�seq chapter \h��seq chapter \h��seq chapter \h��seq chapter \h��seq chapter�5�

Pipelined Processing

What is a Photoflo?

A Photoflo is a directed acyclic graph. Each node has zero or more input connections and zero or one output connection. A node specifies the source for an input by identifying another upstream node. A node's output connection can be used as a source for any number of downstream input connections. A Photoflo is permitted to have taps and multiple final destinations.

The protocol representation of a Photoflo is a list of elements. Because the entire list is sent to the server as a single protocol request, the total length of the list, including its protocol header, must fit within a maximum size protocol message (see, maximum-request-length, established by X11 connection setup).

Each element of the Photoflo is identified by its position in the list. This position, or index, is called a Phototag. The first element in the list is index one (1). The order of elements in the list does not have to match the Photoflo topology because there is no implicit coupling of output N to input N+1. The source for each element's input connections are explicitly specified using the Phototags of upstream elements.

There are three types of elements. Import elements bring data into the Photoflo from external resources or the client, have one output connection, and no input connections. Process elements perform some operation on the data (for example, convolution), have one or more input connections, and exactly one output connection. Export elements emit data from the Photoflo to external resources or to the client, have one input connection, and no output connections. A Photoflo should include at least one import element and one export element to be useful.

�
Import�
Process�
Export�
�
Number of input connections�
none�
one or more�
one�
�
Number of output connections�
one�
one�
none�
�
�
�EMBED MSDraw * mergeformat����
�EMBED MSDraw * mergeformat����
�EMBED MSDraw * mergeformat����
�

�tc \l 2 "Figure 5-1 Photoflo element input and output connections"�Figure 5-1 Photoflo element input and output connections

All data external to the Photoflo (internal server data and client data) are accessed through import and export elements. Therefore, for purposes of Photoflo definition and modification, X and XIE resource-ids are considered element parameters rather than element sources or destinations. No element is permitted to reference a Photoflo for any reason. It is also an error to specify an export element as an input to any element.

Figure 5-2 illustrates several capabilities of Photoflo construction. An RGB image is imported from the client. This image is saved in a Photomap for later reuse. The blue band is selected and translated (to correct registration). This result is exported back to the client. A BandCombine element associates a single band imported from a Photomap (the red band), with the green band selected from the initial RGB image, and the reregistered blue band. The combined image is then converted to index data and exported to a PIXMAP and to a WINDOW. The color allocation results are saved in a ColorList.

�EMBED MSDraw * mergeformat���

�tc \l 2 "Figure 5-2 Example Photoflo"�Figure 5-2 Example Photoflo

Two kinds of Photoflos

There are stored Photoflos and immediate Photoflos. Stored Photoflos persist beyond execution and may be modified or totally redefined prior to subsequent executions. Immediate Photoflos are ephemeral – a single protocol request defines and begins its execution; then, it is automatically destroyed upon completion. Services common to both types of Photoflos are:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Event notification

�SYMBOL 183 \f "Symbol" \s 10 \h�	Error notification

�SYMBOL 183 \f "Symbol" \s 10 \h�	Put data: send data from the client into a Photoflo

�SYMBOL 183 \f "Symbol" \s 10 \h�	Get data: return data exported from a Photoflo back to the client

�SYMBOL 183 \f "Symbol" \s 10 \h�	Query: return information about the Photoflo

�SYMBOL 183 \f "Symbol" \s 10 \h�	Await: block future client requests until the Photoflo completes

�SYMBOL 183 \f "Symbol" \s 10 \h�	Abort: terminate Photoflo execution prematurely

Multi-client Photoflos

A stored Photoflo can be executed by a client other than the client that created it. It is also possible that the Photoflo may reference resources that belong to other clients, and data may be supplied and retrieved by various clients. The following rules apply when multiple clients are involved in the execution of a Photoflo:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Errors that stem from executing Photoflo elements are sent to the client executing the Photoflo.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Errors that stem from executing client data put or get requests go to the client executing the request.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Colors recorded in a ColorList resource belong to the client executing the Photoflo.

�SYMBOL 183 \f "Symbol" \s 10 \h�	PhotofloDone events are sent to the client executing the Photoflo.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Multiple clients can Await completion of a given Photoflo.

