�seq chapter \h��seq chapter \h��seq chapter \h��seq chapter�4�

Resources

Overview

XIE resources are extension server objects created by the client that contain information used by the extension in carrying out various protocol requests. There are protocol requests to create and destroy each resource type. Resource identifiers are generated by the client as defined by the core protocol. All XIE resources are reference counted.

Binding Resources to Photoflos

Each resource that is referenced from a Photoflo is bound to the Photoflo (and its reference count is incremented) when the Photoflo becomes Active.

ColorList resources

A ColorList is purged of previous allocations when a Photoflo begins execution and is populated with new allocations (via ConvertToIndex) as the Photoflo proceeds. A ColorList can only be referenced by one Active Photoflo at a time. The ColorList's reference count is decremented when the Photoflo is no longer Active.

LUT, Photomap, and ROI resources

These XIE resources consist of two parts: one part contains the resource-id; the other part holds attributes and data. Figure 4-1 pictures the first part as a handle and the second part as a bucket. Upon resource creation only the handle exists. The bucket is created when the Photoflo (referencing the handle via an ExportResource element) becomes Active. The handle and bucket are joined when the Photoflo successfully completes. Conceptually each part contains a separate reference count.

�EMBED MSDraw * mergeformat���

�tc \l 2 "Figure 4-1 Creating and populating a new Photomap"�Figure 4-1 Creating and populating a new Photomap

In the case of ImportResource elements, the handle and bucket are both bound to the Photoflo when it first becomes Active (initialization). For ExportResource elements, only the handle is bound at this time, and a new bucket is created to hold the forthcoming data. This bucket’s attributes are derived from the ExportResource element.

If an export handle is already connected to a bucket, the old bucket remains with its handle until successful Photoflo completion. Thus, the old bucket is preserved if the Photoflo terminates due to an error condition or if an Abort request is received from the client.

The new bucket is filled with data as the Photoflo proceeds. When the Photoflo successfully completes, old buckets can be freed if they have no other references, and the waiting handle is joined to the new bucket. This is illustrated in figure 4-2.

�EMBED MSDraw * mergeformat���

�tc \l 2 "Figure 4-2 Process image from Photomap a, place result into Photomap b"�Figure 4-2 Process image from Photomap a, place result into Photomap b

This model also allows pseudo in-place operations, such as, that illustrated in figure 4-3. Here an image is imported from a Photomap, processed, and then the result is exported back to the same Photomap. Note that upon completion the old handle is moved to the new bucket, and the old bucket is destroyed.

irs�EMBED MSDraw * mergeformat���

�tc \l 2 "Figure 4-3 Process image from Photomap a \"in-place\""�Figure 4-3 Process image from Photomap a “in-place”

Resource destruction

When a destroy request is received the resource-id is immediately disassociated from the resource and the resource's reference count(s) is(are) decremented. For each reference count that goes to zero, the associated resources are freed (for example, memory or colors).

Synchronizing resource access

If multiple Photoflos reference the same resource, the client must synchronize access to the resource (for example, Await completion of the Photoflo writing the resource before beginning execution of a Photoflo reading from the resource). Core resources can be volatile, requiring the client to maintain the data integrity of the resource while the Photoflo is active.

Capability Acquisition

QueryImageExtension

XieReqQueryImageExtension

client-major-version: CARD16

client-minor-version: CARD16

�SYMBOL 174 \f "Symbol"�

server-major-version: CARD16

server-minor-version; CARD16

service-class: XieTypServiceClass

alignment: XieTypAlignment

unconstrained-mantissa: CARD16

unconstrained-max-exp: INT32

unconstrained-min-exp: INT32

constrained-levels: LISTofCARD32

Errors: Alloc

Events: none

QueryImageExtension returns information about the XIE server's capabilities. Each client should use QueryImageExtension to establish version compatibility between client and server prior to making any other XIE request. If a client fails first to establish the desired version using QueryImageExtension, the behavior of other requests is undefined (which generally means that the server will use the version number of its own choice).

Client-major-version and client-minor-version specify which version of the XIE protocol the client would like to use. If the client can support multiple versions, the highest version should be given.

The server-major-version and server-minor-version specify the version of the XIE protocol that the server expects from the client. If the server supports the version requested by the client, this version number will be returned. If the client has requested a higher version than is supported by the server, the server's highest version will be returned. Otherwise, if the client has requested a lower version than is supported by the server, the server's lowest version will be returned. It is the client's responsibility to decide whether or not it can match the server’s version of the protocol.

Service-class specifies the ServiceClass supported by the XIE server�. Alignment specifies the image data alignment restrictions of the server (that is, the alignment of pixels and scanlines).

The following parameters convey the approximate range and granularity of Unconstrained data in the XIE server. For servers that represent Unconstrained data using floating point, unconstrained-mantissa returns the number of bits in the server’s floating point format (including the sign bit). If the server uses fixed point, unconstrained-mantissa is zero. Unconstrained-max-exp returns the largest value n such that 2n - 1 is representable in the server’s Unconstrained data format. Unconstrained-min-exp returns the smallest (most negative) value n such that 2n is representable in the server’s Unconstrained data format.

Constrained-levels provides a hint about how the XIE server might process Constrained data most efficiently. Constrained-levels returns a list of levels that are “recommended” for Constrained data by the server. (a value of zero means 232 levels).

Error	Cause

Alloc	Insufficient resources

�Technique Acquisition

QueryTechniques

XieReqQueryTechniques

technique-group: XieTypTechniqueGroup

�SYMBOL 174 \f "Symbol"�

technique-information: ListofXieTypTechniqueRec

Errors: Alloc, Value

Events: none

QueryTechniques returns information about the standard and private techniques that are supported by the server. The server may be queried for All techniques, all Default techniques, or a group of techniques that are functionally similar (for example, all Geometry techniques).

Technique-group specifies the group of techniques for which the server is to return information.

Technique-information is a list of TechniqueRec entries that are returned in arbitrary order. Each entry contains the following information:

needs-parameters	If true, indicates that the technique requires additional parameters; if false, the technique takes no parameters, or it has parameters that are optional. If parameters are optional, they must be totally omitted, or they must all be supplied.

group 	Identifies which group the technique belongs to.

number	The numeric identifier assigned to the technique (MS bit is zero for standard techniques or one for private techniques).

speed	The server's assessment of the speed of this technique relative to other techniques in the same group (0 :== slowest, 255 :== fastest).

name	The XIE compliant technique name string of the form:� <STANDARD-TECHNIQUE-NAME> or�_<ORGANIZATION-NAME>_<PRIVATE-TECHNIQUE-NAME>

The technique number is supplied to pipeline elements to specify a desired algorithm or technique. While numbers for standard techniques can be hard-coded (for example, defined in an include file), numbers for private techniques must be obtained using the QueryTechniques protocol request prior to their use.

Error	Cause

Alloc	Insufficient resources

Value	Unknown technique-group

A complete description of each technique and its parameters is given in Appendix A. A summary of standard techniques itemized by service class can be found in Appendix B. Numbers assigned to standard techniques are encoded in Appendix C.

�ColorList

CreateColorList

XieReqCreateColorList

color-list: XieTypColorList

Errors: Alloc, IDChoice

Events: none

CreateColorList creates an unpopulated server resource that can be used to store the list of colors allocated by a ConvertToIndex element. The COLORMAP allocations that are recorded in a ColorList belong to the client that executed the Photoflo that populated the resource (this is not necessarily the same client that created the ColorList). A ColorList cannot be the target of more than one Active Photoflo at a time.

Color-list is the client supplied ColorList identifier to be assigned to this resource.

Color-list is populated (or repopulated) with new COLORMAP allocations via a ConvertToIndex element as the Photoflo executes. The contents of color-list may be queried using QueryColorList.

The client may explicitly purge all allocated cells from color-list using PurgeColorList. The client may cause an implicit deallocation of cells from color-list by making it the target of a Photoflo and commencing its execution. An implicit purge also takes place if the COLORMAP referenced by color-list is freed or if the client that owns the cells exits (that is, the client that populated color-list).

Color-list can be destroyed using DestroyColorList.

Error	Cause

Alloc	Insufficient resources

IDChoice	Invalid color-list

DestroyColorList

XieReqDestroyColorList

color-list: XieTypColorList

Errors: ColorList

Events: none

DestroyColorList disassociates the resource-id from color-list and decrements its reference count. If there are no other references, it frees colors held in color-list and, then, destroys the ColorList identified by color-list.

Error	Cause

ColorList	Invalid color-list

�PurgeColorList

XieReqPurgeColorList

color-list: XieTypColorList

Errors: Access, ColorList

Events: none

PurgeColorList frees the colors from the ColorList identified by color-list.

Error	Cause

Access	Attempt to purge colors when color-list is being written by a Photoflo

ColorList	Invalid color-list

QueryColorList

XieReqQueryColorList

color-list: XieTypColorList

�SYMBOL 174 \f "Symbol"�

colormap: COLORMAP

colors: LISTofCARD32

Errors: Alloc, ColorList

Events: none

QueryColorList returns a list of colors allocated by a ConvertToIndex element.

Color-list is the ColorList resource to be queried. Colormap is the COLORMAP from which the colors were allocated. Colors is the list of allocated COLORMAP indices. When there are no colors in color-list, the value zero (0) is returned for colormap, and the list of colors is of length zero.

Error	Cause

Alloc	Insufficient resources

ColorList	Invalid color-list

Notes:

�SYMBOL 183 \f "Symbol" \s 10 \h�	The COLORMAP was originally supplied by the client as a ConvertToIndex parameter.

�SYMBOL 183 \f "Symbol" \s 10 \h�	The returned colors are owned by the server and, therefore, should not be freed via core X protocol requests (for example, FreeColors)

�SYMBOL 183 \f "Symbol" \s 10 \h�	The allocated colors can be freed by:

	– Issuing a PurgeColorList or DestroyColorList request

	– Commencing execution of a Photoflo that targets color-list

	– Freeing colormap

	– Shutting down the client that populated color-list

�LUT

CreateLUT

XieReqCreateLUT

lut: XieTypLUT

Errors:: Alloc, IDChoice

Events: none

CreateLUT creates a server resource that is used as a lookup table by the Point element. A lookup table consists of one or three single dimension arrays, each long enough to contain an entry for all possible pixels values in the image data to which the Point element will be applied.

Lut is the client supplied LUT identifier to be assigned to this resource.

The LUT is populated (or repopulated) with lookup table entries after the successful execution of a Photoflo containing an ExportLUT element that targets lut. Lookup table data can be imported into a Photoflo using an ImportLUT element. These data can be used by Point, and they can be exported to the client with the aid of an ExportClientLUT element.

Lut can be destroyed using DestroyLUT.

Error	Cause

Alloc	Insufficient resources

IDChoice	Invalid lut

A LUT can be populated with a simple ExecuteImmediate(ImportClientLUT, ExportLUT) Photoflo. PutClientData is then used to transport the lookup table entries. See ImportClientLUT and Point for further information on LUTs

DestroyLUT

XieReqDestroyLUT

lut: XieTypLUT

Errors: LUT

Events: none

DestroyLUT disassociates the resource-id from lut and decrements its reference count. If there are no other references, it destroys the LUT identified by lut.

Error	Cause

LUT	Invalid lut

�Photomap

CreatePhotomap

XieReqCreatePhotomap

photomap: XieTypPhotomap

Errors: Alloc, IDChoice

Events: none

Attribute	Value

class	Undefined (see text)

type	Undefined (see text)

width	Undefined (see text)

height	Undefined (see text)

levels	Undefined (see text)

CreatePhotomap creates a server resource that is used to store image data. Photomap data may be rendered for display or used as input to control or modify the rendition of another image.

Photomap is the client supplied Photomap identifier to be assigned to this resource. Photomap attributes are defined when a Photoflo containing an ExportPhotomap element populates photomap with data.

The Photomap is populated (or repopulated) with image data after the successful execution of a Photoflo containing an ExportPhotomap element that targets photomap. Photomap data can be imported into a Photoflo for rendition or control purposes using an ImportPhotomap element. It can also be exported back to the client with the aid of an ExportClientPhoto element. Photomap attributes can be queried using QueryPhotomap. Photomap can be destroyed using DestroyPhotomap.

Error	Cause

Alloc	Insufficient resources

IDChoice	Invalid photomap

A Photomap can be populated with a simple ExecuteImmediate(ImportClientPhoto, ExportPhotomap) Photoflo. PutClientData is then used to transport the image data. See ImportClientPhoto and ExportPhotomap and their associated techniques for more information regarding the format of image data.

DestroyPhotomap

XieReqDestroyPhotomap

photomap: XieTypPhotomap

Errors: Photomap

Events: none

DestroyPhotomap disassociates the resource-id from photomap and decrements its reference count. If there are no other references, it destroys the Photomap identified by photomap.

Error	Cause

Photomap	Invalid photomap

QueryPhotomap

XieReqQueryPhotomap

photomap: XieTypPhotomap

�SYMBOL 174 \f "Symbol"�

populated: BOOL

data-type: XieTypDataType

data-class: XieTypDataClass

width: XieTypTripletofCARD32

height: XieTypTripletofCARD32

levels: XieTypLevels

decode: XieTypDecodeTechnique

Errors: Alloc, Photomap

Events: none

QueryPhotomap returns the queriable attributes of a Photomap.

Photomap is the Photomap to be queried.

Populated is a Boolean that indicates that photomap has been populated with attributes and data. If populated is false, all remaining fields contain zeros. Data-type shows whether the number of quantization levels is valid (Constrained) or unknown (Unconstrained). Data-class is the class of image data (that is, SingleBand or TripleBand). Width and height are the dimensions of the image data in pixels (per band). Levels is the potential dynamic range or number of quantization levels (per band). Decode is the DecodeTechnique that will be required to interpret or decompress the data.

If data-type is Unconstrained, the returned values for levels are zeros. If data-class is SingleBand, width, height, and levels for unused bands are returned as zeros.

Error	Cause

FloAlloc	Insufficient resources

Photomap	Invalid photomap

�ROI

CreateROI

XieReqCreateROI

roi: XieTypROI

Errors: Alloc, IDChoice

Events: none

CreateROI creates a server ROI (Rectangles-Of-Interest) resource. A ROI resource may be imported into a Photoflo and used in conjunction with a ProcessDomain specification to restrict processing to a subset of image data. The ROI, when populated, will contain a list-of-rectangles (of type Rectangle).

Roi is the client supplied ROI identifier to be assigned to this resource.

The ROI is populated (or re-populated) with a list-of-rectangles after the successful execution of a Photoflo containing an ExportROI element that targets roi. An ROI resource does not have any queriable attributes.

ROI data can be imported into a Photoflo using an ImportROI element. This data, which is used by several of the PhotoElements defined in chapters 7 and 8, can also be exported back to the client with the aid of an ExportClientROI element.

Roi can be destroyed using DestroyROI.

Error	Cause

Alloc	Insufficient resources

IDChoice	Invalid roi

An ROI can be populated with a simple ExecuteImmediate (ImportClientROI, ExportROI) Photoflo. PutClientData is then used to transport the list-of-rectangles.

If the client uses ExportClientROI to retrieve a list-of-rectangles from the server, the number of rectangles and the content of the list that is returned may differ from original list that was obtained from the client, but its contents will be logically equivalent.

DestroyROI

XieReqDestroyROI

roi: XieTypROI

Errors: ROI

Events: none

DestroyROI disassociates the resource-id from roi and decrements its reference count. If there are no other references, it destroys the ROI identified by roi.

Error	Cause

ROI	Invalid roi

�	ServiceClasses defined in this document include: Full XIE and DIS.

Resources 4-�page�10�

