175, 301
\@addtopreamble 72, 141,

164, 180, 212, 217, 224, 303, 427, 437
\@ampacol 337
\@argarraycr 286, 287
\@argtabularcr 342
\@array 237, 315, 444
\@arrayacol 340
\@arrayclassiv 338
\@arrayclassz 338
\@arraycr 264, 281
\@arrayleft 257, 445
\@arrayparboxrestore 231
\@arrayright 38, 331, 445
\@arrayrule 212, 227
\@arrrayleft 445
\@arstrut 251, 280, 307
\@arstrutbox 21, 200, 233, 236, 240,

280, 291, 452, 453, 455, 460, 461, 465
\@author . 25
\@chclass 69,

74, 86, 97, 154, 158, 211, 416, 421, 434
\@chnum 69, 75, 82, 93, 180, 227
\@classi 154, 226, 416
\@classii 154, 221, 416
\@classiii 221
\@classix 156, 207, 432
\@classv 155, 223, 228, 417, 435
\@classvi . . 155, 211, 215, 226, 417, 434
\@classvii 156, 213, 219, 418
\@classviii 156, 210, 418, 433
\@classx . . 157, 168, 177, 209, 419, 420
\@classz 154, 177, 416
\@date . 28
\@empty . . 8, 29, 264, 303, 440, 445, 446
\@endpbox . . 144, 189, 192, 193, 236, 405
\@expast 337
\@finalstrut 45, 236
\@firstampfalse 134, 174, 301
\@firstamptrue 143, 402
\@halignto . 46, 250, 310, 313, 316, 319
\@iffirstamp 131
\@lastchclass 69, 75,

76, 77, 78, 80, 143, 158, 159, 169,
207, 210, 213, 215, 402, 421, 422, 433

\@maintainedby 7, 8, 10, 29, 32
\@maketitle 14
\@mkpream 143, 246, 303, 401
\@multicnt 293
\@namedef 363, 389

42

\@nextchar 81, 83, 84, 85,
87, 88, 89, 90, 91, 94, 95, 96, 115,
151, 189, 192, 193, 346, 400, 413, 436

\@preamble 72,
136, 143, 248, 254, 266, 307, 331, 402

\@preamerr . . 97, 163, 164, 166, 208,
211, 214, 302, 343, 426, 427, 429, 434

\@reargdef 366
\@sharp 45,

116, 127, 144, 164, 260, 306, 403, 427
\@startpbox

. 46, 144, 189, 192, 193, 229, 404, 405
\@tabacol 340
\@tabarray 314, 315, 325, 442
\@tabclassiv 339
\@tabclassz 339
\@tabular 316, 319, 320
\@tabularcr 341
\@tempswafalse 409
\@tempswatrue 372, 408
\@temptokena

102, 109, 369, 378, 379, 394, 408, 414
\@testpach 45, 73, 153, 415
\@tfor 45, 151, 356, 401, 413
\@title . 20
\@vspace@calcify 296
\@whilesw 409
\@xargarraycr 288, 290
\@xarraycr 284, 285
\@xexnoop 108, 112, 397
\@xexpast 100, 147, 397
\@xhline 469
\@xtabularcr 342
\@yargarraycr 28, 46, 289, 290
\align@mcell 46
\ar@align@mcell 46, 146, 190, 196, 407
\ar@cellbox . . . 479, 481, 484, 486, 490
\ar@ialign 25, 249, 268
\ar@mcellbox

. . 21, 46, 188, 195, 197, 199, 202, 205
\backup@length 449,

452, 453, 454, 457, 460, 461, 462, 463
\col@sep 140, 312, 323
\color@begingroup 230
\color@endgroup 236
\count@ 113, 113, 114,

115, 120, 128, 148, 178, 221, 224,
390, 392, 393, 399, 400, 410, 437, 440

\d@llarbegin . 40, 45, 46, 183, 186,
187, 224, 310, 313, 323, 437, 481, 486

\d@llarend 40, 46, 185, 186,
187, 224, 310, 313, 324, 437, 483, 488

\dimen@ . . . 199, 200, 201, 202, 318, 319
\do@row@strut . . 145, 185, 186, 187,

191, 192, 193, 290, 292, 293, 295, 406
\if@firstamp 133, 301
\if@tempswa 409
\insert@column 16, 29, 116, 184, 186, 187
\insert@pcolumn 20, 124, 189, 192, 193
\m@th . 26, 333
\mcell@box 46
\NC@ . 363, 368
\NC@char 354, 355, 358, 360, 362, 363, 364
\NC@do 361, 373, 380
\NC@ecs 436, 439
\NC@find 367, 376, 379, 396
\NC@ifend 369, 370
\NC@list 361, 380, 387, 409
\NC@rewrite 372, 374
\NC@rewrite@* 388
\NC@show 380, 381
\NC@strip 382, 384
\newcol@ 364, 366
\prepnext@tok

113, 150, 179, 194, 222, 225, 412, 438
\reserved@a 469, 474
\save@decl

. . . . 115, 155, 222, 223, 399, 417, 435
\textonly@unskip 116
\the@toks 100, 118,

120, 126, 128, 143, 224, 411, 430, 437
\the@toksz 100
\z@ . 45
\z@skip . 276

\texttt . 12
\thanks . 19
\the . 45
\toks0 . 45
\toks1 . 45

U
\unexpanded . 404
\unhbox . 484, 490
\unskip . 46, 47
\url . 13
\usepackage . 45
\UseTaggingSocket 117, 121, 125,

129, 252, 265, 272, 305, 322, 328, 334

V
\vcenter . 46

43

Change History

1994/12/08
\@array: add \tabularnewline 26

v1.0b
General: ‘@classi (faster), ‘@classvi

(new) A in preamble means && in
‘halign. 1

v1.1a
General: New concept: preamblechar:

c,l,r,C,L,R,A,p,t,|,@,! 1
v1.1b

General: Again p like original LATEX
and z for centered ‘parbox. 1

v1.2a
General: Completely new

implementation. 1
v1.2b

General: | does no longer generate
space at start or end of the
preamble. Otherwise ‘hline is too
long. 1

Enlarged ‘@arstrutbox by 1pt
(Test-Impl) with dimen
‘@strutheight. 1

v1.2c
General: Enlarged ‘@arstrutbox by

‘extrarowheight. Thus you may
avoid large characters to overprint
a ‘hline. 1

Introduced ‘m@th in ‘@array to
allow non-zero values of
‘mathsurround. 1

New dimen parameter
‘extrarowheight (default: 0pt). . . . 1

v1.2d
General: Completed the

documentation. 1
v1.2e

General: Bug fixed: A at start of
preamble resulted in an error since
‘@mkpream generated ‘@arstrut &
... as a preamble. 1

v1.2f
General: ‘@testpach documented. 1

v1.3a
General: Again a new implementation,

with a new concept (cf. the
documentation). 1

v1.3b
General: ‘@decl expands now into

‘@empty, i.e., it disappears when

the preamble is generated, except
when the user specifies A{} or B{}. 1

v1.4a
General: Test implementation of use of

token registers in order to do
without ‘protect. 1

v1.4b
General: Changed erroneous class

numbers: 5 -> 6 6 -> 7 7 -> 5
Corresponding changes in the
macros. 1

v1.4c
General: Everything except p,z now

works with token registers. 1
v1.9a

General: 2) ‘protect is no longer
necessary. But still the macro
‘@expast needs top be modified.
‘multicolumn still does not work. . 1

Last (so I hope) major change: 1)
Options B,A now called >,<.
These options now point to the
column they modify. 1

v1.9b
General: inserted missing ‘fi in

‘@testpach. Corrected LATEXbug in
‘@tfor. 1

v1.9c
General: 1) ‘def ‘the@toks {‘the ...}

remaining only in ‘@mkpream. 2)
Removed ‘@classiii and replaced
by ‘save@decl. 1

3) ‘insert@column contains only
‘@tempcnta and ‘count@ counters.
4) ‘@@startpbox and ‘@@endpbox
now totally obsolete. 1

Re-introduced ‘@endpbox.
‘multicolumn now works! Version
number still 1.9 since the
documentation is still not finished. 1

v1.9d
General: Replaced ‘number by ‘the

where the ‘toks registers’ contents
are used. 1

v1.9e
General: Re-introduced ‘@xargarraycr

and ‘@yargarraycr, since
‘endtemplate seems to be ‘outer. . 1

v1.9f
General: Small changes finally carried

44

out: 1) ‘par=‘@empty. 2)
{..ifnum0=‘}... → ‘bgroup and
analogously ‘egroup. 1

v1.9g
General: Inserted again {..ifnum0=‘}..,

c.f. Appendix D of the TEXbook. . 1
v1.9h

General: No longer necessary to read
in the file twice. 1

v1.9i
General: Corrected typo in german

version. 1
v1.9j

General: In a ‘r’ column an extra
‘kern‘z@ is needed. 1

Otherwise the ‘hfil on the left side
will be removed by the ‘unskip in
‘insert@column if the entry is
empty. 1

v1.9k
General: ‘beginMacro changed to

‘beginmacro in documentation. . . 1
Corrected typo in german version. . 1

v2.0a
General: \@thetoks changed to

\the@toks. 1
File renamed from arraye.sty to
array.sty. 1

source changed to reflect new
doc.sty conventions. 1

t option renamed to p to be
compatible to the original. 1

\@testpach: p option renamed to m
(middle). 12

t option renamed to p to be
compatible to the original. 12

v2.0b
General: All lines shortened to 72 or

less. 1
Three forgotten end macro added. . 1

v2.0c
\@classv: \relax added to avoid

problem ‘the‘toks0‘the‘toks1. 23
\save@decl: \relax removed and

added elsewhere. 15
\textonly@unskip: \relax added to

avoid problem
\the\toks0\the\toks1. 16

v2.0d
\@tabular: ‘d@llar local to preamble. 31
\array: ‘d@llar local to preamble. . . 30

v2.0e
\textonly@unskip: Added {} around

\@sharp for new ftsel 15

v2.0f
\@testpach: Argument removed since

implicitly known 12
Ensure to test a char which is not
active . 12

\the@toks: \@testpach now without
arg . 17

v2.0g
\d@llarend: ‘d@llarbegin defined on

toplevel. 30
v2.0h

\textonly@unskip: Removed {} again
in favour of \d@llarbegin 15

v2.1a
General: Newcolumn stuff added . . . 32
\@array: Hook for delarray added . . 26

Wrong spec is now equiv to [t] . . . 26
v2.1b

\newcolumntype: Macro renamed from
‘newcolumn 32

v2.1c
\@startpbox: Use ‘everypar to insert

strut . 24
v2.2a

General: Upgrade to LATEX 2ε 1
\newcolumn: Now made ‘newcolumn

an error 32
Removed ‘newcolumn 32

v2.2b
General: Removed interactive prompt . 8

v2.2c
General: removed check for \@tfor bug 1

v2.2d
\@endpbox: Use LATEX 2ε\@finalstrut 24

v2.2e
\multicolumn: Added \null 29

v2.3a
General: Added code for \firsthline

and friends 1
v2.3c

General: (DPC) minor doc changes . . . 1
\@argarraycr: Avoid adding an ord

atom in math 28
Use \expandafter’s in conditional 28

\@arraycr: Avoid adding an ord atom
in math 27

\@xarraycr: Avoid adding an ord
atom in math 28

v2.3d
\@xhline: fix space between double

rules pr/1945 39

45

v2.3f
\@classz: (DPC) Extra \kern keeps

tabcolsep in empty l columns
internal/2122 20

v2.3g
\@endpbox: Add \hfil for tools/2120 24

v2.3h
\firsthline: Complete

reimplementation 38
\lasthline: Complete

reimplementation 39
v2.3i

\@classz: Change both \kern\z@ to
\hskip1sp for latex/2160 20

v2.3j
\multicolumn: Command made \long

to match kernel change for pr/2180 29
v2.3k

\@startpbox: Use \setlength to set
\hsize, so that the calc package
can be applied here (pr/2793) . . . 24

v2.3l
\tabular*: Use \setlength evaluate

arg so that the calc package can be
applied here (pr/2793) 30

v2.3m
\@array: Added \noexpand in front of

\ialign to guard against
interesting :-) changes to \halign
done to support text glyphs in
math . 25

v2.4a
\arraybackslash: (DPC) Macro

added (from tabularx) 27
v2.4b

\NC@rewrite@*: Fix occasional
spurious space (PR/3755) 35

v2.4c
General: (WR) Typo fix in

documentation 1
v2.4d

\array: \@halignto set locally
(pr/4488) 30

\d@llarend: \@halignto set locally
(pr/4488) 30

\tabular*: \@halignto set locally
(pr/4488) 30

v2.4e
\@classz: Fixing SX68732 20
\@mkpream: Fixing SX68732 36
\@yargarraycr: Fixing SX68732 28
\the@toks: Fixing SX68732 17

v2.4f
\@classz: Managing m-cells without

\vcenter 20
\@mkpream: Managing m-cells without

\vcenter 36
\ar@align@mcell: Managing m-cells

without \vcenter 21
\ar@cellbox: Macro added 40
\ar@mcellbox: Managing m-cells

without \vcenter 21
\newcolumntype␣W: Column type

added . 40
\newcolumntype␣w: Column type

added . 40
\the@toks: Managing m-cells without

\vcenter 17
v2.4g

General: Renamed internal
\mcell@box to \ar@mcellbox and
\align@mcell to \ar@align@mcell
to avoid conflict with makecell
package 1

v2.4h
\@yargarraycr: Fixing issue 42 28

v2.4i
\@endpbox: Add group to prevent

color leak (gh/72) 24
\@startpbox: Add group to prevent

color leak (gh/72) 24
v2.4j

\@mkpream: Do not expand argument
of \@startpbox while building the
tabular preamble (sx/459285) . . . 36

v2.4k
\@classz: Add extra \hskip to guard

against an \unskip at the start of
a c-column cell (gh/102) 20

v2.4l
\newcolumntype: Add a necessary

\expandafter (github/148) 33
v2.4m

\newcolumntype␣w: Unbox collected
material so that stretchable glue
inside can act (gh/270) 40

v2.5a
\newcolumntype␣W: Use \d@llarbegin

and \d@llarend so that cell is
typeset in mathmode inside array
(gh/297) 40

\newcolumntype␣w: Use \d@llarbegin
and \d@llarend so that cell is
typeset in math mode inside array
(gh/297) 40

46

v2.5b
\@yargarraycr: Don’t define

\@yargarraycr unnecessarily 28
v2.5c

\firsthline: Suppress all column
space (gh/322) 38

\lasthline: Suppress all column
space (gh/322) 39

v2.5d
\@endpbox: Explicitly run \par at the

end of pboxes 24
v2.5f

\endtabular*: Cancel any outside
\mathsurround (gh/614) 31

v2.5g
\ar@align@mcell: Test against

\strutbox height (gh/766) 21
v2.6a

\@addamp: Managing cell indexes . . . 16
\@array: Managing cell indexes 25

Support for tagged PDF 25, 26

\@arraycr: Managing cell indexes . . . 27
\@classz: Support for tagged PDF . . 20
\@tabular: Support for tagged PDF . 31
\ar@ialign: Managing cell indexes . . 26

Support for tagged PDF 26
\endarray: Managing cell indexes . . . 31

Support for tagged PDF 31
\endtabular*: Support for tagged

PDF . 31
\insert@pcolumn: Support for tagged

PDF . 16
\multicolumn: Managing cell indexes 29

Support for tagged PDF 29
\textonly@unskip: Support for tagged

PDF 15, 16
v2.6b

\textonly@unskip: Do not \unskip if
in math mode (gh/1323) 15, 16

v2.6d
\@preamerr: Keep message sources out

of L3 code (gh/1378) 32

References
[1] M. Goossens, F. Mittelbach and A. Samarin. The LATEX Companion. Addison-

Wesley, Reading, Massachusetts, 1994.

[2] D. E. Knuth. The TEXbook (Computers & Typesetting Volume A). Addison-Wesley,
Reading, Massachusetts, 1986.

[3] L. Lamport. LATEX — A Document Preparation System. Addison-Wesley, Reading,
Massachusetts, 1986.

47

	1 Introduction
	1.1 The behavior of the \ command
	1.2 Defining new column specifiers
	1.3 Special variations of \hline

	2 Final Comments
	2.1 Handling of rules
	2.2 Comparisons with older versions of array.sty
	2.3 Bugs and Features

	3 Support for tagged PDF
	4 The documentation driver file
	5 A note on the updates done December 2023
	6 The construction of the preamble
	6.1 The character class of a token
	6.2 Multiple columns (*–form)

	7 The insertion of declarations (>, <, !, @)
	7.1 The separation of columns
	7.2 The macro \@mkpream

	8 The macros \@classz to \@classx
	9 Building and calling \halign
	10 The line separator \\
	11 Spanning several columns
	12 The Environment Definitions
	13 Last minute definitions
	14 Defining your own column specifiers
	14.1 The *–form
	14.2 Modifications to internal macros of array.sty
	14.3 Support for the delarray.sty
	14.4 Support for \firsthline and \lasthline
	14.5 Getting the spacing around rules right
	14.6 Implementing column types w and W

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U

	Change History
	References