Photoflo States

Stored Photoflos enter the Inactive state upon creation and transition to the Active state when execution is requested. Immediate Photoflos are both created and made Active by the execute request. A Photoflo remains Active until all ImportClient elements have received a final flag, all export elements have finished their task, and all data exported for the client have been retrieved, or an error prevents further progress, or the client issues an Abort request. After execution stored Photoflos return to the Inactive state, whereas immediate Photoflos are destroyed (become Nonexistent). The client may destroy a stored Photoflo at any time.

	Stored Photoflo	Immediate Photoflo

	�EMBED MSDraw * mergeformat���	�EMBED MSDraw * mergeformat���

�tc \l 2 "Figure 5-3 Photoflo states"�Figure 5-3 Photoflo states

Flo'ing Data to a Resource

Besides image rendition and display, immediate or stored Photoflos are also used to populate XIE resources with data and attributes. Some form of processing may be applied to the data, but in the simplest case, a two element import/export Photoflo is generally sufficient.

Also all types of ephemeral client data may be imported and used directly by a Photoflo, without the necessity of first storing it in an XIE resource. For example, simple transport of an image (compressed or uncompressed) to a WINDOW is expected.

Import element	Export element	purpose

ImportClientPhoto	ExportPhotomap	Populate a Photomap resource

ImportClientLUT	ExportLUT	Populate a LUT resource (lookup table)

ImportClientROI	ExportROI	Populate a ROI resource (list-of-rectangles)

ImportClientPhoto	ExportDrawablePlane	Display a bitonal image in a WINDOW

ImportClientPhoto	ExportDrawable	Display a COLORMAP index image in a WINDOW

ImportPhotomap	ExportDrawablePlane	Copy an existing bitonal image to a PIXMAP

�tc \l 2 "Table 5-1 Examples of two element Photoflo usage"�Table 5-1 Examples of two element Photoflo usage

Name space

For requests that only apply to stored Photoflos (Create, Modify, Redefine, Execute, and Destroy), the Photoflo is identified solely by its resource-id. For all other requests, events, and errors that reference a Photoflo, the Photoflo is identified using type Executable, which is a tupple identifying the name-space and flo-id of the Photoflo.

Name-space for stored Photoflos is always ServerIDSpace (the value zero), and flo-id is the Photoflo's resource-id.

Name-space for immediate Photoflos is a Photospace resource-id, and flo-id is a 32-bit value that uniquely identifies the instance of this Photoflo.

CreatePhotospace

XieReqCreatePhotospace

name-space: XieTypPhotospace

Errors: Alloc, IDChoice

Events: none

CreatePhotospace defines a name-space in which immediate Photoflos may be executed. Any client that needs to instantiate immediate Photoflos must create at least one Photospace.

Name-space is the resource-id for a new Photospace that can be used to accommodate immediate Photoflos instantiated by this client.

Error	Cause

Alloc	Insufficient resources

IDChoice	Invalid name-space

DestroyPhotospace

XieReqDestroyPhotospace

name-space: XieTypPhotospace

Errors: Photospace

Events: none

DestroyPhotospace will destroy a Photospace. Prior to destroying the Photospace, all Photoflos that are currently Active in the Photospace will be aborted, exported data pending client retrieval will be freed, and the Photoflos will be destroyed.

Name-space is the Photospace to be destroyed.

Error	Cause

Photospace	Invalid name-space

�
Immediate Photoflos

ExecuteImmediate

XieReqExecuteImmediate

instance: XieTypExecutable

notify: BOOL

element-list: LISTofXieTypPhotoElement

Errors: FloAlloc, FloID, FloElement, Flo . . .

Events: PhotofloDone

ExecuteImmediate defines and begins execution of an immediate Photoflo. Execution is asynchronous. The Photoflo is destroyed after execution completes and all data exported for the client have been retrieved. It is legal to have multiple unique instances of immediate Photoflos (and stored Photoflos) Active concurrently.

Instance specifies the Photospace/flo-id tupple by which this Photoflo will be identified in other requests, events, or errors. Notify specifies whether a PhotofloDone event should be sent upon completion. Element-list defines the import, process, and export elements to be executed.

If any clients have blocked themselves during the execution of the Photoflo (see Await), they will become unblocked when photoflo's state changes from Active to Nonexistent. If notify is true, a PhotofloDone event is also generated by this transition. Finally, this instance is destroyed.

Error	Cause

FloAlloc	Insufficient resources

FloID	Invalid Executable instance

FloElement	Invalid element-type(s) in element-list

Flo . . .	See element descriptions for errors detected by elements in element-list

See ExecutePhotoflo for a general outline of the execution phases of a Photoflo.

�
Stored Photoflos

The following requests are used to: create, modify, redefine, execute, and destroy stored Photoflos. In these requests the Photoflo instance is identified only by its resource-id. However, errors and events generated due to these requests identify the instance using type Executable (the name-space is ServerIDSpace and the flo-id is the Photoflo's resource-id).

CreatePhotoflo

XieReqCreatePhotoflo

photoflo: XieTypPhotoflo

element-list: LISTofXieTypPhotoElement

Errors: Alloc, IDChoice, FloAlloc, FloElement, Flo . . .

Events: none

CreatePhotoflo creates a stored Photoflo resource, defines its complete contents, and sets it in the Inactive state.

Photoflo is a new resource-id by which this Photoflo will be identified in other requests, events, or errors. Element-list defines the import, process, and export elements to be stored for execution.

Although resources and parameters are specified at creation, no action is taken to validate them at that time. CreatePhotoflo will only store the Photoflo's definition and parameter validation is delayed until an execute request is received.

Error	Cause

Alloc	Insufficient resources for photoflo

IDChoice	Invalid photoflo

FloAlloc	Insufficient resources for element-list

FloElement	Invalid element-type(s) in element-list

Flo . . .	See element descriptions for errors detected by elements in element-list

DestroyPhotoflo

XieReqDestroyPhotoflo

photoflo: XieTypPhotoflo

Errors: Photoflo

Events: none

DestroyPhotoflo will destroy a stored Photoflo. If photoflo was Active, it is aborted, and all exported data that are pending client retrieval are freed prior to destroying photoflo.

Photoflo is the Photoflo to be destroyed.

Error	Cause

Photoflo	Invalid photoflo

See also Abort, which terminates a Photoflo’s execution without destroying it.

ExecutePhotoflo

XieReqExecutePhotoflo

photoflo: XieTypPhotoflo

notify: BOOL

Errors: Photoflo, FloAccess, FloAlloc

Events: PhotofloDone

ExecutePhotoflo changes a stored Photoflo to the Active state. Execution is asynchronous. The Photoflo returns to the Inactive state when execution completes and all data exported for the client have been retrieved. It is legal to have multiple stored Photoflos (and immediate Photoflos) Active concurrently.

Photoflo is the Photoflo to be executed. Notify specifies whether a PhotofloDone event should be sent upon completion.

Conceptually, Photoflo execution is broken into at least three phases�:

1.	Initialization:

a.	The Photoflo state is set Active.

b.	Bind external inputs (XIE reference counts are incremented).

c.	Imported attributes are propagated downstream.

d.	Attributes and element parameter values are validated.

e.	Lookup external destinations.�

f.	Create receptors for data to be exported to XIE resources.2

2.	Execution:

a.	Data from server resources, if any, is pulled into the Photoflo.

b.	Data from the client, if any, is pushed into the Photoflo (PutClientData).

c.	Processed data is exported to server resources as required.2

d.	Processed data is made available for client retrieval (GetClientData).�

3.	Completion:

a.	Unbind external inputs.

b.	Join exported data with associated XIE resources2 and unbind remaining resources.

c.	Report any error that occurred.

d.	If notify is true, send a PhotofloDone event.

e.	If Await has been requested, unblock client execution.

f.	The Photoflo state is set Inactive.

If an error occurs during any phase, the client is notified and the Photoflo is terminated. Other events can be sent by individual elements as specified in their descriptions.

Error	Cause

Photoflo	Invalid photoflo

FloAccess	Attempt to execute photoflo when it is already Active

FloAlloc	Insufficient resources

Flo . . .	See element descriptions for errors detected by photoflo elements

ModifyPhotoflo

XieReqModifyPhotoflo

photoflo: XieTypPhotoflo

start: XieTypPhototag

element-list: LISTofXieTypPhotoElement

Errors: Photoflo, FloAlloc, FloElement, FloSource, Flo . . .

Events: none

ModifyPhotoflo allows element parameters of a stored Photoflo to be modified.

Photoflo is the Photoflo to be modified. Start specifies the Phototag where element replacement is to begin. Element-list is a sequential list of elements that will replace existing elements.

ModifyPhotoflo allows parameter modification only. No topological changes are allowed. Elements cannot be deleted, inserted, or appended.

Error	Cause

Photoflo	Invalid photoflo

FloAccess	Attempt to change photoflo while it is Active

FloAlloc	Insufficient resources

FloElement	Attempt to change element-type(s) in element-list�Attempt to append additional element(s) to photoflo

FloSource	Invalid start�Attempt to change Phototag input connections in element-list

Flo . . .	See element descriptions for errors detected by elements in element-list

Multiple ModifyPhotoflo requests can be sent in order to edit individual elements, but, for greater efficiency and particularly when repetitive modify/execute requests are expected, elements can be grouped such that a single ModifyPhotoflo can perform multiple element modifications.

RedefinePhotoflo

XieReqRedefinePhotoflo

photoflo: XieTypPhotoflo

element-list: LISTofXieTypPhotoElement

Errors: FloAccess, Photoflo. FloAlloc, FloElement, Flo . . .

Events: none

RedefinePhotoflo allows all elements of a stored Photoflo to be removed and replaced with a new list. There are no restrictions on changing element types, Phototag sources, or the list's size.

Photoflo is the Photoflo to be redefined. Element-list is a sequential list of elements that will replace all existing elements.

Error	Cause

Photoflo	Invalid photoflo

FloAccess	Attempt to change photoflo while it is Active

FloAlloc	Insufficient resources

FloElement	Invalid element-type(s) in element-list

Flo . . .	See element descriptions for errors detected by elements in element-list

RedefinePhotoflo may be considered a hint that the new list of elements is in some way similar to those being replaced. RedefinePhotoflo can also be used as a means to conserve resource-ids.

Sending Data to the Server

PutClientData

XieReqPutClientData

instance: XieTypExecutable

element: XieTypPhototag

final: BOOL

band-number: CARD8

data: XieTypDataStream

Errors: FloAlloc, FloAccess, FloID, FloElement, FloValue

Events: none

PutClientData sends a stream of data to an Active Photoflo. Because the complete data object may be larger than can fit in a single protocol request, XIE allows the stream to be segmented; the last segment is signaled with a final flag.

Instance and element identify the Photoflo and specific ImportClient element to receive the data. Final specifies that this is the last (or only) segment of data to be sent.

If element is a band oriented element, band-number specifies which client band of data is being sent (interleave and band-order specified for the ImportClient element or technique determine how client bands are mapped to server bands).

Data is a counted list of bytes that comprises the data stream. The organization and contents of the stream must match the parameters given to the ImportClient element or the results are undefined.

An arbitrary amount of image data can be sent per request, whereas for nonimage data one or more complete aggregates must be sent per request (for example, one or more LUT array entries).

If too many data are sent (for example, too many rectangles, or too many scanlines), the unwanted data are discarded. It is an error, however, to send too few data prior to signaling final.

Error	Cause

FloAlloc	Insufficient resources

FloAccess	Executable instance not Active

FloID	Invalid Executable instance

FloElement	Invalid Phototag or element-type specified by element

FloValue	Invalid band-number �For nonimage data, data contains a partial aggregate

All types of client data (list-of-rectangles, lookup tables, and images) are transported to the server using PutClientData. Tiled images can be transported using multiple ImportClientPhoto elements, which in turn feed a PasteUp element.

�
Retrieving Data from the Server

GetClientData

XieReqGetClientData

instance: XieTypExecutable

element: XieTypPhototag

max-bytes: CARD32

terminate: BOOL

band-number: CARD8

�SYMBOL 174 \f "Symbol"�

new-state: XieTypExportState

data: XieTypDataStream

Errors: FloAlloc, FloAccess, FloID, FloElement, FloValue

Events: none

GetClientData retrieves data from an ExportClient element within an Active Photoflo. Data are returned in a contiguous read-once byte stream, which can be requested in segments that are limited in size by the amount the client desires or the amount available. The format of the data depends on the parameters given to the ExportClient element from which the data are requested.

Instance and element identify the Photoflo and specific ExportClient element from which to retrieve data. Max-bytes specifies the maximum number of data bytes that can be sent to the client. Terminate is a Boolean that can be used to indicate that no more data are wanted after this request has been satisfied. Band-number specifies which client band is to be retrieved (interleave and band-order parameters specified for the ExportClient element technique determine how server bands are mapped to client bands).

New-state indicates the data availability status of the ExportClient element after satisfying the current request. Data is the counted list of bytes that is returned.

If terminate is true, new-state will be ExportDone (the ExportClient element will discard any remaining data and stop producing additional data).

If new-state is ExportEmpty and notify (for the ExportClient element) was specified as NewData, another ExportAvailable event will be sent when additional data become availabile.

If the request is sent to an ExportClient element that either does not have any data, was terminated by a previous GetClientData request, or has already returned all its data (ExportDone sent), the request will return a zero length data stream.

Image data are always retrieved from the server as a byte stream, whereas nonimage data are always returned by the server as one or more complete aggregates (that is, max-bytes is effectively rounded down by the server to the match the nearest aggregate size).

Error	Cause

FloAlloc	Insufficient resources

FloAccess	Executable instance not Active

FloID	Invalid Executable instance

FloElement	Invalid Phototag or element-type specified by element

FloValue	Invalid band-number

Servers are required to buffer a nonzero amount of data per ExportClient element. Beyond that point execution may be suspended until the client retrieves sufficient data.

Terminate may be used to prematurely terminate output from an ExportClient element. If terminate is not used, all data produced by the ExportClient element must be retrieved before the Photoflo can leave the Active state.

�
Status

QueryPhotoflo

XieReqQueryPhotoflo

instance: XieTypExecutable

�SYMBOL 174 \f "Symbol"�

state: XieTypPhotofloState

data-expected: LISTofXieTypPhototag

data-available: LISTofXieTypPhototag

Errors: FloAlloc

Events: none

QueryPhotoflo will return the current status of a Photoflo.

Instance identifies the Photoflo that is being queried. State indicates the state of the Photoflo. Data-expected is a list of ImportClient elements that are expecting data from the protocol stream. Data-available is a list of ExportClient elements from which data for the protocol stream are available. Either or both of these lists may be of length zero.

Specifying an unknown or invalid instance will result in a reply state of nonexistent and zero length data-expected and data-available lists.

Error	Cause

FloAlloc	Insufficient resources

�
Synchronization

Await

XieReqAwait

instance: XieTypExecutable

Errors: FloAlloc

Events: none

Await blocks all further requests for this client connection from being honored by the server while the Photoflo is Active. When the Photoflo transitions from the Active state, blocked requests are allowed to be processed in the order received.

Instance identifies the Active Photoflo that is to block requests from the client issuing the Await. If instance is invalid or the Photoflo is not Active no action is taken; it is not an error, and the client is not blocked.

Error	Cause

FloAlloc	Insufficient resources

If a Photoflo has no ExportClient elements, the client can call Await. If a Photoflo has exactly one ExportClient element, the client can just read bytes or be event-driven. If a Photoflo has multiple ExportClient elements, the client should be event-driven.

Warning: Calling Await before sending all import data (including a final flag) or before retrieving all export data will block the client from sending or retrieving the remaining data. This will also prevent completion of the Photoflo and prevent any and all protocol requests from this client from being honored. This deadlock can only be broken by another client completing or aborting the Photoflo (to release the Await) or by breaking the client connection.

Termination

Abort

XieReqAbort

instance: XieTypExecutable

Errors: none

Events: none

Abort will prematurely terminate execution of a Photoflo.

Instance identifies the Photoflo that is to be aborted. Any output from the Photoflo that is pending client retrieval is freed. If instance is a stored Photoflo it will return to the Inactive state. Immediate Photoflos are destroyed.

If instance is invalid or the Photoflo is not Active no action is taken; it is not an error, and nothing is destroyed.

�	Optimization, an additional phase, would be roughly associated with the initialization phase.

�	For LUT, Photomap, and ROI resources refer to page 4-1 “Binding Resources to Photoflos”.

�	Completion is contingent upon all such data being retrieved by the client.

Pipelined Processing 5-�page�12�

