XIElib

Specification





Gary Rogers

AGE Logic, Inc.



This document contains reference pages for each XIElib function.

Revision History



Gary Rogers, AGE Logic, Inc., Public Review Draft, April, 1994



Syd Logan, NetManage, Inc., Minor technical edits, correction of errors, October, 1996

�

Copyright © 1994 AGE Logic, Inc.





Permission to use, copy, modify, distribute, and sell this documentation for any purpose is hereby granted without fee, provided that the above copyright notices and this permission notice appear in all copies. AGE Logic makes no representations about the suitability for any purpose of the information in this document. This documentation is only a draft standard of the X consortium and is therefore subject to change.

�

Acknowledgments



XIElib was provided by the X Consortium, with cooperation from AGE Logic, Inc. of San Diego, CA. It is a C subroutine library that provides a low level C binding of all features that are defined by Version 5.0 of the XIE Protocol.



Various parts of the text were borrowed from the Version 5.0 XIE Protocol Reference Manual, edited by Bob Shelley of AGE Logic, Inc.. Bob provided suggestions and comments that were invaluable in preparing this document. Dean Verheiden and Syd Logan, both of AGE Logic, Inc., graciously volunteered to review the original manuscript.



The author would like to thank Ralph Mor of the X Consortium for his careful review of this document. Ralph designed the XIElib and wrote its sample implementation, and his technical advice was indispensable. Adrian Nye, Editor for O'Reilly & Associates, Inc., provided substantive assistance in the preparation of this document, for which the author is very thankful.

�

Table of Contents

�TOC \f�Introduction	1

Startup Functions

XieInitialize	3

XieQueryTechniques	5

XieCreateColorList	8

XieDestroyColorList	9

XiePurgeColorList	10

XieQueryColorList	11

LUT Functions

XieCreateLUT	12

XieDestroyLUT	13

Photomap Functions

XieCreatePhotomap	14

XieDestroyPhotomap	15

XieQueryPhotomap	16

ROI Functions

XieCreateROI	18

XieDestroyROI	19

Photoflo Functions

XieCreatePhotospace	20

XieDestroyPhotospace	21

XieExecuteImmediate	22

XieAllocatePhotofloGraph	24

XieCreatePhotoflo	25

XieDestroyPhotoflo	27

XieExecutePhotoflo	28

XieModifyPhotoflo	29

XieRedefinePhotoflo	31

XieQueryPhotoflo	32

Client Data Functions

XiePutClientData	34

XieGetClientData	36

Abort and Await Functions

XieAbort	38

XieAwait	39

Photoflo Element Functions

XieFloImportClientLUT	40

XieFloImportClientPhoto	43

XieFloImportClientROI	46

XieFloImportDrawable	47

XieFloImportDrawablePlane	49

XieFloImportLUT	51

XieFloImportPhotomap	52

XieFloImportROI	54

XieFloArithmetic	55

XieFloBandCombine	58

XieFloBandExtract	60

XieFloBandSelect	62

XieFloBlend	63

XieFloCompare	66

XieFloConstrain	69

XieFloConvertFromIndex	71

XieFloConvertFromRGB	73

XieFloConvertToIndex	75

XieFloConvertToRGB	78

XieFloConvolve	80

XieFloDither	83

XieFloGeometry	85

XieFloLogical	88

XieFloMatchHistogram	91

XieFloMath	93

XieFloPasteUp	95

XieFloPoint	97

XieFloUnconstrain	99

XieFloExportClientHistogram	100

XieFloExportClientLUT	102

XieFloExportClientPhoto	104

XieFloExportClientROI	106

XieFloExportDrawable	108

XieFloExportDrawablePlane	110

XieFloExportLUT	112

XieFloExportPhotomap	114

XieFloExportROI	116

Technique Functions

XieTecColorAllocAll	117

XieTecColorAllocMatch	118

XieTecColorAllocRequantize	120

XieTecRGBToCIELab	121

XieTecRGBToCIEXYZ	123

XieTecRGBToYCbCr	125

XieTecRGBToYCC	127

XieTecCIELabToRGB	129

XieTecCIEXYZToRGB	132

XieTecYCbCrToRGB	134

XieTecYCCToRGB	136

XieTecClipScale	138

XieTecConvolveConstant	140

XieTecDecodeUncompressedSingle	141

XieTecDecodeUncompressedTriple	143

XieTecDecodeG31D	146

XieTecDecodeG32D	148

XieTecDecodeG42D	150

XieTecDecodeTIFF2	152

XieTecDecodeTIFFPackBits	154

XieTecDecodeJPEGBaseline	156

XieTecDecodeJPEGLossless	158

XieTecDitherOrdered	160

XieTecEncodeUncompressedSingle	161

XieTecEncodeUncompressedTriple	163

XieTecEncodeG31D	166

XieTecEncodeG32D	168

XieTecEncodeG42D	170

XieTecEncodeServerChoice	172

XieTecEncodeJPEGBaseline	174

XieTecEncodeJPEGLossless	177

XieTecEncodeTIFF2	179

XieTecEncodeTIFFPackBits	181

XieTecGeomAntialiasByArea	183

XieTecGeomAntialiasByLowpass	185

XieTecGeomGaussian	187

XieTecGeomNearestNeighbor	189

XieTecHistogramGaussian	191

XieTecHistogramHyperbolic	192

XieTecWhiteAdjustCIELabShift	194

Free Functions

XieFreeTechniques	195

XieFreePhotofloGraph	196

XieFreeEncodeJPEGBaseline	197

XieFreeEncodeJPEGLossless	198

XieFreePasteUpTiles	199

XIElib Events

ColorAlloc Event	Events-1

DecodeNotify Event	Events-2

ExportAvailable Event	Events-3

ImportObscured Event	Events-4

PhotofloDone Event	Events-5

XIElib Errors

Resource Errors	Errors-1

Photoflo Errors	Errors-2

��

� XIElib - Function Group	Introduction 

�tc "Introduction " \l 1�

The following pages describe the format of the reference pages for each XIElib function. Every effort has been made to maintain consistency with the format used in Xlib Reference Manual for Version 11 (A. Nye, ed., O'Reilly & Associates, Inc., 1992). The reader is also referred to X Image Extension Protocol Reference Manual, Version 5.0 (R. Shelley, ed., 1994) for a complete definition of the XIE protocol.

Name

XieFunctionName - brief description of the function

Syntax

The Syntax section presents the calling syntax for the routine, including the declarations of the arguments and the return type. For example:



returntype XieFunctionName (arg1, arg2_ret)

type1 arg1;

type2 *arg2_ret;

Arguments

The Arguments section describes each of the arguments used by the function. There are two sorts of arguments: arguments to specify data to the function and arguments that return data from the function. An example of each type follows:



arg1	Specifies information for XieFunctionName. The description for this type of argument always starts with the word "Specifies."

arg2_ret	Returns information from XieFunctionName. The description for this type of argument always starts with the word "Returns."

Returns

This section is present when XieFunctionName returns a value and describes what is returned.

Description

The Description section describes what the function does, what it returns, and what events or side effects it causes. It also may contain pertinent definitions, algorithms, and tables. A description of each XIE event structure is presented in the section XIElib Events.

Output Attributes

This section, which presents a table of element output attributes, is present if XieFloFunctionName specifies an element that produces output data.



Class	Data class of output data� - single band (achromatic or index)� - triple band (trichromatic)

Type	Data type� - constrained (quantization levels is Levels)� - unconstrained (quantization levels is unknown)

Width	Width of output (in pixels per band)

Height	Height of output (in pixels per band)

Levels	Depends on type� - constrained: number of quantization levels� - unconstrained: unknown

Structures

The Structures section contains the C definitions of the XIE-specific data types used by XieFunctionName as arguments or return values. It also contains definitions of important constants used by the function.

Errors

The Errors section is present when an action of XieFunctionName could generate an error. A table of errors that can be generated and their causes is presented. The full list of errors is presented in the section XIElib Errors.

See Also

This section lists other functions that contain information related to XieFunctionName.

 XIElib - Startup Functions	XieInitialize 

�tc "Startup Functions " \l 1�

�tc "XieInitialize " \l 2�

init.c

Status XieInitialize (

    Display *		/* display */,

    XieExtensionInfo **	/* extinfo_ret */

);

Name

XieInitialize - initialize the XIE extension

Syntax

Status XieInitialize (display, extinfo_ret)

Display *display;

XieExtensionInfo **extinfo_ret;

Arguments

display	Specifies a connection to an X server.

extinfo_ret	Returns the pointer to an XieExtensionInfo structure, which contains information about the XIE server's capabilities.

Returns

Zero on failure, nonzero on success.

Description

XieInitialize initializes the interface to the XIE extension and returns information about the XIE server's capabilities. XieInitialize should be called to establish version compatibility between client and server prior to making any other XIE request.



If successful, XieInitialize allocates and fills the XieExtensionInfo structure as follows:



�SYMBOL 183 \f "Symbol" \s 6 \h�	The server_major_rev and server_minor_rev members are set to specify the highest version of the XIE protocol that the server supports. If the server version is higher than the XIElib version, the server will return the lower version, if it supports it.

�SYMBOL 183 \f "Symbol" \s 6 \h�	The service_class member is set to the service-class supported by the XIE server. Service-class defines the recognized image-processing service sets supported by the X Image Extension standard; the two service classes currently defined are Full, the entire XIE protocol, and DIS, the Document Image Subset, a proper subset of Full XIE. The service_class member can be set to one of the standard values:



xieValFull

xieValDIS



�SYMBOL 183 \f "Symbol" \s 6 \h�	The alignment member is set to the pixel and scanline alignment for image data supported by the server. Values for this member can be either xieValAlignable or xieValArbitrary. xieValAlignable data units must fit evenly within a byte, or they must fill a byte, or fill a multiple of bytes; xieValArbitrary data units may fall at any bit address.

�SYMBOL 183 \f "Symbol" \s 6 \h�	The uncnst_mantissa member is set to the number of bits in the server’s floating-point format (including the sign bit). If the server uses fixed point, uncnst_mantissa is set to zero.

�SYMBOL 183 \f "Symbol" \s 6 \h�	The uncnst_min_exp member is set to the smallest (most negative) value n such that 2n is representable in the server’s unconstrained data format.

�SYMBOL 183 \f "Symbol" \s 6 \h�	The uncnst_max_exp member is set to the largest value n such that 2n - 1 is representable in the server’s unconstrained data format.

�SYMBOL 183 \f "Symbol" \s 6 \h�	The n_cnst_levels member is the number of items in the list cnst_levels.

�SYMBOL 183 \f "Symbol" \s 6 \h�	The items in the list cnst_levels are set to the levels that are “recommended” for constrained data by the server. A value of zero means 232 levels.

�SYMBOL 183 \f "Symbol" \s 6 \h�	The first_event member is set to the value from which subsequent XIE events values are based.

�SYMBOL 183 \f "Symbol" \s 6 \h�	The first_error member is set to the value from which subsequent XIE error values are based.



The memory allocated to extinfo_ret is freed when display is closed via XCloseDisplay; the client should not free this memory.



If not successful, XieInitialize sets **extinfo_ret to NULL.

Structures

typedef struct {

	unsigned server_major_rev;

	unsigned server_minor_rev;

	XieServiceClass service_class;

	XieAlignment alignment;

	int uncnst_mantissa;

	int uncnst_min_exp;

	int uncnst_max_exp;

	int n_cnst_levels;

	unsigned long *cnst_levels;

	int major_opcode;

	int first_event;

	int first_error;

} XieExtensionInfo;



/* Definitions of Extension Name and Version Number */

#define xieMajorVersion	5

#define xieMinorVersion	0

#define xieEarliestMinorVersion	0

#define xieLatestMinorVersion	0



/* Definitions of ServiceClass */

#define xieValFull	1

#define xieValDIS	2



/* Definitions of Alignment */

#define xieValAlignable	1

#define xieValArbitrary	2

Errors



See Also



 XIElib - Startup Functions	XieQueryTechniques 

�tc "XieQueryTechniques " \l 2�

init.c

Status XieQueryTechniques (

    Display *		/* display */,

    XieTechniqueGroup	/* technique_group */,

    int *		/* ntechniques_ret */,

    XieTechnique **	/* techniques_ret */

);

Name

XieQueryTechniques - return information about the standard and private techniques that are supported by the server

Syntax

Status XieQueryTechniques (display, technique_group, ntechniques_ret, techniques_ret)

Display *display;

XieTechniqueGroup technique_group;

int *ntechniques_ret;

XieTechnique **techniques_ret;

Arguments

display	Specifies a connection to an X server.

technique_group	Specifies the group of techniques for which the server is to return information.

ntechniques_ret	Returns the number of items in the list of XieTechnique structures.

techniques_ret	Returns the pointer to the list of XieTechnique structures, which contains the information about the selected group of techniques.

Returns

Zero on failure, nonzero on success.

Description

For each occurrence of a technique within an element definition, allowance is made to pass parameters that are specific to the technique. Some techniques have defined parameters and others have none. For techniques that do have defined parameters, the XieQueryTechniques() can be used to determine if the parameters must be supplied. If the parameters are optional and they are omitted by the client, the server will supply implementation specific default values in their place.



If successful, XieQueryTechniques allocates and fills each XieTechnique structure in the list as follows:



�SYMBOL 183 \f "Symbol" \s 6 \h�	The member needs_param is set to True if the technique requires additional parameters; needs_param is set to False if the technique takes no parameters, or it has parameters that are optional. If parameters are optional, they must be totally omitted, or they must all be supplied.

�SYMBOL 183 \f "Symbol" \s 6 \h�	The member group is set to the group the technique belongs to.

�SYMBOL 183 \f "Symbol" \s 6 \h�	The member number is set to the numeric identifier assigned to the technique.

�SYMBOL 183 \f "Symbol" \s 6 \h�	The member speed is set to the server's assessment of the speed of this technique relative to other techniques in the same group, where 0 is slowest and 255 is fastest.

�SYMBOL 183 \f "Symbol" \s 6 \h�	The member name is set to the XIE compliant technique name string.



To free the memory allocated to techniques_ret, use XieFreeTechniques.



On failure, ntechniques_ret is set to zero and *techniques_ret is set to NULL.



The standard technique group names that can be queried using XieQueryTechniques are:



Technique group�Meaning��xieValDefault�Select all default techniques��xieValAll�Select all supported techniques��xieValColorAlloc�Select color allocation techniques��xieValConstrain�Select techniques for constraining data��xieValConvertFromRGB�Select colorspace conversion techniques (for conversion from the RGB colorspace)��xieValConvertToRGB�Select colorspace conversion techniques (for conversion to the RGB colorspace)��xieValConvolve�Select techniques for handling convolution edge conditions��xieValDecode�Select image decoding (decompression) techniques��xieValDither�Select dithering techniques��xieValEncode�Select image encoding (compression) techniques��xieValGamut�Select colorspace conversion gamut compression techniques��xieValGeometry�Select geometric sampling techniques��xieValHistogram�Select match�histogram shapes��xieValWhiteAdjust�Select colorspace conversion white point adjustment techniques��

If a vendor defined an additional private technique group, it could be discovered by querying for all groups.

Structures

typedef unsigned XieTechniqueGroup;

typedef struct {

	Bool needs_param;

	XieTechniqueGroup group;

	unsigned int number;

	unsigned int speed;

	char *name;

} XieTechnique;



/* Definitions for TechniqueGroups */

#define xieValDefault	0

#define xieValAll	1

#define xieValColorAlloc	2

#define xieValConstrain	4

#define xieValConvertFromRGB	6

#define xieValConvertToRGB	8

#define xieValConvolve	10

#define xieValDecode	12

#define xieValDither	14

#define xieValEncode	16

#define xieValGamut	18

#define xieValGeometry	20

#define xieValHistogram	22

#define xieValWhiteAdjust	24

Errors

BadAlloc	Insufficient resources

BadValue	Unknown technique_group

See Also

XieFreeTechniques

 XIElib - Color List Functions	XieCreateColorList 

�tc "XieCreateColorList " \l 2�

colorlist.c

XieColorList XieCreateColorList (

    Display *		/* display */

);

Name

XieCreateColorList - create a color list

Syntax

XieColorList XieCreateColorList (display)

Display *display;

Arguments

display	Specifies a connection to an X server.

Returns

The color list identifier.

Description

XieCreateColorList creates a color list resource and returns its color list ID.



The color list created is an unpopulated server resource that can be used to store the list of colors allocated by XieFloConvertToIndex. The Colormap allocations that are recorded in a color list belong to the client that executed the photoflo that populated the resource (this is not necessarily the same client that created the color list). A color list cannot be the target of more than one active photoflo at a time. The contents of a color list may be queried using XieQueryColorList. All allocated cells can be explicitly purged from a color list using XiePurgeColorList. A color list can be destroyed using XieDestroyColorList.

Structures

typedef XID XieColorList;

Errors

BadAlloc	Insufficient resources

BadIdChoice	Invalid color list

See Also

XieDestroyColorList, XiePurgeColorList, XieQueryColorList, XieFloConvertToIndex

 XIElib - Color List Functions	XieDestroyColorList 

�tc "XieDestroyColorList " \l 2�

colorlist.c

void XieDestroyColorList (

    Display *		/* display */,

    XieColorList	/* color_list */

);

Name

XieDestroyColorList - destroy a color list

Syntax

void XieDestroyColorList (display, color_list)

Display *display;

XieColorList color_list;

Arguments

display	Specifies a connection to an X server.

color_list	Specifies the color list to be destroyed.

Returns



Description

XieDestroyColorList destroys the color list resource identified by color_list. Once destroyed, color list ID is no longer valid.

Structures

typedef XID XieColorList;

Errors

xieErrNoColorlist	Invalid color_list

See Also

XieCreateColorList

 XIElib - Color List Functions	XiePurgeColorList 

�tc "XiePurgeColorList " \l 2�

colorlist.c

void XiePurgeColorList (

    Display *		/* display */,

    XieColorList	/* color_list */

);

Name

XiePurgeColorList - purge all allocated cells from a color list

Syntax

void XiePurgeColorList (display, color_list)

Display *display;

XieColorList color_list;

Arguments

display	Specifies a connection to an X server.

color_list	Specifies the color list to be purged.

Returns



Description

XiePurgeColorList frees the colors from the specified color list.

Structures

typedef XID XieColorList;

Errors

BadAccess	Attempt to purge colors when color list is being written by a photoflo

xieErrNoColorlist	Invalid color_list

See Also

XieCreateColorList, XieDestroyColorList, XieQueryColorList, XieFloConvertToIndex

 XIElib - Color List Functions	XieQueryColorList 

�tc "XieQueryColorList " \l 2�

colorlist.c

Status XieQueryColorList (

    Display *		/* display */,

    XieColorList  	/* color_list */,

    Colormap *		/* colormap_ret */,

    unsigned *		/* ncolors_ret */,

    unsigned long **	/* colors_ret */

);

Name

XieQueryColorList - obtain a list of allocated Colormap indices

Syntax

Status XieQueryColorList (display, color_list, colormap_ret, ncolors_ret, colors_ret)

Display *display;

XieColorList color_list;

Colormap *colormap_ret;

unsigned *ncolors_ret;

unsigned long **colors_ret;

Arguments

display	Specifies a connection to an X server.

color_list	Specifies the color list to query.

colormap_ret	Returns the Colormap from which the colors were allocated.

ncolors_ret	Returns the number of Colormap indices in the list.

colors_ret	Returns the list of allocated Colormap indices.

Returns

Zero on failure, nonzero on success.

Description

XieQueryColorList allocates and returns a list of colors allocated by a ConvertToIndex element.



When there are no colors in color list, a zero status is returned, the value zero is returned for the colormap, and the list of colors is of length zero. The pointer to the list of allocated Colormap indices is set to NULL.



To free the memory allocated to colors_ret, use XFree.

Structures

typedef XID XieColorList;

Errors

BadAlloc	Insufficient resources

xieErrNoColorlist	Invalid color list

See Also

XieCreateColorList, XieDestroyColorList, XieQueryColorList, XieFloConvertToIndex

 XIElib - LUT Functions	XieCreateLUT 

�tc "LUT Functions " \l 1�

�tc "XieCreateLUT " \l 2�

lut.c

XieLut XieCreateLUT (

    Display *		/* display */

);

Name

XieCreateLUT - create a lookup table

Syntax

XieLut XieCreateLUT (display)

Display *display;

Arguments

display	Specifies a connection to an X server.

Returns

The lookup table (LUT) identifier.

Description

XieCreateLUT creates a server resource that is used as a lookup table (LUT) by a Point element. A lookup table consists of one or three single-dimension arrays, each long enough to contain an entry for all possible pixels values in the image data to which the Point element will be applied.



The LUT is populated (or repopulated) with lookup table entries after the successful execution of a photoflo containing an ExportLUT element that targets lut. LUT data can be imported into a photoflo using an ImportLUT element.

Structures

typedef XID XieLut;

Errors

BadAlloc	Insufficient resources

BadIDChoice	Invalid LUT

See Also

XieDestroyLUT, XieFloImportLUT, XieFloExportLUT 

 XIElib - LUT Functions	XieDestroyLUT 

�tc "XieDestroyLUT " \l 2�

lut.c

void XieDestroyLUT (

    Display *		/* display */,

    XieLut		/* lut */

);

Name

XieDestroyLUT - destroy a lookup table

Syntax

void XieDestroyLUT (display, lut)

Display *display;

XieLut lut;

Arguments

display	Specifies a connection to an X server.

lut	Specifies the ID of the LUT to be destroyed.

Returns



Description

XieDestroyLUT destroys the lookup table (LUT) identified by lut. Once destroyed, LUT ID is no longer valid.

Structures

typedef XID XieLut;

Errors

xieErrNoLut	The value for the lut argument does not name a defined LUT

See Also

XieDestroyLUT, XieFloImportLUT, XieFloExportLUT 

 XIElib - Photomap Functions	XieCreatePhotomap 

�tc "Photomap Functions " \l 1�

�tc "XieCreatePhotomap " \l 2�

photomap.c

XiePhotomap XieCreatePhotomap (

    Display *		/* display */

);

Name

XieCreatePhotomap - create a photomap

Syntax

XiePhotomap XieCreatePhotomap (display)

Display *display;

Arguments

display	Specifies a connection to an X server.

Returns

The photomap identifier.

Description

XieCreatePhotomap creates a photomap, a server resource that stores image data. Photomap data may be rendered for display or used as input to control or modify the rendition of another image.



Photomap attributes are defined when a photoflo containing an ExportPhotomap element populates the photomap with data.

Structures

typedef XID XiePhotomap;

Errors

BadAlloc	Insufficient resources

BadIdChoice	Invalid photomap

See Also

XieDestroyPhotomap, XieQueryPhotomap, XieFloImportPhotomap, XieFloExportPhotomap 

 XIElib - Photomap Functions	XieDestroyPhotomap 

�tc "XieDestroyPhotomap " \l 2�

photomap.c

void XieDestroyPhotomap (

    Display *		/* display */,

    XiePhotomap		/* photomap */

);

Name

XieDestroyPhotomap - destroy a photomap

Syntax

void XieDestroyPhotomap (display, photomap)

Display *display;

XiePhotomap photomap;

Arguments

display	Specifies a connection to an X server.

photomap	Specifies the ID of the photomap to be destroyed.

Returns



Description

XieDestroyPhotomap destroys the photomap identified by photomap. Once destroyed, the photomap ID is no longer valid. A photomap is the XIE resource used to store image data in the server.

Structures

typedef XID XiePhotomap;

Errors

xieErrNoPhotomap	The value for the photomap argument does not name a defined photomap

See Also

XieCreatePhotomap , XieQueryPhotomap, XieFloImportPhotomap, XieFloExportPhotomap

 XIElib - Photomap Functions	XieQueryPhotomap 

�tc "XieQueryPhotomap " \l 2�

photomap.c

Status XieQueryPhotomap (

    Display *			/* display */,

    XiePhotomap			/* photomap */,

    Bool *			/* populated_ret */,

    XieDataType *		/* datatype_ret */,

    XieDataClass *		/* class_ret */,

    XieDecodeTechnique *	/* decode_technique_ret */,

    XieLTriplet			/* width_ret */,

    XieLTriplet			/* height_ret */,

    XieLTriplet			/* levels_ret */

);

Name

XieQueryPhotomap - return the queriable attributes of a photomap

Syntax

Status XieQueryPhotomap (display, photomap, populated_ret, datatype_ret, class_ret, decode_technique_ret, width_ret, height_ret, levels_ret)

Display *display;

XiePhotomap photomap;

Bool *populated_ret;

XieDataType *datatype_ret;

XieDataClass *class_ret;

XieDecodeTechnique *decode_technique_ret;

XieLTriplet width_ret;

XieLTriplet height_ret;

XieLTriplet levels_ret;

Arguments

display	Specifies a connection to an X server.

photomap	Specifies the photomap to be queried.

populated_ret	Returns the status of the photomap.

datatype_ret	Returns the type of data in the photomap.

class_ret	Returns the class of data in the photomap.

decode_technique_ret	Returns the decode technique required to interpret the data.

width_ret	Returns the width, in pixels per band.

height_ret	Returns the height, in pixels per band.

levels_ret	Returns the number of quantization levels per band.

Returns

Zero on failure, nonzero on success.

Description

A photomap is a server resource that stores image data. XieQueryPhotomap sets populated_ret to indicate whether or not photomap has been populated with attributes and data. If populated_ret is False, all remaining fields contain zeros.



datatype_ret reports whether the photomap contains constrained or unconstrained data, and is set to one of the following standard data type values:



xieValConstrained

xieValUnconstrained



class_ret is the class of image data (that is, single-band or triple-band) and is set to one of the following standard data class values:



xieValSingleBand

xieValTripleBand



width_ret and height_ret are set to the dimensions of the image data in pixels (per band). levels_ret is set to the potential dynamic range, or number of quantization levels (per band). If datatype_ret is set to unconstrained, the returned values for levels are zeros. If class_ret is xieValSingleBand, width_ret, height_ret, and levels_ret are only valid for element 0 in each of these vectors; elements 1 and 2 are unused and are returned as zeros.



decode_technique_ret is set to the decode technique that will be required to interpret or decompress the data. Decode techniques define the techniques that can be used to interpret uncompressed image data or decode compressed images. decode_technique_ret can be set to one of the following standard decode technique values:



xieValDecodeUncompressedSingle

xieValDecodeUncompressedTriple

xieValDecodeG31D

xieValDecodeG32D

xieValDecodeG42D

xieValDecodeJPEGBaseline

xieValDecodeJPEGLossless

xieValDecodeTIFF2

xieValDecodeTIFFPackBits



If a vendor defined additional private decode techniques, decode_technique_ret can be set to the values given to these techniques.

Structures

typedef unsigned XieDataClass;

typedef unsigned XieDataType;

typedef unsigned XieDecodeTechnique;

typedef unsigned long XieLTriplet[3];

typedef XID XiePhotomap;



/* Definitions of DataType */

#define xieValConstrained	1

#define xieValUnconstrained	2



/* Definitions of DataClass */

#define xieValSingleBand	1

#define xieValTripleBand	2



/* Definitions for DecodeTechniques */

#define xieValDecodeUncompressedSingle	2

#define xieValDecodeUncompressedTriple	3

#define xieValDecodeG31D	4

#define xieValDecodeG32D	6

#define xieValDecodeG42D	8

#define xieValDecodeJPEGBaseline	10

#define xieValDecodeJPEGLossless	12

#define xieValDecodeTIFF2	14

#define xieValDecodeTIFFPackBits	16

Errors

xieErrNoPhotomap	The value for the photomap argument does not name a defined photomap.

xieErrNoFloAlloc	Insufficient resources (for exmple, memory)

See Also



 XIElib - ROI Functions	XieCreateROI 

�tc "ROI Functions " \l 1�

�tc "XieCreateROI " \l 2�

roi.c

XieRoi XieCreateROI (

    Display *		/* display */

);

Name

XieCreateROI - create a Rectangles-Of-Interest

Syntax

XieRoi XieCreateROI (display)

Display *display;

Arguments

display	Specifies a connection to an X server.

Returns

The ROI (Rectangles-Of-Interest) identifier.

Description

XieCreateROI creates a server ROI (Rectangles-Of-Interest) resource, and returns its resource ID to the client.

Structures

typedef XID XieRoi;

Errors

BadAlloc	Insufficient resources

BadIDChoice	Invalid ROI

See Also

XieDestroyROI, XieFloImportROI, XieFloExportROI

 XIElib - ROI Functions	XieDestroyROI 

�tc "XieDestroyROI " \l 2�

roi.c

void XieDestroyROI (

    Display *		/* display */,

    XieRoi		/* roi */

);

Name

XieDestroyROI - destroy a Rectangles-Of-Interest

Syntax

void XieDestroyROI (display, roi)

Display *display;

XieRoi roi;

Arguments

display	Specifies a connection to an X server.

roi	Specifies the ID of the ROI to be destroyed.

Returns



Description

XieDestroyROI destroys the Rectangles-Of-Interest (ROI) identified by roi. Once destroyed,  roi is no longer valid.

Structures

typedef XID XieRoi;

Errors

xieErrNoROI	The value for the roi argument does not name a defined ROI

See Also

XieCreateROI 

 XIElib - Immediate Photoflo Functions	XieCreatePhotospace 

�tc "Photoflo Functions " \l 1�

�tc "XieCreatePhotospace " \l 2�

photospace.c

XiePhotospace XieCreatePhotospace (

    Display *		/* display */

);

Name

XieCreatePhotospace - create a photospace

Syntax

XiePhotospace XieCreatePhotospace (display)

Display *display;

Arguments

display	Specifies a connection to an X server.

Returns

The photospace identifier.

Description

XieCreatePhotospace returns a resource-id for a new photospace that can be used to accommodate immediate photoflos instantiated by a client. Any client that needs to instantiate immediate photoflos must create at least one photospace.

Structures

typedef XID XiePhotospace;

Errors

BadAlloc	Insufficient resources

BadIDChoice	Invalid photospace

See Also

XieDestroyPhotospace, XieExecuteImmediate 

 XIElib - Immediate Photoflo Functions	XieDestroyPhotospace 

�tc "XieDestroyPhotospace " \l 2�

photospace.c

void XieDestroyPhotospace (

    Display *		/* display */,

    XiePhotospace	/* photospace */

);

Name

XieDestroyPhotospace - destroy a photospace

Syntax

void XieDestroyPhotospace (display, photospace)

Display *display;

XiePhotospace photospace;

Arguments

display	Specifies a connection to an X server.

photospace	Specifies the ID of the photospace to be destroyed.

Returns



Description

XieDestroyPhotospace destroys a photospace. Prior to destroying the photospace, all photoflos that are currently active in the photospace will be aborted, exported data pending client retrieval will be freed, and the photoflos will be destroyed.

Structures

typedef XID XiePhotospace;

Errors

xieErrNoPhotospace	The value for the photospace argument does not name a defined photospace

See Also

XieCreatePhotospace 

 XIElib - Immediate Photoflo Functions	XieExecuteImmediate 

�tc "XieExecuteImmediate " \l 2�

photospace.c

void XieExecuteImmediate (

    Display *		/* display */,

    XiePhotospace	/* photospace */,

    unsigned long	/* flo_id */,

    Bool		/* notify */,

    XiePhotoElement *	/* elem_list */,

    int			/* elem_count */

);

Name

XieExecuteImmediate - define and begin execution of an immediate photoflo

Syntax

void XieExecuteImmediate (display, photospace, flo_id, notify, elem_list, elem_count)

Display *display;

XiePhotospace photospace;

unsigned long flo_id;

Bool notify;

XiePhotoElement *elem_list;

int elem_count;

Arguments

display	Specifies a connection to an X server.

photospace	Specifies the ID of the photospace to be executed.

flo_id	Specifies a particular instance of the photoflo to be executed.

notify	Specifies whether a PhotofloDone event must be sent upon completion.

elem_list	Specifies the import, process, and export elements to be executed.

elem_count	Specifies the number of items in elem_list.

Returns



Description

XieExecuteImmediate begins the asynchronous execution of an immediate photoflo. The server does not save a copy of an immediate photoflo after the photoflo has completed execution and all data exported for the client have been retrieved. An immediate photoflo may therefore not be modified or totally redefined prior to subsequent executions. It is legal to have multiple unique instances of immediate photoflos (and stored photoflos) active concurrently.



The photospace/flo_id argument pair specifies the instance by which this photoflo will be identified in other requests, events, or errors. notify specifies whether a PhotofloDone event must be sent upon completion. The PhotofloDone event notifies the client that a photoflo has left the active state: it is no longer executing. elem_list defines the import, process, and export elements to be executed.



If any clients have blocked themselves during the execution of the photoflo (see XieAwait), they will become unblocked when the photoflo's state changes from active to nonexistent.



Care should be taken that the argument pair elem_list/elem_count matches a returned value (an array of XiePhotoElement structures) and argument count from a call to XieAllocatePhotofloGraph.

Structures

typedef XID XiePhotospace;



typedef struct {

	int elemType;

	/* union of ALL element types */

	union {

		...

		...

	} data;

} XiePhotoElement;

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloElement	Invalid element type(s) in elem_list

xieErrNoFloID	Invalid photospace/flo_id argument pair has been specified

xieErrNoFlo	An error has been detected while defining, executing, or accessing a photoflo (See Photoflo Errors).

See Also

XieAwait, XieAllocatePhotofloGraph 

 XIElib - Photoflo Functions	XieAllocatePhotofloGraph 

�tc "XieAllocatePhotofloGraph " \l 2�

photoflo.c

XiePhotoElement *XieAllocatePhotofloGraph (

    unsigned int	/* count */

);

Name

XieAllocatePhotofloGraph - allocate an array of XiePhotoElement structures

Syntax

XiePhotoElement *XieAllocatePhotofloGraph (count);

unsigned int count;

Arguments

count	Specifies the number of XiePhotoElement structures to allocate.

Returns

The array of XiePhotoElement structures.

Description

XieAllocatePhotofloGraph allocates and returns a pointer to an array of XiePhotoElement structures; each field of each structure in the array is set to zero (0).



To free the memory allocated to the list of XiePhotoElement structures, use XieFreePhotofloGraph .



If XieAllocatePhotofloGraph is unable to create an XiePhotoElement array , it returns NULL.

Structures

typedef struct {

	int elemType;

	/* union of ALL element types */

	union {

		...

		...

	} data;

} XiePhotoElement;

Errors



See Also

XieFreePhotofloGraph, XieCreatePhotoflo, XieModifyPhotoflo, XieRedefinePhotoflo, XieExecutePhotoflo, XieExecuteImmediate 

 XIElib - Stored Photoflo Functions	XieCreatePhotoflo 

�tc "XieCreatePhotoflo " \l 2�

photoflo.c

XiePhotoflo XieCreatePhotoflo (

    Display *		/* display */,

    XiePhotoElement *	/* elem_list */,

    int			/* elem_count */

);

Name

XieCreatePhotoflo - create a stored photoflo

Syntax

XiePhotoflo XieCreatePhotoflo (display, elem_list, elem_count)

Display *display;

XiePhotoElement *elem_list;

int elem_count;

Arguments

display	Specifies a connection to an X server.

elem_list	Specifies the defining array of XiePhotoElement structures.

elem_count	Specifies the number of XiePhotoElement structures in the array.

Returns

The photoflo identifier.

Description

XieCreatePhotoflo creates a stored photoflo resource, defines its complete contents using the contents of elem_list, sets it in the inactive state, and returns its resource-id. Stored photoflos persist beyond execution and may be modified or totally redefined prior to subsequent executions.



The returned photoflo identifier is a new resource-id that, along with the execution domain used for the photoflo, identifies this photoflo in other requests, events, or errors. elem_list defines the import, process, and export elements to be stored for execution. Although resources and parameters are specified at creation, no action is taken to validate them at that time. XieCreatePhotoflo will only store the photoflo's definition: parameter validation is delayed until an execute request is received.

Structures

typedef XID XiePhotoflo;



typedef struct {

	int elemType;

	/* union of ALL element types */

	union {

		...

		...

	} data;

} XiePhotoElement;

Errors

BadAlloc	Insufficient resources

BadIdChoice	Invalid photoflo

xieErrNoFloAlloc	Insufficient resources (for example, memory) for elem_list

xieErrNoFloElement	Invalid element type(s) in elem_list

xieErrNoFlo	An error has been detected while defining, executing, or accessing a photoflo (see Photoflo Errors).

See Also

XieAllocatePhotofloGraph,  XieFreePhotofloGraph, XieModifyPhotoflo, XieRedefinePhotoflo, XieExecutePhotoflo, XieQueryPhotoflo, XieDestroyPhotoflo

 XIElib - Stored Photoflo Functions	XieDestroyPhotoflo 

�tc "XieDestroyPhotoflo " \l 2�

photoflo.c

void XieDestroyPhotoflo (

    Display *		/* display */,

    XiePhotoflo		/* photoflo */

);

Name

XieDestroyPhotoflo - destroy a stored photoflo

Syntax

void XieDestroyPhotoflo (display, photoflo)

Display *display;

XiePhotoflo photoflo;

Arguments

display	Specifies a connection to an X server.

photoflo	Specifies the photoflo to be destroyed.

Returns



Description

XieDestroyPhotoflo destroys a stored photoflo. If photoflo is active, that is, executing, it is aborted and all exported data that are pending client retrieval are freed prior to destroying photoflo.

Structures

typedef XID XiePhotoflo;

Errors

xieErrNoPhotoflo	The value for the photoflo argument does not name a defined photoflo

See Also

XieCreatePhotoflo

 XIElib - Stored Photoflo Functions	XieExecutePhotoflo 

�tc "XieExecutePhotoflo " \l 2�

photoflo.c

void XieExecutePhotoflo (

    Display *		/* display */,

    XiePhotoflo		/* photoflo */,

    Bool		/* notify */

);

Name

XieExecutePhotoflo - execute a stored photoflo

Syntax

void XieExecutePhotoflo (display, photoflo, notify)

Display *display;

XiePhotoflo photoflo;

Bool notify;

Arguments

display	Specifies a connection to an X server.

photoflo	Specifies the photoflo to be executed.

notify	Specifies that a PhotofloDone event must be sent upon completion.

Returns



Description

XieExecutePhotoflo changes a stored photoflo to the active state. Execution is asynchronous. The photoflo returns to the inactive state when execution completes and all data exported for the client have been retrieved. It is legal to have multiple stored photoflos (and immediate photoflos) active concurrently.



notify specifies that a PhotofloDone event must be sent upon completion. A PhotofloDone event notifies the client that a photoflo has left the active state (it is no longer executing).



Stored photoflos persist beyond execution and may be modified or totally redefined prior to subsequent executions.

Structures

typedef XID XiePhotoflo;

Errors

xieErrNoPhotoflo	The value for the photoflo argument does not name a defined photoflo

xieErrNoFloAccess	Attempt to execute photoflo when it is already active

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFlo	An error has been detected while defining, executing, or accessing a photoflo (see Photoflo Errors).

See Also

XieCreatePhotoflo, XieModifyPhotoflo, XieRedefinePhotoflo, XieQueryPhotoflo, XieDestroyPhotoflo, XieAbort, XieAwait, XieGetClientData, XiePutClientData 

 XIElib - Stored Photoflo Functions	XieModifyPhotoflo 

�tc "XieModifyPhotoflo " \l 2�

photoflo.c

void XieModifyPhotoflo (

    Display *		/* display */,

    XiePhotoflo		/* photoflo */,

    int			/* start */,

    XiePhotoElement *	/* elem_list */,

    int			/* elem_count */

);

Name

XieModifyPhotoflo - modify a stored photoflo

Syntax

void XieModifyPhotoflo (display, photoflo, start, elem_list, elem_count)

Display *display;

XiePhotoflo photoflo;

int start;

XiePhotoElement *elem_list;

int elem_count;

Arguments

display	Specifies a connection to an X server.

photoflo	Specifies the photoflo to be modified.

start	Specifies the index where element replacement is to begin.

elem_list	Specifies an array of elements that will replace existing elements.

elem_count	Specifies the number of items in elem_list.

Returns



Description

XieModifyPhotoflo allows element parameters of a stored photoflo to be modified. Stored photoflos persist beyond execution and may be modified prior to subsequent executions.



start is the position or index of an element within an array of elements used to specify a photoflo; the first element in the array has a start value of one (1).



XieModifyPhotoflo only allows parameter modification. No topological changes are allowed: elements cannot be deleted, inserted, or appended.

Structures

typedef XID XiePhotoflo;



typedef struct {

	int elemType;

	/* union of ALL element types */

	union {

		...

		...

	} data;

} XiePhotoElement;

Errors

xieErrNoPhotoflo	The value for the photoflo argument does not name a defined photoflo

xieErrNoFloAccess	Attempt to change photoflo when it is already active

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloElement	Invalid element type(s) in elem_list or�attempt to append additional element(s) to photoflo

xieErrNoFloSource	An invalid start has been specified or�attempt to change input connections of type XiePhototag in elem_list

xieErrNoFlo	An error has been detected while defining, executing, or accessing a photoflo (see Photoflo Errors).

See Also

XieAllocatePhotofloGraph, XieFreePhotofloGraph, XieCreatePhotoflo, XieRedefinePhotoflo, XieExecutePhotoflo, XieQueryPhotoflo, XieDestroyPhotoflo 

 XIElib - Stored Photoflo Functions	XieRedefinePhotoflo 

�tc "XieRedefinePhotoflo " \l 2�

photoflo.c

void XieRedefinePhotoflo (

    Display *		/* display */,

    XiePhotoflo		/* photoflo */,

    XiePhotoElement *	/* elem_list */,

    int			/* elem_count */

);

Name

XieRedefinePhotoflo - redefine a stored photoflo

Syntax

void XieRedefinePhotoflo (display, photoflo, elem_list, elem_count)

Display *display;

XiePhotoflo photoflo;

XiePhotoElement *elem_list;

int elem_count;

Arguments

display	Specifies a connection to an X server.

photoflo	Specifies the photoflo to be redefined.

elem_list	Specifies an array of elements that will replace all existing elements.

elem_count	Specifies the number of items in elem_list.

Returns



Description

XieRedefinePhotoflo allows all elements of a stored photoflo to be removed and replaced with a new list. Stored photoflos persist beyond execution and may be totally redefined prior to subsequent executions.



There are no restrictions on changing element types or the array's size.

Structures

typedef XID XiePhotoflo;



typedef struct {

	int elemType;

	/* union of ALL element types */

	union {

		...

		...

	} data;

} XiePhotoElement;

Errors

xieErrNoPhotoflo	The value for the photoflo argument does not name a defined photoflo

xieErrNoFloAccess	Attempt to change photoflo when it is already active

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloElement	Invalid element type(s) in elem_list

xieErrNoFlo	An error has been detected while defining, executing, or accessing a photoflo (see Photoflo Errors).

See Also

XieAllocatePhotofloGraph, XieFreePhotofloGraph, XieCreatePhotoflo, XieModifyPhotoflo, XieExecutePhotoflo, XieQueryPhotoflo, XieDestroyPhotoflo

 XIElib - Photoflo Functions	XieQueryPhotoflo 

�tc "XieQueryPhotoflo " \l 2�

photoflo.c

Status XieQueryPhotoflo (

    Display *		/* display */,

    unsigned long	/* name_space */,

    unsigned long	/* flo_id */,

    XiePhotofloState *	/* state_ret */,

    XiePhototag **	/* data_expected_ret */,

    unsigned int *	/* nexpected_ret */,

    XiePhototag **	/* data_available_ret */,

    unsigned int *	/* navailable_ret */

);

Name

XieQueryPhotoflo - return the current status of a photoflo

Syntax

XieQueryPhotoflo(display, name_space, flo_id, state_ret, data_expected_ret, nexpected_ret, data_available_ret, navailable_ret)

Display *display;

unsigned long name_space;

unsigned long flo_id;

XiePhotofloState *state_ret;

XiePhototag **data_expected_ret;

unsigned int *nexpected_ret;

XiePhototag **data_available_ret;

unsigned int *navailable_ret;

Arguments

display	Specifies a connection to an X server.

name_space	Specifies the execution domain used for the photoflo to query.

flo_id	Specifies a particular instance of the photoflo to query.

state_ret	Returns the state of the photoflo.

data_expected_ret	Returns a list of ImportClient elements.

nexpected_ret	Returns the length of data_expected_ret.

data_available_ret	Returns a list of ExportClient elements.

navailable_ret	Returns the length of data_available_ret.

Returns

Zero on failure, nonzero on success.

Description

XieQueryPhotoflo will return the current status of a photoflo.



The name_space/flo_id argument pair specifies the instance that identifies the photoflo that is being queried. state_ret indicates the state of the photoflo, and if XieQueryPhotoflo is successful, will return one of the following standard photoflo state values:



xieValInactive

xieValActive

xieValNonexistent



data_expected_ret is a list of ImportClient elements that are expecting data via XiePutClientData. data_available_ret is a list of ExportClient elements from which data are available (via XieGetClientData). Either or both of these lists may be of length zero, indicated by the returned values of nexpected_ret and navailable_ret.



XieQueryPhotoflo allocates memory for the list of ImportClient elements and the list of ExportClient elements. To free the memory allocated to data_expected_ret and data_available_ret, use XFree.



Specifying an unknown or invalid instance will return a state_ret of nonexistent and zero length data_expected_ret and data_available_ret lists.

Structures

typedef unsigned XiePhotofloState;



/* Definitions of PhotofloState */

#define xieValInactive	1

#define xieValActive	2

#define xieValNonexistent	3

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

See Also

XieCreatePhotoflo, XieModifyPhotoflo, XieRedefinePhotoflo, XieExecutePhotoflo, XieDestroyPhotoflo, XieGetClientData, XiePutClientData

 XIElib - Client Data Functions	XiePutClientData 

�tc "Client Data Functions " \l 1�

�tc "XiePutClientData " \l 2�

clientdata.c

void XiePutClientData (

    Display *     	/* display */,

    unsigned long  	/* name_space */,

    unsigned long  	/* flo_id */,

    XiePhototag		/* element */,

    Bool         	/* final */,

    unsigned     	/* band_number */,

    unsigned char *     /* data */,

    unsigned     	/* nbytes */

);

Name

XiePutClientData - send a stream of data to an active photoflo

Syntax

void XiePutClientData (display, name_space, flo_id, element, final, band_number, data, nbytes)

Display *display;

unsigned long name_space;

unsigned long flo_id;

XiePhototag element;

Bool final;

unsigned band_number;

unsigned char *data;

unsigned nbytes;

Arguments

display	Specifies a connection to an X server.

name_space	Specifies the execution domain used for the photoflo to receive the data.

flo_id	Specifies a particular instance of the photoflo to receive the data.

element	Specifies the element to receive the data.

final	Specifies if the data is the last segment of data to be sent. If True, then data represents the last data to be sent by the client. False indicates that more data will be sent (during a subsequent call to XiePutClientData).

band_number	Specifies which band of data is being sent.

data	Specifies a counted list of bytes that comprises the data stream.

nbytes	Specifies the count of bytes that comprises the data stream.

Returns



Description

XiePutClientData sends a stream of data to an active photoflo. Since the complete data object may be larger than can fit in a single protocol request, XIE allows the stream to be segmented; the last segment is signaled with a final flag.



The organization and contents of the data stream must match the parameters given to the ImportClient element or the results are undefined. An arbitrary amount of image data can be sent per request, whereas for nonimage data one or more complete aggregates must be sent per request (for example, one or more LUT array entries). If too many data are sent (for example, too many rectangles, or too many scanlines), the unwanted data are discarded.  It is an error, however, to send too few data prior to signaling final.



For stored photoflos, name_space is always ServerIDSpace (the value zero) and flo_id is the photoflo's resource-id. For immediate photoflos name_space is a photospace resource-id and flo_id is 32-bit value that uniquely identifies the instance of the photoflo within name_space.

Structures

typedef unsigned XiePhototag;

Errors

xieErrNoFloAccess	Executable photospace/flo_id argument pair not active

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloElement	Invalid element type specified by element

xieErrNoFloID	Invalid photospace/flo_id argument pair has been specified

xieErrNoFloValue	Invalid band_number or�for nonimage data, data contains a partial aggregate

See Also

XieGetClientData, XieQueryPhotoflo, XieFloImportClientPhoto, XieFloImportClientROI, XieFloImportClientLUT

 XIElib - Client Data Functions	XieGetClientData 

�tc "XieGetClientData " \l 2�

clientdata.c

Status XieGetClientData (

    Display *      	/* display */,

    unsigned long  	/* name_space */,

    unsigned long  	/* flo_id */,

    XiePhototag		/* element */,

    unsigned  		/* max_bytes */,

    Bool		/* terminate */,

    unsigned     	/* band_number */,

    XieExportState * 	/* new_state_ret */,

    unsigned char **    /* data_ret */,

    unsigned *     	/* nbytes_ret */

);

Name

XieGetClientData - retrieve data from an ExportClient element within an active photoflo

Syntax

Status XieGetClientData (display, name_space, flo_id, element, max_bytes, terminate, band_number, new_state_ret, data_ret, nbytes_ret)

Display *display;

unsigned long name_space;

unsigned long flo_id;

XiePhototag element;

unsigned max_bytes;

Bool terminate;

unsigned band_number;

XieExportState *new_state_ret;

unsigned char **data_ret;

unsigned *nbytes_ret;

Arguments

display	Specifies a connection to an X server.

name_space	Specifies the execution domain used for the photoflo from which to retrieve data.

flo_id	Specifies a particular instance of the photoflo from which to retrieve data.

element	Specifies the element from which to retrieve the data.

max_bytes	Specifies the maximum number of bytes that can be sent to the client.

terminate	Specifies whether more data are wanted after this request.

band_number	Specifies which band of data is being retrieved.

new_state_ret	Returns the status of the ExportClient element after this request.

data_ret	Returns a counted list of bytes that comprises the data stream.

nbytes_ret	Returns the count of bytes that comprises the data stream.

Returns

Zero on failure, nonzero on success.

Description

XieGetClientData returns data in a contiguous read-once byte stream, which can be requested in segments that are limited in size by the amount the client desires or the amount of data available from the server. The format of the data depends on the parameters given to the ExportClient element from which the data are requested.



new_state_ret returns the state of the ExportClient element after this request and can be set to one of the following standard export state values:



xieValExportDone

xieValExportMore

xieValExportEmpty

xieValExportError



If the request is sent to an ExportClient element that either: does not have any data, was terminated by a previous XieGetClientData call, or has already returned all its data (ExportDone sent), the request will return a zero length data_ret stream.



Image data are always retrieved from the server as a byte stream, whereas nonimage data are always returned by the server as one or more complete aggregates. max_bytes is effectively rounded down by the server to the match the nearest aggregate size.



For stored photoflos, name_space is always ServerIDSpace (the value zero) and flo_id is the photoflo's resource-id. For immediate photoflos name_space is a photospace resource-id and flo_id  is a 32-bit value that uniquely identifies the instance of the photoflo within name_space.



To free the memory allocated to data_ret, use XFree.

Structures

typedef unsigned XieExportState;

typedef unsigned XiePhototag;



/* Definitions of ExportState */

#define xieValExportDone	1

#define xieValExportMore	2

#define xieValExportEmpty	3

#define xieValExportError	4

Errors

xieErrNoFloAccess	Executable photospace/flo_id argument pair not active

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloElement	Invalid element type specified by element

xieErrNoFloID	Invalid photospace/flo_id argument pair has been specified

xieErrNoFloValue	Invalid band_number

See Also

XiePutClientData, XieQueryPhotoflo, XieExecutePhotoflo, XieFloExportClientHistogram, XieFloExportClientLUT, XieFloExportClientPhoto, XieFloExportClientROI

 XIElib - Abort and Await Functions	XieAbort 

�tc "Abort and Await Functions " \l 1�

�tc "XieAbort " \l 2�

abort.c

void XieAbort (

    Display *		/* display */,

    unsigned long	/* name_space */,

    unsigned long	/* flo_id */

);

Name

XieAbort - prematurely terminate execution of a photoflo

Syntax

void XieAbort (display, name_space, flo_id);

Display *display;

unsigned long name_space;

unsigned long flo_id;

Arguments

display	Specifies a connection to an X server.

name_space	Specifies the execution domain used for the photoflo to abort.

flo_id	Specifies a particular instance of the photoflo to abort.

Returns



Description

XieAbort will prematurely terminate execution of the photoflo specified by name_space and flo_id. Any output from the photoflo that is pending client retrieval is freed. Stored photoflos are returned to the inactive state; immediate photoflos are destroyed.



If the photoflo specified by name_space and flo_id is either invalid or  not active, no action is taken; it is not an error, and nothing is destroyed.



For stored photoflos, name_space is always ServerIDSpace (the value zero) and flo_id is the photoflo's resource-id. For immediate photoflos name_space is a photospace resource-id and flo_id  is 32-bit value that uniquely identifies the instance of the photoflo within name_space.

Structures



Errors



See Also

XieExecutePhotoflo, XieExecuteImmediate

 XIElib - Abort and Await Functions	XieAwait 

�tc "XieAwait " \l 2�

await.c

void XieAwait (

   Display *		/* display */,

   unsigned long	/* name_space */,

   unsigned long	/* flo_id */

);

Name

XieAwait - block all further requests for this client connection from being honored by the server while the photoflo is active

Syntax

void XieAwait (display, name_space, flo_id);

Display *display;

unsigned long name_space;

unsigned long flo_id;

Arguments

display	Specifies a connection to an X server.

name_space	Specifies the execution domain used for the photoflo to block requests.

flo_id	Specifies a particular instance of the photoflo to block requests.

Returns



Description

XieAwait blocks all further requests for this client connection from being honored by the server while the photoflo, specified by name_space and flo_id, is active. When the photoflo transitions from the active state, blocked requests are allowed to be processed in the order received.



If the photoflo specified by name_space and flo_id is either invalid or not active, no action is taken; it is not an error, and the client is not blocked.



For stored photoflos, name_space is always ServerIDSpace (the value zero) and flo_id is the photoflo's resource-id. For immediate photoflos name_space is a photospace resource-id and flo_id  is 32-bit value that uniquely identifies the instance of the photoflo within name_space.

Warning

Calling XieAwait before sending all import data or before retrieving all export data will block the client from sending or retrieving the remaining data. This also will prevent completion of the photoflo and prevent any and all protocol requests from this client from being honored. This deadlock can be broken only by another client completing or aborting the photoflo (to release the Await), or by breaking the client connection.

Structures



Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

See Also

XieExecutePhotoFlo, XieExecuteImmediate

 XIElib - Photoflo Element Functions	XieFloImportClientLUT 

�tc "Photoflo Element Functions " \l 1�

�tc "XieFloImportClientLUT " \l 2�

conven.c

void XieFloImportClientLUT (

    XiePhotoElement *	/* element */,

    XieDataClass 	/* data_class */,

    XieOrientation	/* band_order */,

    XieLTriplet		/* length */,

    XieLevels		/* levels */

);

Name

XieFloImportClientLUT - specify an ImportClientLUT element and set its parameters

Syntax

void XieFloImportClientLUT (element, data_class, band_order, length, levels)

XiePhotoElement *element;

XieDataClass data_class;

XieOrientation band_order;

XieLTriplet length;

XieLevels levels;

Arguments

element	Specifies the XiePhotoElement structure to use.

data_class	Specifies the number of lookup arrays to expect.

band_order	Specifies the order of triple band arrays.

length	Specifies the number of entries per array.

levels	Specifies the number of quantization levels represented per array.

Returns



Description

An ImportClientLUT element accepts lookup table data from the protocol stream. The transport of data through the protocol stream is accomplished using XiePutClientData. This data is accepted by the Point, ExportLUT, and ExportClientLUT elements.



data_class, which specifies the number of lookup arrays to expect, can be set to one of the following standard data class values:



xieValSingleBand

xieValTripleBand



The length of each array should match the number of source image levels that will be remapped through the array. When a triple band image is to be remapped through a single band array, the length of the array should match the product of the source image levels of all three bands; in this case, band_order specifies the order in which pixels from a triple band image should be combined to form indices for a single band array. band_order can be set to one of the following standard orientation values:



xieValLSFirst

xieValMSFirst



The least significant band of trichromatic data is the first band mentioned in the common name of the colorspace: for example, red is the least significant band of RGB data. When one LUT array is used with triple band data, the algorithm for computing combined array indices, based on band_order, is:



LUT band order�LUT indexing algorithm for combining pixel values��LSFirst�index = value[0] + value[1] x levels[0] + value[2] x levels[0] x levels[1]��MSFirst�index = value[2] + value[1] x levels[2] + value[0] x levels[2] x levels[1]��

When three LUT arrays are used, band_order specifies whether this band corresponds with the least significant or most significant LUT array. Each array is transported as a separate data stream. For example, if the colorspace of the image data is RGB:



band�LSFirst�MSFirst��0�Red array�Blue array��1�Green array�Green array��2�Blue array�Red array��Structures

XieFloImportClientLUT sets the XiePhotoElement structure field elemType to xieElemImportClientLUT, which identifies the element as an ImportClientLUT, and sets the fields of the member structure ImportClientLUT using the arguments in the argument list.



typedef unsigned XieDataClass;

typedef unsigned XieOrientation;

typedef unsigned long XieLTriplet[3];

typedef unsigned long XieLevels[3];



    element->elemType = xieElemImportClientLUT;

    element->data.ImportClientLUT.data_class = data_class;

    element->data.ImportClientLUT.band_order = band_order;

    element->data.ImportClientLUT.length[0]  = length[0];

    element->data.ImportClientLUT.length[1]  = length[1];

    element->data.ImportClientLUT.length[2]  = length[2];

    element->data.ImportClientLUT.levels[0]  = levels[0];

    element->data.ImportClientLUT.levels[1]  = levels[1];

    element->data.ImportClientLUT.levels[2]  = levels[2];

typedef struct {

	int elemType;

	union {

		...

		struct {

			XieDataClass data_class;

			XieOrientation band_order;

			XieLTriplet length;

			XieLevels levels;

		} ImportClientLUT;

		...

	} data;

} XiePhotoElement;



/* Definitions of DataClass */

#define xieValSingleBand	1

#define xieValTripleBand	2



/* Definitions of Orientation Types */

#define xieValLSFirst	1

#define xieValMSFirst	2

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloMatch	levels is incompatible with the server's depth-handling capabilities

xieErrNoFloValue	Invalid data_class or band_order

See Also

XiePutClientData, XieQueryPhotoflo, XieFloExportLUT, XieFloExportClientLUT, XieFloPoint, XieFloImportLUT

 XIElib - Photoflo Element Functions	XieFloImportClientPhoto 

�tc "XieFloImportClientPhoto " \l 2�

conven.c

void XieFloImportClientPhoto (

    XiePhotoElement *	/* element */,

    XieDataClass 	/* data_class */,

    XieLTriplet		/* width */,

    XieLTriplet		/* height */,

    XieLevels		/* levels */,

    Bool		/* notify */,

    XieDecodeTechnique	/* decode_tech */,

    XiePointer		/* decode_param */

);

Name

XieFloImportClientPhoto - specify an ImportClientPhoto element and set its parameters

Syntax

void XieFloImportClientPhoto (element, data_class, width, height, levels, notify, decode_tech, decode_param)

XiePhotoElement *element;

XieDataClass data_class;

XieLTriplet width;

XieLTriplet height;

XieLevels levels;

Bool notify;

XieDecodeTechnique decode_tech;

XiePointer decode_param;

Arguments

element	Specifies the XiePhotoElement structure to use.

data_class	Specifies whether the data is single band or triple band.

width	Specifies the width of the image in pixels per band.

height	Specifies the height of the image in pixels per band.

levels	Specifies the number of quantization levels per band.

notify	Specifies whether to enable sending DecodeNotify events.

decode_tech	Specifies the decode technique required to interpret the image.

decode_param	Specifies the list of additional parameters required by decode_tech.

Returns



Description

An ImportClientPhoto element accepts image data from the protocol stream. This data may be processed for display or used as process domain data. A process domain is inserted in many element definitions and is used to restrict the element's processing to a subset of the source data pixels. The attributes and organization of the expected data stream are fully specified by the parameters. The actual transport of image data through the protocol stream is requested using XiePutClientData.



notify enables DecodeNotify events to be sent if anomalies are encountered while interpreting the imported image data: either an error has been encountered while decoding an image or the image data received does not satisfy the expected dimensions.



Only constrained data can be sent through the protocol stream; therefore, levels must be valid.



data_class specifies whether the data is single band or triple band and can be set to one of the following standard data class values:



xieValSingleBand

xieValTripleBand



Decode techniques define the techniques that can be used to interpret uncompressed image data or decode compressed images. decode_tech can be assigned one of the following standard decode technique values:



xieValDecodeUncompressedSingle

xieValDecodeUncompressedTriple

xieValDecodeG31D

xieValDecodeG32D

xieValDecodeG42D

xieValDecodeJPEGBaseline

xieValDecodeJPEGLossless

xieValDecodeTIFF2

xieValDecodeTIFFPackBits



If a vendor defined additional private decode techniques, the values given to these techniques can be assigned to decode_tech.

Output Attributes

Class	class of imported image

Type	constrained

Width	width of imported image (in pixels)

Height	height of imported image (in pixels)

Levels	levels of imported image

Structures

XieFloImportClientPhoto sets the XiePhotoElement structure field elemType to xieElemImportClientPhoto, which identifies the element as an ImportClientPhoto, and sets the fields of the member structure ImportClientPhoto using the arguments in the argument list.



typedef unsigned XieDataClass;

typedef unsigned XieDecodeTechnique;

typedef unsigned long XieLTriplet[3];

typedef unsigned long XieLevels[3];



    element->elemType = xieElemImportClientPhoto;

    element->data.ImportClientPhoto.data_class   = data_class;

    element->data.ImportClientPhoto.width[0]     = width[0];

    element->data.ImportClientPhoto.width[1]     = width[1];

    element->data.ImportClientPhoto.width[2]     = width[2];

    element->data.ImportClientPhoto.height[0]    = height[0];

    element->data.ImportClientPhoto.height[1]    = height[1];

    element->data.ImportClientPhoto.height[2]    = height[2];

    element->data.ImportClientPhoto.levels[0]    = levels[0];

    element->data.ImportClientPhoto.levels[1]    = levels[1];

    element->data.ImportClientPhoto.levels[2]    = levels[2];

    element->data.ImportClientPhoto.notify       = notify;

    element->data.ImportClientPhoto.decode_tech  = decode_tech;

    element->data.ImportClientPhoto.decode_param = decode_param;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XieDataClass data_class;

			XieLTriplet width;

			XieLTriplet height;

			XieLevels levels;

			Bool notify;

			XieDecodeTechnique decode_tech;

			XiePointer decode_param;

		} ImportClientPhoto;

		...

	} data;

} XiePhotoElement;



/* Definitions of DataClass */

#define xieValSingleBand	1

#define xieValTripleBand	2



/* Definitions for DecodeTechniques */

#define xieValDecodeUncompressedSingle	2

#define xieValDecodeUncompressedTriple	3

#define xieValDecodeG31D	4

#define xieValDecodeG32D	6

#define xieValDecodeG42D	8

#define xieValDecodeJPEGBaseline	10

#define xieValDecodeJPEGLossless	12

#define xieValDecodeTIFF2	14

#define xieValDecodeTIFFPackBits	16

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloMatch	levels is incompatible with the server's depth-handling capabilities

xieErrNoFloTechnique	Invalid decode_tech or decode_param

xieErrNoFloValue	Invalid width, height, levels (zero) or�invalid data_class

See Also

XieTecDecodeUncompressedSingle, XieTecDecodeUncompressedTriple, XieTecDecodeG31D, XieTecDecodeG32D, XieTecDecodeG42D, XieTecDecodeTIFF2, XieTecDecodeTIFFPackBits, XieTecDecodeJPEGBaseline, XieTecDecodeJPEGLossless

 XIElib - Photoflo Element Functions	XieFloImportClientROI 

�tc "XieFloImportClientROI " \l 2�

conven.c

void XieFloImportClientROI (

    XiePhotoElement *	/* element */,

    unsigned int	/* rectangles */

);

Name

XieFloImportClientROI - specify an ImportClientROI element and set its parameters

Syntax

void XieFloImportClientROI (element, rectangles);

XiePhotoElement *element;

unsigned int rectangles;

Arguments

element	Specifies the XiePhotoElement structure to use.

rectangles	Specifies the number of rectangles expected.

Returns



Description

An ImportClientROI element accepts a list of rectangles from the protocol stream. These data can be used as input to a process domain or an ExportROI or ExportClientROI element. A process domain is inserted in many element definitions and is used to restrict the element's processing to a subset of the source data pixels. The actual transport of data through the protocol stream is accomplished using XiePutClientData (the band_number parameter of XiePutClientData is ignored).

Structures

XieFloImportClientROI sets the XiePhotoElement structure field elemType to xieElemImportClientROI, which identifies the element as an ImportClientROI, and sets the fields of the member structure ImportClientROI using the arguments in the argument list.



    element->elemType			     = xieElemImportClientROI;

    element->data.ImportClientROI.rectangles = rectangles;

typedef struct {

	int elemType;

	union {

		...

		struct {

			unsigned int rectangles;

		} ImportClientROI;

		...

	} data;

} XiePhotoElement;

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

See Also

XiePutClientData, XieQueryPhotoflo�XieFloExportROI, XieFloExportClientROI, XieFloImportROI

 XIElib - Photoflo Element Functions	XieFloImportDrawable 

�tc "XieFloImportDrawable " \l 2�

conven.c

void XieFloImportDrawalbe (

    XiePhotoElement *	/* element */,

    Drawable		/* drawable */,

    int			/* src_x */,

    int			/* src_y */,

    unsigned int	/* width */,

    unsigned int	/* height */,

    unsigned long	/* fill */,

    Bool		/* notify */

);

Name

XieFloImportDrawable - specify an ImportDrawable element and set its parameters

Syntax

void XieFloImportDrawable (element, drawable, src_x, src_y, width, height, fill, notify)

XiePhotoElement *element;

Drawable drawable;

int src_x;

int src_y;

unsigned int width;

unsigned int height;

unsigned long fill;

Bool notify;

Arguments

element	Specifies the XiePhotoElement structure to use.

drawable	Specifies the Drawable resource supplying the data.

src_x	Specifies the left corner of the region of the data to be imported.

src_y	Specifies the upper corner of the region of the data to be imported.

width	Specifies the width of the region of the data to be imported.

height	Specifies the height of the region of the data to be imported.

fill	Specifies the Colormap index to use for all regions that are obscured.

notify	Specifies whether to enable sending ImportObscured events.

Returns



Description

An ImportDrawable element allows access to data existing in a Drawable. This data may be processed for display or, if drawable is one bit deep, used as process domain data. A process domain is inserted in many element definitions and is used to restrict the element's processing to a subset of the source data pixels.



notify enables ImportObscured events to be sent if data for one or more regions of a Window are obscured and cannot be retrieved from backing store. The arguments src_x, src_y, width, and height specify the region of data to be imported from drawable, where src_x and src_y define the upper-left corner of the region.

Output Attributes

Class	single band

Type	constrained

Width	width

Height	height

Levels	2depth (that is, drawable depth)

Structures

XieFloImportDrawable sets the XiePhotoElement structure field elemType to xieElemImportDrawable, which identifies the element as an ImportDrawable, and sets the fields of the member structure ImportDrawable using the arguments in the argument list.



    element->elemType = xieElemImportDrawable;

    element->data.ImportDrawable.drawable = drawable;

    element->data.ImportDrawable.src_x    = src_x;

    element->data.ImportDrawable.src_y    = src_y;

    element->data.ImportDrawable.width    = width;

    element->data.ImportDrawable.height   = height;

    element->data.ImportDrawable.fill     = fill;

    element->data.ImportDrawable.notify   = notify;

typedef struct {

	int elemType;

	union {

		...

		struct {

			Drawable drawable;

			int src_x;

			int src_y;

			unsigned int width;

			unsigned int height;

			unsigned long fill;

			Bool notify;

		} ImportDrawable;

		...

	} data;

} XiePhotoElement;

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloDrawable	Invalid drawable

xieErrNoFloValue	Invalid region width, height, src_x, src_y

See Also



 XIElib - Photoflo Element Functions	XieFloImportDrawablePlane 

�tc "XieFloImportDrawablePlane " \l 2�

conven.c

void XieFloImportDrawablePlane (

    XiePhotoElement *	/* element */,

    Drawable		/* drawable */,

    int			/* src_x */,

    int			/* src_y */,

    unsigned int	/* width */,

    unsigned int	/* height */,

    unsigned long	/* fill */,

    unsigned long	/* bit_plane */,

    Bool		/* notify */

);

Name

XieFloImportDrawablePlane - specify an ImportDrawablePlane element and set its parameters

Syntax

void XieFloImportDrawablePlane (element, drawable, src_x, src_y, width, height, fill, bit_plane, notify)

XiePhotoElement *element;

Drawable drawable;

int src_x;

int src_y;

unsigned int width;

unsigned int height;

unsigned long fill;

unsigned long bit_plane;

Bool notify;

Arguments

element	Specifies the XiePhotoElement structure to use.

drawable	Specifies the Drawable resource supplying the data.

src_x	Specifies the left corner of the region of the data to be imported.

src_y	Specifies the upper corner of the region of the data to be imported.

width	Specifies the width of the region of the data to be imported.

height	Specifies the height of the region of the data to be imported.

fill	Specifies the Colormap index to use for all regions that are obscured.

bit_plane	Specifies the plane to be imported from drawable.

notify	Specifies whether to enable sending ImportObscured events.

Returns



Description

An ImportDrawablePlane event allows access to a single plane of data existing in a Drawable. This data may be processed for display or used as process domain data. A process domain is inserted in many element definitions and is used to restrict the element's processing to a subset of the source data pixels.



notify enables ImportObscured events to be sent if data for one or more regions of a Window are obscured and cannot be retrieved from backing store. The arguments src_x, src_y, width, and height specify the region of data to be imported from drawable, where src_x and src_y define the upper-left corner of the region.



bit_plane must have exactly one bit set to one (1), and the value of bit_plane must be less than or equal to � EMBED Equation.2  ���, where n is the depth of drawable. This single bit selects the corresponding bit to be extracted from pixels within drawable.

Output Attributes

Class	single band

Type	constrained

Width	width

Height	height

Levels	2

Structures

XieFloImportDrawablePlane sets the XiePhotoElement structure field elemType to xieElemImportDrawablePlane, which identifies the element as an ImportDrawablePlane, and sets the fields of the member structure ImportDrawablePlane using the arguments in the argument list.



    element->elemType = xieElemImportDrawablePlane;

    element->data.ImportDrawablePlane.drawable  = drawable;

    element->data.ImportDrawablePlane.src_x     = src_x;

    element->data.ImportDrawablePlane.src_y     = src_y;

    element->data.ImportDrawablePlane.width     = width;

    element->data.ImportDrawablePlane.height    = height;

    element->data.ImportDrawablePlane.fill      = fill;

    element->data.ImportDrawablePlane.bit_plane = bit_plane;

    element->data.ImportDrawablePlane.notify    = notify;

typedef struct {

	int elemType;

	union {

		...

		struct {

			Drawable drawable;

			int src_x;

			int src_y;

			unsigned int width;

			unsigned int height;

			unsigned long fill;

			unsigned long bit_plane;

			Bool notify;

		} ImportDrawablePlane;

		...

	} data;

} XiePhotoElement;

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloDrawable	Invalid drawable

xieErrNoFloValue	Invalid bit_plane or region width, height, src_x, src_y

See Also



 XIElib - Photoflo Element Functions	XieFloImportLUT 

�tc "XieFloImportLUT " \l 2�

conven.c

void XieFloImportLUT (

    XiePhotoElement *	/* element */,

    XieLut		/* lut */

);

Name

XieFloImportLUT - specify an ImportLUT element and set its parameters

Syntax

void XieFloImportLUT (element, lut)

XiePhotoElement *element;

XieLut lut;

Arguments

element	Specifies the XiePhotoElement structure to use.

lut	Specifies the LUT resource supplying the lookup table.

Returns



Description

An ImportLUT element allows access to lookup table data existing in a LUT resource. These data are accepted by the Point, ExportLUT, and ExportClientLUT elements.



Attributes of the lookup table data are inherited from lut.

Structures

XieFloImportLUT sets the XiePhotoElement structure field elemType to xieElemImportLUT, which identifies the element as an ImportLUT, and sets the fields of the member structure ImportLUT using the arguments in the argument list.



typedef XID XieLut;



    element->elemType = xieElemImportLUT;

    element->data.ImportLUT.lut = lut;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XieLut lut;

		} ImportLUT;

		...

	} data;

} XiePhotoElement;

Errors

xieErrNoFloAccess	Attempt to import from lut before it has been populated

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloLUT	An unknown lut has been specified

See Also



 XIElib - Photoflo Element Functions	XieFloImportPhotomap 

�tc "XieFloImportPhotomap " \l 2�

conven.c

void XieFloImportPhotomap (

    XiePhotoElement *	/* element */,

    XiePhotomap		/* photomap */,

    Bool		/* notify */

);

Name

XieFloImportPhotomap - specify an ImportPhotomap element and set its parameters

Syntax

void XieFloImportPhotomap (element, photomap, notify)

XiePhotoElement *element;

XiePhotomap photomap;

Bool notify;

Arguments

element	Specifies the XiePhotoElement structure to use.

photomap	Specifies the photomap resource supplying image data.

notify	Specifies whether to enable sending DecodeNotify events.

Returns



Description

An ImportPhotomap element allows access to image data existing in a photomap; a photomap is a server resource that can be used to store image data. This data may be processed for display or used as process domain data (if its levels attribute is 2), or it may be used as source to ExportPhotomap or ExportClientPhoto or any other element which takes image data as input. A process domain is inserted in many element definitions and is used to restrict the element's processing to a subset of the source data pixels.



notify enables DecodeNotify events to be sent if anomalies are encountered while decoding compressed data: either an error has been encountered while decoding an image or the image data received does not satisfy the expected dimensions.



Attributes of the source data are inherited from photomap.

Output Attributes

Class	same as photomap

Type	same as photomap

Width	same as photomap

Height	same as photomap

Levels	same as photomap

Structures

XieFloImportPhotomap sets the XiePhotoElement structure field elemType to xieElemImportPhotomap, which identifies the element as an ImportPhotomap, and sets the fields of the member structure ImportPhotomap using the arguments in the argument list.



typedef XID XiePhotomap;



    element->elemType = xieElemImportPhotomap;

    element->data.ImportPhotomap.photomap = photomap;

    element->data.ImportPhotomap.notify   = notify;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhotomap photomap;

			Bool notify;

		} ImportPhotomap;

		...

	} data;

} XiePhotoElement;

Errors

xieErrNoFloAccess	Attempt to import from photomap before it has been populated

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloPhotomap	An unknown photomap has been specified

See Also

XieFloExportPhotomap, XIeFloExportClientPhoto



See Also



 XIElib - Photoflo Element Functions	XieFloImportROI 

�tc "XieFloImportROI " \l 2�

conven.c

void XieFloImportROI (

    XiePhotoElement *	/* element */,

    XieRoi		/* roi */

);

Name

XieFloImportROI - specify an ImportROI element and set its parameters

Syntax

void XieFloImportROI (element, roi)

XiePhotoElement *element;

XieRoi roi;

Arguments

element	Specifies the XiePhotoElement structure to use.

roi	Specifies the ID of the ROI supplying the list-of-rectangles.

Returns



Description

An ImportROI element allows access to a list-of-rectangles existing in a ROI resource. This data may be referenced by a process domain, or used as input to an ExportClientROI or ExportROI element. A process domain is inserted in many element definitions and is used to restrict the element's processing to a subset of the source data pixels.

Structures

XieFloImportROI sets the XiePhotoElement structure field elemType to xieElemImportROI, which identifies the element as an ImportROI, and sets the fields of the member structure ImportROI using the arguments in the argument list.



typedef XID XieRoi;



    element->elemType = xieElemImportROI;

    element->data.ImportROI.roi = roi

typedef struct {

	int elemType;

	union {

		...

		struct {

			XieRoi roi;

		} ImportROI;

		...

	} data;

} XiePhotoElement;

Errors

xieErrNoFloAccess	Attempt to import from roi before it has been populated

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloPhotomap	An unknown roi has been specified

See Also

XieFloExportROI, XieFloExportClientROI



See Also



 XIElib - Photoflo Element Functions	XieFloArithmetic 

�tc "XieFloArithmetic " \l 2�

conven.c

void XieFloArithmetic (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src1 */,

    XiePhototag		/* src2 */,

    XieProcessDomain *	/* domain */,

    XieConstant		/* constant */,

    XieArithmeticOp	/* operator */,

    unsigned int	/* band_mask */

);

Name

XieFloArithmetic - specify an Arithmetic element and set its parameters

Syntax

void XieFloArithmetic (element, src1, src2, domain, constant, operator, band_mask)

XiePhotoElement *element;

XiePhototag src1;

XiePhototag src2;

XieProcessDomain *domain;

XieConstant constant;

XieArithmeticOp operator;

unsigned int band_mask;

Arguments

element	Specifies the XiePhotoElement structure to use.

src1	Specifies the phototag of the first data source.

src2	Specifies the phototag of the second data source, or 0 if none.

domain	Specifies the subset of source data that will be operated on.

constant	Specifies the constant data source (if src2 is 0).

operator	Specifies the arithmetic operation to be performed.

band_mask	Specifies which bands are to be operated on.

Returns



Description

An Arithmetic element produces output data by performing an addition, subtraction, minimum, or maximum operation between two data sources or between a single data source and a constant. Furthermore, multiplication, division, or gamma correction may by applied to a single data source.



When two sources are involved, src1 and src2 are the phototags of the elements supplying source data (constant is ignored). A phototag is the position or index of an element within an array of elements used to specify a photoflo; the first element in the array has a phototag value of one (1). If the operation is to involve a constant, src1 is one operand, src2 must be zero, and constant is used as the other operand.



When two sources are involved, all attributes, other than width and height, must match; all output attributes are inherited from src1.



In order to specify a subset of source data that will be operated on, the phototag, offset_x, and offset_y fields of the XieProcessDomain structure pointed to by domain must be supplied; XIElib does not provide a convenience function to create and/or fill in an XieProcessDomain structure. If the entire source data is to be operated on, a pointer to an XieProcessDomain structure must still be provided, with the phototag field set to zero (0); the offset_x and offset_y fields are ignored.



Only bands selected by band_mask are subject to processing. Other bands present in the image are passed through to the output. For example, a band_mask of 0012 indicates that only the “least significant band” would be processed; operating on all bands requires a band_mask of 1112. Using band_mask to select source data that have two (2) or less levels is not permitted.



Pixel computations that would lead to errors, will yield valid server-dependent values (for example, dividing by a constrained pixel value of zero might result in a value of levels-1).



The valid operations for the Arithmetic process element are:



Operator�src1 (operator) src2�src1 (operator) constant��xieValAdd�src1 + src2�src1 + constant��xieValSub�src1 - src2�src1 - constant��xieValSubRev�src2 - src1�constant - src1��xieValMul��src1 * constant��xieValDiv��src1 / constant��xieValDivRev��constant / src1��xieValMin�minimum( src1, src2 )�minimum( src1, constant )��xieValMax�maximum( src1, src2 )�maximum( src1, constant )��xieValGamma (constrained)��(levels - 1) * ((src1 / (levels - 1))constant)��xieValGamma (unconstrained)��src1constant��Output Attributes

Class	same as src1

Type	same as src1

Width	same as src1

Height	same as src1

Levels	same as src1

Structures

XieFloArithmetic sets the XiePhotoElement structure field elemType to xieElemArithmetic, which identifies the element as an Arithmetic, and sets the fields of the member structure Arithmetic using the arguments in the argument list.



typedef unsigned XiePhototag;

typedef float XieConstant[3];

typedef unsigned XieArithmeticOp;

typedef struct {

	 int offset_x;

	 int offset_y;

	 XiePhototag phototag;

} XieProcessDomain;



    element->elemType = xieElemArithmetic;

    element->data.Arithmetic.src1            = src1;

    element->data.Arithmetic.src2            = src2;

    element->data.Arithmetic.domain.offset_x = domain->offset_x;

    element->data.Arithmetic.domain.offset_y = domain->offset_y;

    element->data.Arithmetic.domain.phototag = domain->phototag;

    element->data.Arithmetic.constant[0]     = constant[0];

    element->data.Arithmetic.constant[1]     = constant[1];

    element->data.Arithmetic.constant[2]     = constant[2];

    element->data.Arithmetic.operator        = operator;

    element->data.Arithmetic.band_mask       = band_mask;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src1;

			XiePhototag src2;

			XieProcessDomain domain;

			XieConstant constant;

			XieArithmeticOp operator;

			unsigned int band_mask;

		} Arithmetic;

		...

	} data;

} XiePhotoElement;



/* Definitions of ArithmeticOperations */

#define xieValAdd	1

#define xieValSub	2

#define xieValSubRev	3

#define xieValMul	4

#define xieValDiv	5

#define xieValDivRev	6

#define xieValMin	7

#define xieValMax	8

#define xieValGamma	9

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloDomain	Invalid domain

xieErrNoFloMatch	Class, type, or levels differ between src1 and src2 or�selected data source are bitonal

xieErrNoFloOperator	Invalid operator

xieErrNoFloSource	Invalid src1 or src2 or�src2 has been specified with a monadic operator

See Also



 XIElib - Photoflo Element Functions	XieFloBandCombine 

�tc "XieFloBandCombine " \l 2�

conven.c

void XieFloBandCombine (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src1 */,

    XiePhototag		/* src2 */,

    XiePhototag		/* src3 */

);

Name

XieFloBandCombine - specify a BandCombine element and set its parameters

Syntax

void XieFloBandCombine (element, src1, src2, src3)

XiePhotoElement *element;

XiePhototag src1;

XiePhototag src2;

XiePhototag src3;

Arguments

element	Specifies the XiePhotoElement structure to use.

src1	Specifies the first element supplying source data.

src2	Specifies the second element supplying source data.

src3	Specifies the third element supplying source data.

Returns



Description

A BandCombine element merges three single band data sources to produce a triple band result. The arguments src1, src2, and src3 must be of the same type, and each source must be single band. Other attributes that are taken from the individual sources may differ. The output will be triple band.



No subsetting by a process domain is provided: the entire image is processed. A process domain is used to restrict the element's processing to a subset of the source data pixels; it can be either a list-of-rectangles or a control-plane.

Output Attributes

Class	triple band

Type	same as src1

Width	same as srcs

Height	same as srcs

Levels	same as srcs

Structures

XieFloBandCombine sets the XiePhotoElement structure field elemType to xieElemBandCombine, which identifies the element as a BandCombine, and sets the fields of the member structure BandCombine using the arguments in the argument list.



typedef unsigned XiePhototag;



    element->elemType = xieElemBandCombine;

    element->data.BandCombine.src1 = src1;

    element->data.BandCombine.src2 = src2;

    element->data.BandCombine.src3 = src3;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src1;

			XiePhototag src2;

			XiePhototag src3;

		} BandCombine;

		...

	} data;

} XiePhotoElement;

�Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloMatch	A source has more than one band or�type differs between sources

xieErrNoFloSource	Invalid src1, src2, or src3

See Also



 XIElib - Photoflo Element Functions	XieFloBandExtract 

�tc "XieFloBandExtract " \l 2�

conven.c

void XieFloBandExtract (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src */,

    unsigned int	/* levels */,

    double		/* bias */,

    XieConstant		/* coefficients */

);

Name

XieFloBandExtract - specify a BandExtract element and set its parameters

Syntax

void XieFloBandExtract (element, src, levels, bias, coefficients)

XiePhotoElement *element;

XiePhototag src;

unsigned int levels;

double bias;

XieConstant coefficients;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying source data.

levels	Specifies the number of quantization levels for the output.

bias	Specifies the value to be added to each output pixel.

coefficients	Specifies the proportion of each band in src to pixelsin the single band result.

Returns



Description

A BandExtract element produces single band output data from a triple band source by multiplying a pixel value from each source band by its corresponding coefficient and then summing the results with the bias value.



coefficients is a three-element array that determines the proportion of each source band pixel that is used to form the output. levels is used as the levels attribute of the output data if the src data are constrained; otherwise, it is ignored.



The source data must be triple band, and all bands must have equal dimensions. The output data will be single band, with levels taken from the levels parameter, if the data type is constrained. All other attributes are inherited from src.



No subsetting by a process domain is provided: the entire image is processed. A process domain is used to restrict the element's processing to a subset of the source data pixels; it can be either a list-of-rectangles or a control-plane.

Output Attributes

Class	single band

Type	same as src

Width	same as src

Height	same as src

Levels	levels if src is contrained, else unknown

Structures

XieFloBandExtract sets the XiePhotoElement structure field elemType to xieElemBandExtract, which identifies the element as a BandExtract, and sets the fields of the member structure BandExtract using the arguments in the argument list.



typedef float XieConstant[3];

typedef unsigned XiePhototag;



    element->elemType = xieElemBandExtract;

    element->data.BandExtract.src             = src;

    element->data.BandExtract.levels          = levels;

    element->data.BandExtract.bias            = bias;

    element->data.BandExtract.coefficients[0] = coefficients[0];

    element->data.BandExtract.coefficients[1] = coefficients[1];

    element->data.BandExtract.coefficients[2] = coefficients[2];

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			unsigned int levels;

			float bias;

			XieConstant coefficients;

		} BandExtract;

		...

	} data;

} XiePhotoElement;

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloMatch	src is not triple band or�unequal interband dimensions

xieErrNoFloSource	Invalid src

See Also



 XIElib - Photoflo Element Functions	XieFloBandSelect 

�tc "XieFloBandSelect " \l 2�

conven.c

void XieFloBandSelect (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src */,

    unsigned int	/* band_number */

);

Name

XieFloBandSelect - specify a BandSelect element and set its parameters

Syntax

void XieFloBandSelect (element, src, band_number)

XiePhotoElement *element;

XiePhototag src;

unsigned int band_number;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying source data.

band_number	Specifies which src band is to be selected to provide the output data.

Returns



Description

A BandSelect element produces single band output data by selecting a single band from a triple band source.



No subsetting by a process domain is provided: the entire image is processed. A process domain is used to restrict the element's processing to a subset of the source data pixels; it can be either a list-of-rectangles or a control-plane.

Output Attributes

Class	single band

Type	same as src

Width	same as band selected from src

Height	same as band selected from src

Levels	same as band selected from src

Structures

XieFloBandSelect sets the XiePhotoElement structure field elemType to xieElemBandSelect, which identifies the element as a BandSelect, and sets the fields of the member structure BandSelect using the arguments in the argument list.



typedef unsigned XiePhototag;



    element->elemType = xieElemBandSelect;

    element->data.BandSelect.src             = src;

    element->data.BandSelect.band_number     = band_number;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			unsigned int band_number;

		} BandSelect;

		...

	} data;

} XiePhotoElement;

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloMatch	src is not triple band

xieErrNoFloSource	Invalid src

xieErrNoFloValue	Invalid band_number

See Also



 XIElib - Photoflo Element Functions	XieFloBlend 

�tc "XieFloBlend " \l 2�

conven.c

void XieFloBlend (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src1 */,

    XiePhototag		/* src2 */,

    XieConstant		/* src_constant */,

    XiePhototag		/* alpha */,

    double		/* alpha_const */,

    XieProcessDomain *	/* domain */,

    unsigned int	/* band_mask */

);

Name

XieFloBlend - specify a Blend element and set its parameters

Syntax

void XieFloBlend (element, src1, src2, src_constant, alpha, alpha_const, domain, band_mask)

XiePhotoElement *element;

XiePhototag src1;

XiePhototag src2;

XieConstant src_constant;

XiePhototag alpha;

double alpha_const;

XieProcessDomain *domain;

unsigned int band_mask;

Arguments

element	Specifies the XiePhotoElement structure to use.

src1	Specifies the phototag of the first data source.

src2	Specifies the phototag of the second data source, else 0.

src_constant	Specifies a constant data source, if src2 is 0.

alpha	Specifies the blend proportion for each processed pixel.

alpha_const	Specifies the constant blend proportion for each processed pixel.

domain	Specifies the subset of source data that will be operated on.

band_mask	Specifies which bands are to be operated on.

Returns



Description

A Blend element produces output data from two data sources or a single data source and a constant. Each output pixel is a percentage combination of the source values, as controlled by an alpha input image or an alpha constant.



When two sources are involved, src1 and src2 are the phototags of the elements supplying source data; src_constant is ignored. A phototag is the position or index of an element within an array of elements used to specify a photoflo; the first element in the array has a phototag value of one (1). If the operation is to involve a constant, src1 is one operand, src2 must be zero, and src_constant is used as the other operand. If alpha is nonzero, it controls the blend proportion for each pixel that is processed, otherwise alpha_const provides this control. Domain may control the subset of source data that will be operated on. Only bands selected by the band_mask are subject to processing. Other bands present in the image are passed through to the output. For example, a band_mask of 0012 indicates that only the “least significant band” would be processed; operating on all bands requires a band_mask of 1112. Using band_mask to select source data that have two (2) or less levels is not permitted.



When two sources are involved, all attributes, other that width and height, must match. If alpha is nonzero, it must be a source of constrained data.



In order to specify a subset of source data that will be operated on, the phototag, offset_x, and offset_y fields of the XieProcessDomain structure pointed to by domain must be supplied; XIElib does not provide a convenience function to create and/or fill in an XieProcessDomain structure. If the entire source data is to be operated on, a pointer to an XieProcessDomain structure must still be provided, with the phototag field set to zero (0); the offset_x and offset_y fields are ignored.



Within the intersection of the source(s) and domain, each output pixel is a blend of the corresponding pixels from src1 and src2 (or src1 pixels blended with src_constant). The degree of blend is determined by the corresponding pixel taken from alpha or the value of alpha_const. If alpha is nonzero, the proportion of blend is further scaled by alpha_const:



output = src1 * (1 - alpha / alpha_const) + src2 * (alpha / alpha_const)

(where alpha_const is greater than 0.0)



if alpha is zero:



output = src1 * (1 - alpha_const) + src2 * alpha_const

(where alpha_const is in the range [0.0, 1.0])

Output Attributes

Class	same as src1

Type	same as src1

Width	same as src1

Height	same as src1

Levels	same as src1

Structures

XieFloBlend sets the XiePhotoElement structure field elemType to xieElemBlend, which identifies the element as a Blend, and sets the fields of the member structure Blend using the arguments in the argument list.



typedef unsigned XiePhototag;

typedef float XieConstant[3];

typedef struct {

	 int offset_x;

	 int offset_y;

	 XiePhototag phototag;

} XieProcessDomain;



    element->elemType = xieElemBlend;

    element->data.Blend.src1            = src1;

    element->data.Blend.src2            = src2;

    element->data.Blend.src_constant[0] = src_constant[0];

    element->data.Blend.src_constant[1] = src_constant[1];

    element->data.Blend.src_constant[2] = src_constant[2];

    element->data.Blend.alpha           = alpha;

    element->data.Blend.alpha_constant  = alpha_constant;

    element->data.Blend.domain.offset_x = domain->offset_x;

    element->data.Blend.domain.offset_y = domain->offset_y;

    element->data.Blend.domain.phototag = domain->phototag;

    element->data.Blend.band_mask       = band_mask;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src1;

			XiePhototag src2;

			XieConstant src_constant;

			XiePhototag alpha;

			float alpha_constant;

			XieProcessDomain domain;

			unsigned int band_mask;

		} Blend;

		...

	} data;

} XiePhotoElement;

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloMatch	Incompatible attributes between src1 and src2 or�alpha is unconstrained or�selected source data are bitonal

xieErrNoFloSource	Invalid src1, src2, or alpha

xieErrNoFloValue	alpha is zero and alpha_const is outside the range [0.0,1.0], or�alpha is nonzero and alpha_const is nonpositive

See Also



 XIElib - Photoflo Element Functions	XieFloCompare 

�tc "XieFloCompare " \l 2�

conven.c

void XieFloCompare (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src1 */,

    XiePhototag		/* src2 */,

    XieProcessDomain *	/* domain */,

    XieConstant		/* constant */,

    XieCompareOp	/* operator */,

    Bool		/* combine */,

    unsigned int	/* band_mask */

);

Name

XieFloCompare - specify a Compare element and set its parameters

Syntax

void XieFloCompare (element, src1, src2, domain, constant, operator, combine, band_mask)

XiePhotoElement *element;

XiePhototag src1;

XiePhototag src2;

XieProcessDomain *domain;

XieConstant constant;

XieCompareOp operator;

Bool combine;

unsigned int band_mask;

Arguments

element	Specifies the XiePhotoElement structure to use.

src1	Specifies the first data source.

src2	Specifies the second data source.

domain	Specifies the subset of source data that will be operated on.

constant	Specifies the constant data source.

operator	Specifies the logical predicate operator used in the comparison.

combine	Specifies whether the comparison should be done on a per-band or on an all-bands basis.

band_mask	Specifies which bands are to be operated on.

Returns



Description

A Compare element takes two data sources or a single data source and a constant and generates a Boolean bitmap output that reflects the results of a pointwise comparison. The output data has a value of one wherever the comparison is true, and a value of zero everywhere else (that is, comparison false or comparison not performed). The comparison may be performed on a per-band basis or for all bands taken together.



When two sources are involved, src1 and src2 are the phototags of the elements supplying source data; constant is ignored. A phototag is the position or index of an element within an array of elements used to specify a photoflo; the first element in the array has a phototag value of one (1). If the operation is to involve a constant, src1 is one operand, src2 must be zero, and constant is used as the other operand. 



In order to specify a subset of source data that will be operated on, the phototag, offset_x, and offset_y fields of the XieProcessDomain structure pointed to by domain must be supplied; XIElib does not provide a convenience function to create and/or fill in an XieProcessDomain structure. If the entire source data is to be operated on, a pointer to an XieProcessDomain structure must still be provided, with the phototag field set to zero (0); the offset_x and offset_y fields are ignored.



operator is the logical predicate operator used in the comparison. The valid operators for the Compare process element are:



Operator�src1 (operator) src2�src1 (operator) constant��xieValLT�src1 �symbol 60 \f "Symbol" \s 9��  src2�src1 �symbol 60 \f "Symbol" \s 9�� constant��xieValLE�src1 �symbol 163 \f "Symbol" \s 9�� src2�src1 �symbol 163 \f "Symbol" \s 9�� constant��xieValEQ�src1 �symbol 61 \f "Symbol" \s 9�� src2�src1 �symbol 61 \f "Symbol" \s 9�� constant��xieValNE�src1 �symbol 185 \f "Symbol" \s 9�� src2�src1 �symbol 185 \f "Symbol" \s 9�� constant��xieValGT�src1 �symbol 62 \f "Symbol" \s 9�� src2�src1 �symbol 62 \f "Symbol" \s 9�� constant��xieValGE�src1 �symbol 179 \f "Symbol" \s 9�� src2�src1 �symbol 179 \f "Symbol" \s 9�� constant��

combine is a Boolean that determines whether the comparison should be done on a per-band basis or on an all-bands basis. Only bands selected by band_mask are subject to processing. Other bands present in the image are passed through to the output. For example, a band_mask of 0012 indicates that only the “least significant band” would be processed; operating on all bands requires a band_mask of 1112.



If combine is True or src1 is single band, the output data will form a single Boolean bitmap. If src1 is triple band and combine is False, the output data will yield three separate boolean bitmaps (for this case band_mask must specify all bands).



If src1 is triple band and combine is True, only the EQ and NE operators are allowed; equality is established for each band selected by band_mask, and then the result is logically ANDed to derive equality (inequality is a logical NOT of this result). For this case, width and height must match for all bands selected by band_mask.



The relationship between combine and data class dependencies is given in the following table:



combine�input class�band_mask�output class��True�single band�n/a�single band���triple band�selected bands�single band��False�single band�n/a�single band���triple band�all bands�triple band��Output Attributes

Class	see Description

Type	constrained

Width	same as src1

Height	same as src1

Levels	2 per band (see Description)

Structures

XieFloCompare sets the XiePhotoElement structure field elemType to xieElemCompare, which identifies the element as a Compare, and sets the fields of the member structure Compare using the arguments in the argument list.



typedef unsigned XiePhototag;

typedef float XieConstant[3];

typedef struct {

	 int offset_x;

	 int offset_y;

	 XiePhototag phototag;

} XieProcessDomain;



    element->elemType = xieElemCompare;

    element->data.Compare.src1            = src1;

    element->data.Compare.src2            = src2;

    element->data.Compare.domain.offset_x = domain->offset_x;

    element->data.Compare.domain.offset_y = domain->offset_y;

    element->data.Compare.domain.phototag = domain->phototag;

    element->data.Compare.constant[0]     = constant[0];

    element->data.Compare.constant[1]     = constant[1];

    element->data.Compare.constant[2]     = constant[2];

    element->data.Compare.operator        = operator;

    element->data.Compare.combine         = combine;

    element->data.Compare.band_mask       = band_mask;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src1;

			XiePhototag src2;

			XieProcessDomain domain;

			XieConstant constant;

			XieCompareOp operator;

			Bool combine;

			unsigned int band_mask;

		} Compare;

		...

	} data;

} XiePhotoElement;



/* Definitions of Compare Operators */

#define xieValLT	1

#define xieValLE	2

#define xieValEQ	3

#define xieValNE	4

#define xieValGT	5

#define xieValGE	6

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloDomain	Invalid domain

xieErrNoFloMatch	Class differs between src1 and src2 or�invalid combination of operator and combine or�triple band, and combine is false, and band_mask incomplete

xieErrNoFloOperator	Invalid operator

xieErrNoFloSource	Invalid src1 or src2

See Also



 XIElib - Photoflo Element Functions	XieFloConstrain 

�tc "XieFloConstrain " \l 2�

conven.c

void XieFloConstrain (

    XiePhotoElement *		/* element */,

    XiePhototag			/* src */,

    XieLevels			/* levels */,

    XieConstrainTechnique	/* constrain_tech */,

    XiePointer			/* constrain_param */

);

Name

XieFloConstrain - specify a Constrain element and set its parameters

Syntax

void XieFloConstrain (element, src, levels, constrain_tech, constrain_param)

XiePhotoElement *element;

XiePhototag src;

XieLevels levels;

XieConstrainTechnique constrain_tech;

XiePointer constrain_param;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying source data.

levels	Specifies the number of quantization levels desired in the output data.

constrain_tech	Specifies the technique to be used when constraining the data.

constrain_param	Specifies the list of additional parameters required by constrain.

Returns



Description

A Constrain element applies a quantization model to the image data to convert the data to a fixed number of quantization levels. Application of the quantization model may involve steps such as range shifting, scaling, clipping, and rounding.



src is the phototag of the element supplying source data. A phototag is the position or index of an element within an array of elements used to specify a photoflo; the first element in the array has a phototag value of one (1). Levels is the number of quantization levels desired in the output data. constrain_tech specifies the constrain technique to be used when constraining the data. constrain_param is the list of additional parameters required by constrain_tech.



If the input image is already constrained, the data will be reconstrained.



No subsetting by a process domain is provided: the entire image is processed. A process domain is used to restrict the element's processing to a subset of the source data pixels; it can be either a list-of-rectangles or a control-plane.



One of the following standard constrain technique values can be assigned to constrain_tech :



xieValConstrainClipScale

xieValConstrainHardClip	



If a vendor defined additional private constrain techniques, the values given to these techniques can be assigned to constrain_tech.

Output Attributes

Class	same as src

Type	constrained

Width	same as src

Height	same as src

Levels	levels

Structures

XieFloConstrain sets the XiePhotoElement structure field elemType to xieElemConstrain, which identifies the element as a Constrain, and sets the fields of the member structure Constrain using the arguments in the argument list.



typedef unsigned XiePhototag;

typedef unsigned long XieLevels[3];

typedef unsigned XieConstrainTechnique;



    element->elemType = xieElemConstrain;

    element->data.Constrain.src             = src;

    element->data.Constrain.levels[0]       = levels[0];

    element->data.Constrain.levels[1]       = levels[1];

    element->data.Constrain.levels[2]       = levels[2];

    element->data.Constrain.constrain_tech  = constrain_tech;

    element->data.Constrain.constrain_param = constrain_param;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			XieLevels levels;

			XieConstrainTechnique constrain_tech;

			XiePointer constrain_param;

		} Constrain;

		...

	} data;

} XiePhotoElement;



/* Definitions for ConstrainTechniques */

#define xieValConstrainClipScale	2

#define xieValConstrainHardClip	4

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloSource	Invalid src

xieErrNoFloTechnique	Invalid constrain_tech or constrain_param

See Also

XieTecClipScale

 XIElib - Photoflo Element Functions	XieFloConvertFromIndex 

�tc "XieFloConvertFromIndex " \l 2�

conven.c

void XieFloConvertFromIndex (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src */,

    Colormap		/* colormap */,

    XieDataClass	/* data_class */,

    unsigned int	/* precision */

);

Name

XieFloConvertFromIndex - specify a ConvertFromIndex element and set its parameters

Syntax

void XieFloConvertFromIndex (element, src, colormap, data_class, precision)

XiePhotoElement *element;

XiePhototag src;

Colormap colormap;

XieDataClass data_class;

unsigned int precision;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying source data.

colormap	Specifies the Colormap from which to obtain output pixel values.

data_class	Specifies whether the output data is single band or triple band.

precision	Specifies the number of bits to be used from  colormap's RGB values.

Returns



Description

A ConvertFromIndex element converts Colormap index data into achromatic or trichromatic data.



data_class specifies whether  the output data is single band or triple band and can be set to one of the following standard data class values:



xieValSingleBand

xieValTripleBand



If data_class is single band and a trichromatic colormap is specified (static color, pseudo color, true color, or direct color), the gray shade for each pixel is taken from the red values in colormap. If data_class is triple band and an achromatic colormap is specified (static gray or gray scale), the red band will be replicated to populate the green and blue output bands.



The depth of colormap must match the Levels attribute of src (that is, 2depth must equal Levels).



No subsetting by band mask or a process domain is provided: the entire image is converted. A process domain is used to restrict the element's processing to a subset of the source data pixels; it can be either a list-of-rectangles or a control-plane.

Output Attributes

Class	data_class

Type	constrained

Width	same as src

Height	same as src

Levels	2precision (per band)

Structures

XieFloConvertFromIndex sets the XiePhotoElement structure field elemType to xieElemConvertFromIndex, which identifies the element as a ConvertFromIndex, and sets the fields of the member structure ConvertFromIndex using the arguments in the argument list.



typedef unsigned XieDataClass;

typedef unsigned XiePhototag;



    element->elemType = xieElemConvertFromIndex;

    element->data.ConvertFromIndex.src        = src;

    element->data.ConvertFromIndex.colormap   = colormap;

    element->data.ConvertFromIndex.data_class = data_class;

    element->data.ConvertFromIndex.precision  = precision;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			Colormap colormap;

			XieDataClass data_class;

			unsigned int precision;

		} ConvertFromIndex;

		...

	} data;

} XiePhotoElement;



/* Definitions of DataClass */

#define xieValSingleBand	1

#define xieValTripleBand	2

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloColormap	Invalid colormap

xieErrNoFloMatch	Levels of src do not match depth of colormap

xieErrNoFloSource	Invalid src

xieErrNoFloValue	Invalid data_class or precision

See Also



 XIElib - Photoflo Element Functions	XieFloConvertFromRGB 

�tc "XieFloConvertFromRGB " \l 2�

conven.c

void XieFloConvertFromRGB (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src */,

    XieColorspace	/* color_space */,

    XiePointer		/* color_param */

);

Name

XieFloConvertFromRGB - specify a ConvertFromRGB element and set its parameters

Syntax

void XieFloConvertFromRGB (element, src, color_space, color_param)

XiePhotoElement *element;

XiePhototag src;

XieColorspace color_space;

XiePointer color_param;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying source data (RGB assumed).

color_space	Specifies the technique to be used in the conversion.

color_param	Specifies the list of additional parameters required by color_space.

Returns



Description

A ConvertFromRGB element converts RGB source data to an alternate colorspace.



The source data must be triple band, and all bands must have equal dimensions. The type and levels of the output data are determined by the color_space's technique parameters. All other attributes are inherited from src.



No subsetting by a process domain is provided: the entire image is processed. A process domain is used to restrict the element's processing to a subset of the source data pixels; it can be either a list-of-rectangles or a control-plane.



ConvertFromRGB techniques define the trichromatic colorspaces known to a ConvertFromRGB element. One of the following standard ConvertFromRGB technique values can be assigned to color_space:



xieValRGBToCIELab

xieValRGBToCIEXYZ

xieValRGBToYCbCr

xieValRGBToYCC



If a vendor defined additional private ConvertFromRGB techniques, the private technique values given to these techniques can be assigned to color_space.

Output Attributes

Class	triple band

Type	color_space dependent

Width	same as src

Height	same as src

Levels	color_space dependent

Structures

XieFloConvertFromRGB sets the XiePhotoElement structure field elemType to xieElemConvertFromRGB, which identifies the element as a ConvertFromRGB, and sets the fields of the member structure ConvertFromRGB using the arguments in the argument list.



typedef unsigned XiePhototag;

typedef unsigned XieColorspace;



    element->elemType = xieElemConvertFromRGB;

    element->data.ConvertFromRGB.src         = src;

    element->data.ConvertFromRGB.color_space = color_space;

    element->data.ConvertFromRGB.color_param = color_param;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			XieColorspace color_space;

			XiePointer color_param;

		} ConvertFromRGB;

		...

	} data;

} XiePhotoElement;



/* Definitions for Colorspace Conversions */

#define xieValRGBToCIELab	2

#define xieValRGBToCIEXYZ	4

#define xieValRGBToYCbCr	6

#define xieValRGBToYCC	8

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloMatch	src is not triple band or�unequal inter-band dimensions

xieErrNoFloSource	Invalid src

xieErrNoFloTechnique	Invalid color_space or color_param

See Also

XieFloConvertToRGB, XieTecRGBToCIELab, XieTecRGBToCIEXYZ, XieTecRGBToYCbCr, XieTecRGBToYCC

 XIElib - Photoflo Element Functions	XieFloConvertToIndex 

�tc "XieFloConvertToIndex " \l 2�

conven.c

void XieFloConvertToIndex (

    XiePhotoElement *		/* element */,

    XiePhototag			/* src */,

    Colormap			/* colormap */,

    XieColorList		/* color_list */,

    Bool			/* notify */,

    XieColorAllocTechnique 	/* color_alloc_tech */,

    XiePointer			/* color_alloc_param */

);

Name

XieFloConvertToIndex - specify a ConvertToIndex element and set its parameters

Syntax

void XieFloConvertToIndex (element, src, colormap, color_list, notify, color_alloc_tech, color_alloc_param)

XiePhotoElement *element;

XiePhototag src;

Colormap colormap;

XieColorList color_list;

Bool notify;

XieColorAllocTechnique color_alloc_tech;

XiePointer color_alloc_param;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying the constrained source data.

colormap	Specifies the Colormap from which to obtain output pixel values.

color_list	Specifies the list where Colormap indices are to be stored.

notify	Specifies whether to enable sending ColorAlloc events.

color_alloc_tech	Specifies the desired color allocation technique.

color_alloc_param	Specifies the list of additional parameters required by color_alloc_tech.

Returns



Description

A ConvertToIndex element allocates and/or matches colors or gray shades, as required, from a Colormap. It produces pixel indices as output data, and records indices that it allocates in color_list.



The specified color_alloc_tech technique may generate a ColorAlloc event to warn the client that results are of lesser fidelity than desired. Notify allows the client to be notified about inferior results from color allocation or matching.



src is the phototag of the element supplying constrained source data. A phototag is the position or index of an element within an array of elements used to specify a photoflo; the first element in the array has a phototag value of one (1). Colormap is the Colormap from which colors or gray shades are allocated and/or matched. Color_list is the list where allocated Colormap indices are to be stored. color_alloc_tech specifies the desired color allocation technique. color_alloc_params is the list of additional parameters required by color_alloc_tech.



color_list is purged of any colors it already contains when photoflo execution begins. Allocated Colormap indices can be freed using XiePurgeColorList, XieDestroyColorList, or by making color_list the target of an active photoflo. Care must be taken to ensure that color_list is not referenced by more than one executing photoflo at any time; it is a protocol error to allow more than one executing photoflo access the same color_list.



ColorAlloc techniques define the recognized color allocation techniques used by the ConvertToIndex element. One of the following standard ColorAlloc technique values can be assigned to color_alloc_tech:



xieValColorAllocDefault

xieValColorAllocAll

xieValColorAllocMatch

xieValColorAllocRequantize



If a vendor defined additional private ColorAlloc techniques, the private technique values given to these techniques can be assigned to color_alloc_tech.



The server is required to support the default technique that is bound to one of the standard techniques defined or a private technique.

Output Attributes

Class	single band

Type	constrained

Width	same as src

Height	same as src

Levels	2depth (that is, colormap depth)

Structures

XieFloConvertToIndex sets the XiePhotoElement structure field elemType to xieElemConvertToIndex, which identifies the element as a ConvertToIndex, and sets the fields of the member structure ConvertToIndex using the arguments in the argument list.



typedef unsigned XiePhototag;

typedef XID XieColorList;

typedef unsigned XieColorAllocTechnique;



    element->elemType = xieElemConvertToIndex;

    element->data.ConvertToIndex.src               = src;

    element->data.ConvertToIndex.colormap          = colormap;

    element->data.ConvertToIndex.color_list        = color_list;

    element->data.ConvertToIndex.notify            = notify;

    element->data.ConvertToIndex.color_alloc_tech  = color_alloc_tech;

    element->data.ConvertToIndex.color_alloc_param = color_alloc_param;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			Colormap colormap;

			XieColorList color_list;

			Bool notify;

			XieColorAllocTechnique color_alloc_tech;

			XiePointer color_alloc_param;

		} ConvertToIndex;

		...

	} data;

} XiePhotoElement;



/* Definitions for ColorAlloc Techniques */

#define xieValColorAllocDefault	0

#define xieValColorAllocAll	2

#define xieValColorAllocMatch	4

#define xieValColorAllocRequantize	6

Errors

xieErrNoFloAccess	color_list already being used by another active photoflo

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloColorlist	Invalid color_list

xieErrNoFloColormap	Invalid colormap

xieErrNoFloMatch	Unequal inter-band dimensions

xieErrNoFloSource	Invalid src

xieErrNoFloTechnique	Invalid color_alloc_tech or color_alloc_param

See Also

XieCreateColorList, XiePurgeColorList, XieDestroyColorList

XieTecColorAllocAll, XieTecColorAllocMatch, XieTecColorAllocRequantize

 XIElib - Photoflo Element Functions	XieFloConvertToRGB 

�tc "XieFloConvertToRGB " \l 2�

conven.c

void XieFloConvertToRGB (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src */,

    XieColorspace	/* color_space */,

    XiePointer		/* color_param */

);

Name

XieFloConvertToRGB - specify a ConvertToRGB element and set its parameters

Syntax

void XieFloConvertToRGB (element, src, color_space, color_param)

XiePhotoElement *element;

XiePhototag src;

XieColorspace color_space;

XiePointer color_param;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying source data.

color_space	Specifies the technique that will be used for the conversion.

color_param	Specifies the list of additional parameters required by color_space.

Returns



Description

A ConvertToRGB element converts alternate colorspace source data into RGB data.



The source data must be triple band, and all bands must have equal dimensions. The type and levels of the output data are determined by the color_space's technique parameters. All other attributes are inherited from src.



No subsetting by band mask or a process domain is provided: the entire image is converted. A process domain is used to restrict the element's processing to a subset of the source data pixels; it can be either a list-of-rectangles or a control-plane.



ConvertToRGB techniques define the trichromatic colorspaces known to a ConvertToRGB element. One of the following standard ConvertFromRGB technique values can be assigned to color_space:



xieValCIELabToRGB

xieValCIEXYZToRGB

xieValYCbCrToRGB

xieValYCCToRGB



If a vendor defined additional private ConvertToRGB techniques, the private technique values given to these techniques can be assigned to color_space.

Output Attributes

Class	triple band

Type	color_space dependent

Width	same as src

Height	same as src

Levels	color_space dependent

Structures

XieFloConvertToRGB sets the XiePhotoElement structure field elemType to xieElemConvertToRGB, which identifies the element as a ConvertToRGB, and sets the fields of the member structure ConvertToRGB using the arguments in the argument list.



typedef unsigned XieColorspace;

typedef unsigned XiePhototag;



    element->elemType = xieElemConvertToRGB;

    element->data.ConvertToRGB.src         = src;

    element->data.ConvertToRGB.color_space = color_space;

    element->data.ConvertToRGB.color_param = color_param;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			XieColorspace color_space;

			XiePointer color_param;

		} ConvertToRGB;

		...

	} data;

} XiePhotoElement;



/* Definitions for Colorspace Conversions */

#define xieValCIELabToRGB	2

#define xieValCIEXYZToRGB	4

#define xieValYCbCrToRGB	6

#define xieValYCCToRGB	8

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloMatch	src is not triple band or�unequal inter-band dimensions

xieErrNoFloSource	Invalid src

xieErrNoFloTechnique	Invalid color_space or color_param

See Also

XieTecCIELabToRGB, XieTecCIEXYZToRGB, XieTecYCbCrToRGB, XieTecYCCToRGB, XieConvertFromRGB

 XIElib - Photoflo Element Functions	XieFloConvolve 

�tc "XieFloConvolve " \l 2�

conven.c

void XieFloConvolve (

    XiePhotoElement *		/* element */,

    XiePhototag			/* src */,

    XieProcessDomain *		/* domain */,

    float *			/* kernel */,

    int				/* kernel_size */,

    unsigned int		/* band_mask */,

    XieConvolveTechnique	/* convolve_tech */,

    XiePointer			/* convolve_param */

);

Name

XieFloConvolve - specify a Convolve element and set its parameters

Syntax

void XieFloConvolve (element, src, domain, kernel, kernel_size, band_mask, convolve_tech, convolve_param)

XiePhotoElement *element;

XiePhototag src;

XieProcessDomain *domain;

float *kernel;

int kernel_size;

unsigned int band_mask;

XieConvolveTechnique convolve_tech;

XiePointer convolve_param;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying source data.

domain	Specifies the subset of the image that will be operated on.

kernel	Specifies the coefficients used in the convolution process.

kernel_size	Specifies the dimension of kernel.

band_mask	Specifies which bands are to be operated on.

convolve_tech	Specifies the technique for handling edge conditions.

convolve_param	Specifies the list of additional parameters required by convolve_tech.

Returns



Description

A Convolve element produces output data by convolving each input pixel value (and surrounding area) with the specified convolution kernel.



In order to specify a subset of source data that will be operated on, the phototag, offset_x, and offset_y fields of the XieProcessDomain structure pointed to by domain must be supplied; XIElib does not provide a convenience function to create and/or fill in an XieProcessDomain structure. If the entire source data is to be operated on, a pointer to an XieProcessDomain structure must still be provided, with the phototag field set to zero (0); the offset_x and offset_y fields are ignored.



kernel represents a square array of float data that has odd dimensions.  Thus, a single dimension is used to specify kernel_size.



Only bands selected by the band_mask are subject to processing. Other bands present in the image are passed through to the output. For example, a band_mask of 0012 indicates that only the “least significant band” would be processed; operating on all bands requires a band_mask of 1112. Using band_mask to select source data that have two (2) or less levels is not permitted.



All output data attributes are inherited from the source data.



Convolve techniques provide various methods of handling edge conditions. These techniques determine what pixel values are used when Convolve requires data beyond the image bounds. One of the following standard convolve technique values can be assigned to convolve_tech:



xieValConvolveDefault

xieValConvolveConstant

xieValConvolveReplicate



If a vendor defined additional private convolve techniques, the private technique values given to these techniques can be assigned to convolve_tech.



The server is required to support the default technique that is bound to one of the standard techniques defined above or a private technique.

Output Attributes

Class	same as src

Type	same as src

Width	same as src

Height	same as src

Levels	same as src

Structures

XieFloConvolve sets the XiePhotoElement structure field elemType to xieElemConvolve, which identifies the element as a Convolve, and sets the fields of the member structure Convolve using the arguments in the argument list.



typedef unsigned XieConvolveTechnique;

typedef unsigned XiePhototag;

typedef struct {

	 int offset_x;

	 int offset_y;

	 XiePhototag phototag;

} XieProcessDomain;



    element->elemType = xieElemConvolve;

    element->data.Convolve.src             = src;

    element->data.Convolve.domain.offset_x = domain->offset_x;

    element->data.Convolve.domain.offset_y = domain->offset_y;

    element->data.Convolve.domain.phototag = domain->phototag;

    element->data.Convolve.kernel_size     = kernel_size;

    element->data.Convolve.band_mask       = band_mask;

    element->data.Convolve.convolve_tech   = convolve_tech;

    element->data.Convolve.convolve_param  = convolve_param;



    size = kernel_size * kernel_size * 4;

    element->data.Convolve.kernel = (float *) Xmalloc (size);

    memcpy (element->data.Convolve.kernel, kernel, size);

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			XieProcessDomain domain;

			float *kernel;

			int kernel_size;

			unsigned int band_mask;

			XieConvolveTechnique convolve_tech;

			XiePointer convolve_param;

		} Convolve;

		...

	} data;

} XiePhotoElement;



/* Definitions for ConvolveTechniques */

#define xieValConvolveDefault	0

#define xieValConvolveConstant	2

#define xieValConvolveReplicate	4

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloDomain	Invalid domain

xieErrNoFloMatch	Selected source data are bitonal

xieErrNoFloSource	Invalid src

xieErrNoFloTechnique	Invalid convolve_tech or convolve_param

xieErrNoFloValue	Invalid kernel_size (for example, not odd)

See Also

XieTecConvolveConstant

 XIElib - Photoflo Element Functions	XieFloDither 

�tc "XieFloDither " \l 2�

conven.c

void XieFloDither (

    XiePhotoElement *		/* element */,

    XiePhototag			/* src */,

    unsigned int		/* band_mask */,

    XieLevels			/* levels */,

    XieDitherTechnique		/* dither_tech */,

    XiePointer			/* dither_param */

);

Name

XieFloDither - specify a Dither element and set its parameters

Syntax

void XieFloDither (element, src, band_mask, levels, dither_tech, dither_param)

XiePhotoElement *element;

XiePhototag src;

unsigned int band_mask;

XieLevels levels;

XieDitherTechnique dither_tech;

XiePointer dither_param;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying source data.

band_mask	Specifies which bands are to be operated on.

levels	Specifies the number of levels desired in the output data.

dither_tech	Specifies the desired dither technique.

dither_param	Specifies the list of additional parameters required by dither_tech.

Returns



Description

The Dither element is used to reduce the number of quantization levels in an image. It accomplishes this by affecting adjacent pixels (area affect) to make up for the lack of depth resolution.



Only bands selected by the band_mask are subject to processing. Other bands present in the image are passed through to the output. For example, a band_mask of 0012 indicates that only the “least significant band” would be processed; operating on all bands requires a band_mask of 1112. Using band_mask to select source data that have two (2) or less levels is not permitted.



The source data must be constrained.



No subsetting by band mask or a process domain is provided: the entire image is processed. A process domain is used to restrict the element's processing to a subset of the source data pixels; it can be either a list-of-rectangles or a control-plane.



Dither techniques define the technique that can be used to dither an image. One of the following standard dither technique values can be assigned to dither_tech:



xieValDitherDefault

xieValDitherErrorDiffusion

xieValDitherOrdered



If a vendor defined additional private dither techniques, the private technique values given to these techniques can be assigned to dither_tech.



The server is required to support the default technique that is bound to one of the standard techniques defined  or a private technique.

Output Attributes

Class	same as src

Type	constrained

Width	same as src

Height	same as src

Levels	levels

Structures

XieFloDither sets the XiePhotoElement structure field elemType to xieElemDither, which identifies the element as a Dither, and sets the fields of the member structure Dither using the arguments in the argument list.



typedef unsigned XiePhototag;

typedef unsigned long XieLevels[3];

typedef unsigned XieDitherTechnique;



    element->elemType = xieElemDither;

    element->data.Dither.src          = src;

    element->data.Dither.band_mask    = band_mask;

    element->data.Dither.levels[0]    = levels[0];

    element->data.Dither.levels[1]    = levels[1];

    element->data.Dither.levels[2]    = levels[2];

    element->data.Dither.dither_tech  = dither_tech;

    element->data.Dither.dither_param = dither_param;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			XieLevels levels;

			unsigned int band_mask;

			XieDitherTechnique dither_tech;

			XiePointer dither_param;

		} Dither;

		...

	} data;

} XiePhotoElement;



/* Definitions for DitherTechniques */

#define xieValDitherDefault	0

#define xieValDitherErrorDiffusion	2

#define xieValDitherOrdered	4

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloDomain	Invalid domain

xieErrNoFloMatch	Unconstrained src data or�selected source data are bitonal

xieErrNoFloSource	Invalid src

xieErrNoFloTechnique	Invalid dither_tech or dither_param

xieErrNoFloValue	Invalid output levels: less than two or greater than src levels

See Also

XieTecDitherOrdered

 XIElib - Photoflo Element Functions	XieFloGeometry 

�tc "XieFloGeometry " \l 2�

conven.c

void XieFloGeometry (

    XiePhotoElement *		/* element */,

    XiePhototag			/* src */,

    unsigned int		/* width */,

    unsigned int		/* height */,

    float[6]			/* coefficients[6] */,

    XieConstant			/* constant */,

    unsigned int		/* band_mask */,

    XieGeometryTechnique	/* sample_tech */,

    XiePointer			/* sample_param */

);

Name

XieFloGeometry - specify a Geometry element and set its parameters

Syntax

void XieFloGeometry (element, src, width, height, coefficients, constant, band_mask, sample_tech, sample_param)

XiePhotoElement *element;

XiePhototag src;

unsigned int width;

unsigned int height;

float coefficients[6];

XieConstant constant;

unsigned int band_mask;

XieGeometryTechnique sample_tech;

XiePointer sample_param;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying source data.

width	Specifies the horizontal dimension of the output data.

height	Specifies the vertical dimension of the output data.

coefficients	Specifies an affine transformation to be applied to pixels in src.

constant	Specifies the fill value used for output pixels that do not map back to a src pixel.

band_mask	Specifies which bands are to be operated on.

sample_tech	Specifies the technique to be used for retrospectively resampling src.

sample_param	Specifies the list of additional parameters required by sample_tech.

Returns



Description

A Geometry element is used to perform geometric transformations on image data. Linear geometric resampling operations are implemented, such as: crop, mirror, scale, shear, rotate, translate, and combinations thereof.



A Geometry element can be visualized as stepping through each possible output pixel location in turn and computing the location from which to obtain each input pixel value. Each pixel (x',y') in the output image is mapped to the coordinate location (x,y) in src by:



�embed MSDraw \* mergeformat ���



The coordinate mapping coefficients (a,b,c,d,tx,ty), together with the output width and height, fully specify the geometric transformation. The following briefly (and approximately) summarizes the intuitive role of each parameter:



a, d	Scaling parameters. Increasing a and d will make the output image appear smaller, whereas decreasing them will make the output pixels appear larger.

b, c	Rotation/skew parameters. If b and c are zero, the output image will be a rectangular scaling of the input image. If a and d are both zero, b is one, and c is negative one, the image will appear rotated. The magnitude of b and c will affect scaling as well if a and d are zero. If more than two of (a,b,c,d) are nonzero, the effect is complicated. The image may appear skewed and scaled.

tx, ty	Translation parameters. Used to specify the offset between input and output coordinate systems.

width, height	These specify the output image dimensions of the selected band(s). Note that increasing the output image height and width over the input image size will not by itself cause magnification �symbol 190 \f "Symbol" \s 8�� if a and d are one (1) and b and c are zero (0), the output image will have the same appearance as the input, except that the borders will shrink or expand (as determined by width and height) and new areas of the image will be filled with constant.



The region to be cropped in the input image is implicitly defined by the dimensions of the output image and the mapping from output to input coordinates. Depending on the size of the input and output images, the amount of scaling specified, and the amount of translation in the mapping, pixels in the output image may map off the edge of the input image and the constant value is used.



Trichromatic image bands can be operated individually, all together, or in any combination, using band_mask. Since applying the same (a,b,c,d,tx,ty) mapping to inputs with diverse sizes will specify different transformations, operating on all bands in unison (band_mask of 1112) is most appropriate if the dimensions of all bands are equal.





Often a given output pixel location (x’,y’) will not correspond exactly to a single pixel in the input image. The sample_tech technique is used to determine how the input data will be interpolated to produce each output pixel value. One of the following standard geometry technique values can be assigned to sample_tech:



xieValGeomDefault

xieValGeomAntialias

xieValGeomAntialiasByArea

xieValGeomAntialiasByLPF

xieValGeomBilinearInterp

xieValGeomGaussian

xieValGeomNearestNeighbor



If a vendor defined additional private geometry techniques, the private technique values given to these techniques can be assigned to sample_tech.



The server is required to support the default technique that is bound to one of the standard techniques defined  or a private technique.



No subsetting by a process domain is provided: selected bands are processed in their entirety. A process domain is used to restrict the element's processing to a subset of the source data pixels; it can be either a list-of-rectangles or a control-plane.

Output Attributes

Class	same as src

Type	same as src

Width	width

Height	height

Levels	same as src

Structures

XieFloGeometry sets the XiePhotoElement structure field elemType to xieElemGeometry, which identifies the element as a Geometry, and sets the fields of the member structure Geometry using the arguments in the argument list.



typedef unsigned XiePhototag;

typedef float XieConstant[3];

typedef unsigned XieGeometryTechnique;



    element->elemType = xieElemGeometry;

    element->data.Geometry.src             = src;

    element->data.Geometry.width           = width;

    element->data.Geometry.height          = height;

    element->data.Geometry.coefficients[0] = coefficients[0];

    element->data.Geometry.coefficients[1] = coefficients[1];

    element->data.Geometry.coefficients[2] = coefficients[2];

    element->data.Geometry.coefficients[3] = coefficients[3];

    element->data.Geometry.coefficients[4] = coefficients[4];

    element->data.Geometry.coefficients[5] = coefficients[5];

    element->data.Geometry.constant[0]     = constant[0];

    element->data.Geometry.constant[1]     = constant[1];

    element->data.Geometry.constant[2]     = constant[2];

    element->data.Geometry.band_mask       = band_mask;

    element->data.Geometry.sample_tech 	   = sample_tech;

    element->data.Geometry.sample_param    = sample_param;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			unsigned int width;

			unsigned int height;

			float coefficients[6];

			XieConstant constant;

			unsigned int band_mask;

			XieGeometryTechnique sample_tech;

			XiePointer sample_param;

		} Geometry;

		...

	} data;

} XiePhotoElement;



/* Definitions for GeometryTechniques */

#define xieValGeomDefault	0

#define xieValGeomAntialias	2

#define xieValGeomAntialiasByArea	4

#define xieValGeomAntialiasByLPF	6

#define xieValGeomBilinearInterp	8

#define xieValGeomGaussian	10

#define xieValGeomNearestNeighbor	12

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloSource	Invalid src

xieErrNoFloTechnique	Invalid sample_tech or sample_param

xieErrNoFloValue	Invalid coefficients

See Also

XieTecGeomAntialiasByArea, XieTecGeomAntialiasByLowpass, XieTecGeomGaussian, XieTecGeomNearestNeighbor

 XIElib - Photoflo Element Functions	XieFloLogical 

�tc "XieFloLogical " \l 2�

conven.c

void XieFloLogical (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src1 */,

    XiePhototag		/* src2 */,

    XieProcessDomain *	/* domain */,

    XieConstant		/* constant */,

    unsigned long	/* operator */,

    unsigned int	/* band_mask */

);

Name

XieFloLogical - specify a Logical element and set its parameters

Syntax

void XieFloLogical (element, src1, src2, domain, constant, operator, band_mask)

XiePhotoElement *element;

XiePhototag src1;

XiePhototag src2;

XieProcessDomain *domain;

XieConstant constant;

unsigned long operator;

unsigned int band_mask;

Arguments

element	Specifies the XiePhotoElement structure to use.

src1	Specifies the first data source.

src2	Specifies the second data source.

domain	Specifies the subset of source data that will be operated on.

constant	Specifies the constant data source.

operator	Specifies the logical operator to be used.

band_mask	Specifies which bands are to be operated on.

Returns



Description

A Logical element performs per-pixel bitwise operations on a single data source, or between two data sources, or between a single data source and a constant.



When two sources are involved, src1 and src2 are the phototags of the elements supplying source data; constant is ignored. A phototag is the position or index of an element within an array of elements used to specify a photoflo; the first element in the array has a phototag value of one (1). If the operation is to involve a constant, src1 is one operand, src2 must be zero, and constant is used as the other operand.



In order to specify a subset of source data that will be operated on, the phototag, offset_x, and offset_y fields of the XieProcessDomain structure pointed to by domain must be supplied; XIElib does not provide a convenience function to create and/or fill in an XieProcessDomain structure. If the entire source data is to be operated on, a pointer to an XieProcessDomain structure must still be provided, with the phototag field set to zero (0); the offset_x and offset_y fields are ignored.



The value of operator matches the GC-function values defined by the core protocol specification for CreateGC. The output of a Logical element is determined by the number of data sources and operator:



GC function�monadic operation�dyadic operation��Clear�0�0��And�constant AND src1�src2 AND src1��AndReverse�constant AND (NOT src1)�src2 AND (NOT src1)��Copy�constant�src2��AndInverted�(NOT constant) AND src1�(NOT src2) AND src1��NoOp�src1�src1��Xor�constant XOR src1�src2 XOR src1��Or�constant OR src1�src2 OR src1��Nor�(NOT constant) AND (NOT src1)�(NOT src2) AND (NOT src1)��Equiv�(NOT constant) XOR src1�(NOT src2) XOR src1��Invert�NOT src1�NOT src1��OrReverse�constant OR (NOT src1)�src2 OR (NOT src1)��CopyInverted�NOT constant�NOT src2��OrInverted�(NOT constant) OR src1�(NOT src2) OR src1��Nand�(NOT constant) OR (NOT src1)�(NOT src2) OR (NOT src1)��Set�1�1��

Only bands selected by the band_mask are subject to processing. Other bands present in the image are passed through to the output. For example, a band_mask of 0012 indicates that only the “least significant band” would be processed; operating on all bands requires a band_mask of 1112.

Output Attributes

Class	same as src1

Type	constrained

Width	same as src1

Height	same as src1

Levels	same as src1

Structures

XieFloLogical sets the XiePhotoElement structure field elemType to xieElemLogical, which identifies the element as a Logical, and sets the fields of the member structure Logical using the arguments in the argument list.



typedef unsigned XiePhototag;

typedef float XieConstant[3];

typedef struct {

	 int offset_x;

	 int offset_y;

	 XiePhototag phototag;

} XieProcessDomain;



    element->elemType = xieElemLogical;

    element->data.Logical.src1            = src1;

    element->data.Logical.src2            = src2;

    element->data.Logical.domain.offset_x = domain->offset_x;

    element->data.Logical.domain.offset_y = domain->offset_y;

    element->data.Logical.domain.phototag = domain->phototag;

    element->data.Logical.constant[0]     = constant[0];

    element->data.Logical.constant[1]     = constant[1];

    element->data.Logical.constant[2]     = constant[2];

    element->data.Logical.operator        = operator;

    element->data.Logical.band_mask       = band_mask;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src1;

			XiePhototag src2;

			XieProcessDomain domain;

			XieConstant constant;

			int operator;

			unsigned int band_mask;

		} Logical;

		...

	} data;

} XiePhotoElement;

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloDomain	Invalid domain

xieErrNoFloMatch	Class or levels differ between src1 and src2, or�levels is not a power of 2, or�src1 or src2 in not constrained

xieErrNoFloOperator	Invalid operator

xieErrNoFloSource	Invalid src1 or src2

See Also



 XIElib - Photoflo Element Functions	XieFloMatchHistogram 

�tc "XieFloMatchHistogram " \l 2�

conven.c

void XieFloMatchHistogram (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src */,

    XieProcessDomain *	/* domain */,

    XieHistogramShape	/* shape */,

    XiePointer		/* shape_param */

);

Name

XieFloMatchHistogram - specify a MatchHistogram element and set its parameters

Syntax

void XieFloMatchHistogram (element, src, domain, shape, shape_param)

XiePhotoElement *element;

XiePhototag src;

XieProcessDomain *domain;

XieHistogramShape shape;

XiePointer shape_param;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying source data.

domain	Specifies the subset of source data that will be operated on.

shape	Specifies the form of the desired output data histogram.

shape_param	Specifies the list of additional parameters required by shape.

Returns



Description

A MatchHistogram element produces output data that differ from the source data in terms of its pixel value distribution, or histogram. It allows the client to specify the desired shape of the resulting data's histogram (algorithmic description of resulting histogram shape).



The source data must be constrained and single band, and it must have three or more levels.



In order to specify a subset of source data that will be operated on, the phototag, offset_x, and offset_y fields of the XieProcessDomain structure pointed to by domain must be supplied; XIElib does not provide a convenience function to create and/or fill in an XieProcessDomain structure. Only data that intersects with the subset specified by domain is included in the histogram, and only that data will be affected in the result of the histogram matching operation: all other data will pass through unchanged. If the entire source data is to be operated on, a pointer to an XieProcessDomain structure must still be provided, with the phototag field set to zero (0); the offset_x and offset_y fields are ignored.



HistogramShape defines the various match-histogram shape techniques that can be requested by a MatchHistogram element. One of the following standard  match-histogram shape technique values can be assigned to shape:



xieValHistogramFlat

xieValHistogramGaussian

xieValHistogramHyperbolic



If a vendor defined additional private match-histogram shape techniques, the private technique values given to these techniques can be assigned to shape.

Output Attributes

Class	single band

Type	constrained

Width	same as src

Height	same as src

Levels	same as src

Structures

XieFloMatchHistogram sets the XiePhotoElement structure field elemType to xieElemMatchHistogram, which identifies the element as a MatchHistogram, and sets the fields of the member structure MatchHistogram using the arguments in the argument list.



typedef unsigned XiePhototag;

typedef unsigned XieHistogramShape;

typedef struct {

	 int offset_x;

	 int offset_y;

	 XiePhototag phototag;

} XieProcessDomain;



    element->elemType = xieElemMatchHistogram;

    element->data.MatchHistogram.src             = src;

    element->data.MatchHistogram.domain.offset_x = domain->offset_x;

    element->data.MatchHistogram.domain.offset_y = domain->offset_y;

    element->data.MatchHistogram.domain.phototag = domain->phototag;

    element->data.MatchHistogram.shape           = shape;

    element->data.MatchHistogram.shape_param     = shape_param;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			XieProcessDomain domain;

			XieHistogramShape shape;

			XiePointer shape_param;

		} MatchHistogram;

		...

	} data;

} XiePhotoElement;



/* Definitions for GeometryTechniques */

#define xieValGeomDefault	0

#define xieValGeomAntialias	2

#define xieValGeomAntialiasByArea	4

#define xieValGeomAntialiasByLPF	6

#define xieValGeomBilinearInterp	8

#define xieValGeomGaussian	10

#define xieValGeomNearestNeighbor	12

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloDomain	Invalid domain

xieErrNoFloMatch	Invalid src data: unconstrained, triple band, or bitonal

xieErrNoFloSource	Invalid src

xieErrNoFloTechnique	Invalid shape or shape_param

See Also

XieTecHistogramGaussian, XieTecHistogramHyperbolic

 XIElib - Photoflo Element Functions	XieFloMath 

�tc "XieFloMath " \l 2�

conven.c

void XieFloMath (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src */,

    XieProcessDomain *	/* domain */,

    XieMathOp		/* operator */,

    unsigned int	/* band_mask */

);

Name

XieFloMath - specify a Math element and set its parameters

Syntax

void XieFloMath (element, src, domain, operator, band_mask)

XiePhotoElement *element;

XiePhototag src;

XieProcessDomain *domain;

XieMathOp operator;

unsigned int band_mask;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying source data.

domain	Specifies the subset of source data that will be operated on.

operator	Specifies the mathematical operation to be applied.

band_mask	Specifies which bands are to be operated on.

Returns



Description

A Math element applies a single operand mathematical operation to the source data on a point-wise basis.



In order to specify a subset of source data that will be operated on, the phototag, offset_x, and offset_y fields of the XieProcessDomain structure pointed to by domain must be supplied; XIElib does not provide a convenience function to create and/or fill in an XieProcessDomain structure. If the entire source data is to be operated on, a pointer to an XieProcessDomain structure must still be provided, with the phototag field set to zero (0); the offset_x and offset_y fields are ignored.



Pixel computations that would lead to errors will yield valid server-dependent values (for example, the log of a constrained pixel value of zero might result in a value of zero). Only bands selected by the band_mask are subject to processing. Other bands present in the image are passed through to the output. For example, a band_mask of 0012 indicates that only the “least significant band” would be processed; operating on all bands requires a band_mask of 1112. Using band_mask to select source data that have two (2) or less levels is not permitted.



The following valid mathematical operations that can be invoked through the Math element:



Operator�Meaning��xieValExp�exponential��xieValLn�natural logarithm��xieValLog2�logarithm base 2��xieValLog10�logarithm base 10��xieValSquare�square��xieValSqrt�square root��

All output data attributes are inherited from the source data.

Output Attributes

Class	same as src

Type	same as src

Width	same as src

Height	same as src

Levels	same as src

Structures

XieFloMath sets the XiePhotoElement structure field elemType to xieElemMath, which identifies the element as a Math, and sets the fields of the member structure Math using the arguments in the argument list.



typedef unsigned XiePhototag;

typedef unsigned XieMathOp;

typedef struct {

	 int offset_x;

	 int offset_y;

	 XiePhototag phototag;

} XieProcessDomain;



    element->elemType = xieElemMath;

    element->data.Math.src             = src;

    element->data.Math.domain.offset_x = domain->offset_x;

    element->data.Math.domain.offset_y = domain->offset_y;

    element->data.Math.domain.phototag = domain->phototag;

    element->data.Math.operator        = operator;

    element->data.Math.band_mask       = band_mask;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			XieProcessDomain domain;

			XieMathOp operator;

			unsigned int band_mask;

		} Math;

		...

	} data;

} XiePhotoElement;



/* Definitions of Math Operators */

#define xieValExp	1

#define xieValLn	2

#define xieValLog2	3

#define xieValLog10	4

#define xieValSquare	5

#define xieValSqrt	6

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloDomain	Invalid domain

xieErrNoFloMatch	Selected source data are bitonal

xieErrNoFloSource	Invalid src

xieErrNoFloOperator	Invalid operator

See Also



 XIElib - Photoflo Element Functions	XieFloPasteUp 

�tc "XieFloPasteUp " \l 2�

conven.c

void XieFloPasteUp (

    XiePhotoElement *	/* element */,

    unsigned int	/* width */,

    unsigned int	/* height */,

    XieConstant		/* constant */,

    XieTile *		/* tiles */,

    unsigned int	/* tile_count */

);

Name

XieFloPasteUp - specify a PasteUp element and set its parameters

Syntax

void XieFloPasteUp (element, width, height, constant, tiles, tile_count)

XiePhotoElement *element;

unsigned int width;

unsigned int height;

XieConstant constant;

XieTile *tiles

unsigned int tile_count;

Arguments

element	Specifies the XiePhotoElement structure to use.

width	Specifies the full horizontal extent of the output data.

height	Specifies the full vertical extent of the output data.

constant	Specifies the fill value for output regions that do not intersect the regions defined in tiles.

tiles	Specifies a list of tile descriptors.

tile_count	Specifies the number of tile descriptors in tiles.

Returns



Description

A PasteUp element is an N-input translate operation that outputs data constructed from various source data tiles or a constant value.



Each of the tiles specifies a src (the phototag of the element supplying source data), and the coordinates, dst_x and dst_y, where the tile belongs in the output data. A phototag is the position or index of an element within an array of elements used to specify a photoflo; the first element in the array has a phototag value of one (1).



Each region of the output data is defined by a tile's destination coordinates, dst_x and dst_y, and its src dimensions. For output regions where no tile provides input, the value of constant is used. If tiles overlap, a stacking-order rule defines which pixel value will be output: the last tile involved in the overlap in the list of tiles will provide the output pixel.



At least one tile must be supplied.  Except for width and height, all attributes of each source tile must match. In addition, for triple band input, inter-band dimensions within each tiles must match.



No subsetting by a process domain is provided: the entire image is processed. A process domain is used to restrict the element's processing to a subset of the source data pixels; it can be either a list-of-rectangles or a control-plane.

Output Attributes

Class	same as tiles

Type	same as tiles

Width	width

Height	height

Levels	same as tiles

Structures

XieFloPasteUp sets the XiePhotoElement structure field elemType to xieElemPasteUp, which identifies the element as a PasteUp, and sets the fields of the member structure PasteUp using the arguments in the argument list.



typedef unsigned XiePhototag;

typedef float XieConstant[3];

typedef struct {

	XiePhototag src;

	int dst_x;

	int dst_y;

} XieTile;



    element->elemType = xieElemPasteUp;

    element->data.PasteUp.width       = width;

    element->data.PasteUp.height      = height;

    element->data.PasteUp.constant[0] = constant[0];

    element->data.PasteUp.constant[1] = constant[1];

    element->data.PasteUp.constant[2] = constant[2];

    element->data.PasteUp.tile_count  = tile_count;



    size = tile_count * sizeof (XieTile);

    element->data.PasteUp.tiles = (XieTile *) Xmalloc (size);

    memcpy (element->data.PasteUp.tiles, tiles, size);

typedef struct {

	int elemType;

	union {

		...

		struct {

			unsigned int width;

			unsigned int height;

			XieConstant constant;

			XieTile *tiles;

			unsigned int tile_count;

		} PasteUp;

		...

	} data;

} XiePhotoElement;

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloMatch	Incompatible attributes between tiles or�unequal inter-band dimensions within a tile

xieErrNoFloSource	Invalid source tiles or�no tiles were specified

See Also

XieFreePasteUpTiles

 XIElib - Photoflo Element Functions	XieFloPoint 

�tc "XieFloPoint " \l 2�

conven.c

void XieFloPoint (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src */,

    XieProcessDomain *	/* domain */,

    XieLut		/* lut */,

    unsigned int	/* band_mask */

);

Name

XieFloPoint - specify a Point element and set its parameters

Syntax

void XieFloPoint (element, src, domain, lut, band_mask)

XiePhotoElement *element;

XiePhototag src;

XieProcessDomain *domain;

XieLut lut;

unsigned int band_mask;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying source data.

domain	Specifies the subset of source data that will be operated on.

lut	Specifies the LUT resource supplying the lookup table.

band_mask	Specifies which bands are to be operated on.

Returns



Description

A Point element maps source pixel values to output pixel values using a lookup table (LUT).



src is the phototag of the element supplying constrained source data. A phototag is the position or index of an element within an array of elements used to specify a photoflo; the first element in the array has a phototag value of one (1). Lut is the phototag of the ImportClientLUT or ImportLUT element supplying the lookup table data.



In order to specify a subset of source data that will be operated on, the phototag, offset_x, and offset_y fields of the XieProcessDomain structure pointed to by domain must be supplied; XIElib does not provide a convenience function to create and/or fill in an XieProcessDomain structure. If the entire source data is to be operated on, a pointer to an XieProcessDomain structure must still be provided, with the phototag field set to zero (0); the offset_x and offset_y fields are ignored.



band_mask specifies which bands are to be operated on (all bands must be specified if lut is single band and src is triple band). For example, a band_mask of 0012 indicates that only the “least significant band” would be processed; operating on all bands requires a band_mask of 1112.



The output is constrained, with the width and height taken from src and class and levels taken from lut. When src is single band and lut is triple band, for the bands that are indicated by band_mask, the output bands are remapped through their respective lut bands, whereas the other bands are just replications of the single src band. If domain is used, the class and levels of lut must match those of src.



Each lut array must contain sufficient entries so that all potential pixel values found in src can form a valid index into the array. Generally each src pixel value is used directly as an index into a lut array. When triple band src data are remapped through a single band lut, however, pixel values from all three src bands are combined to form an array index; for this case, width and height must match for all bands.



When a single band lut is used to remap triple band src data, the following presents the algorithm for computing combined array indices:



LUT band order�LUT indexing algorithm for combining pixel values��LSFirst�index = value[0] + value[1] x levels[0] + value[2] x levels[0] x levels[1]��MSFirst�index = value[2] + value[1] x levels[2] + value[0] x levels[2] x levels[1]��Output Attributes

Class	same as lut

Type	constrained

Width	same as src

Height	same as src

Levels	same as lut

Structures

XieFloPoint sets the XiePhotoElement structure field elemType to xieElemPoint, which identifies the element as a Point, and sets the fields of the member structure Point using the arguments in the argument list.



typedef XID XieLut;

typedef unsigned XiePhototag;

typedef struct {

	 int offset_x;

	 int offset_y;

	 XiePhototag phototag;

} XieProcessDomain;



    element->elemType = xieElemPoint;

    element->data.Point.src             = src;

    element->data.Point.domain.offset_x = domain->offset_x;

    element->data.Point.domain.offset_y = domain->offset_y;

    element->data.Point.domain.phototag = domain->phototag;

    element->data.Point.lut             = lut;

    element->data.Point.band_mask       = band_mask;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			XieProcessDomain domain;

			XieLut lut;

			unsigned int band_mask;

		} Point;

		...

	} data;

} XiePhotoElement;

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloDomain	Invalid domain

xieErrNoFloMatch	Unconstrained src data, or�lut does not contain enough entries, or�lut is single band and src is triple band, but band_mask is incomplete, or�domain is being used, but lut class or levels do not match those of src

xieErrNoFloSource	Invalid src or lut

See Also

XieFloImportLUT, XieFloImportClientLUT

See Also



 XIElib - Photoflo Element Functions	XieFloUnconstrain 

�tc "XieFloUnconstrain " \l 2�

conven.c

void XieFloUnconstrain (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src */

);

Name

XieFloUnconstrain - specify an unconstrain element and set its parameters

Syntax

void XieFloUnconstrain (element, src)

XiePhotoElement *element;

XiePhototag src;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying constrained source data.

Returns



Description

An Unconstrain element produces unconstrained output data from constrained input data.



No subsetting by band mask or a process domain is provided: the entire image is processed. A process domain is used to restrict the element's processing to a subset of the source data pixels; it can be either a list-of-rectangles or a control-plane.

Output Attributes

Class	same as src

Type	unconstrained

Width	same as src

Height	same as src

Levels	unknown

Structures

XieFloUnconstrain sets the XiePhotoElement structure field elemType to xieElemUnconstrain, which identifies the element as an Unconstrain, and sets the fields of the member structure Unconstrain using the arguments in the argument list.



typedef unsigned XiePhototag;



    element->elemType = xieElemUnconstrain;

    element->data.Constrain.src             = src;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

		} Unconstrain;

		...

	} data;

} XiePhotoElement;

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloMatch	Unconstrained src data

xieErrNoFloSource	Invalid src

See Also

XieFloConstrain

See Also



 XIElib - Photoflo Element Functions	XieFloExportClientHistogram 

�tc "XieFloExportClientHistogram " \l 2�

conven.c

void XieFloExportClientHistogram (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src */,

    XieProcessDomain *	/* domain */,

    XieExportNotify	/* notify */

);

Name

XieFloExportClientHistogram - specify an ExportClientHistogram element and set its parameters

Syntax

void XieFloExportClientHistogram (element, src, domain, notify)

XiePhotoElement *element;

XiePhototag src;

XieProcessDomain *domain;

XieExportNotify notify;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying single band constrained source data.

domain	Specifies the subset of the source data from which the distribution will be generated.

notify	Specifies whether to enable sending an ExportAvailable event.

Returns



Description

An ExportClientHistogram element generates a histogram of the pixel values found in the source data. It prepares histogram data that can be retrieved by the client using XieGetClientData. An event can be requested that will notify the client when histogram data becomes available.



The data generated for the client is a list of XieHistogramData where each entry consists of a value (that is, a pixel value) followed by the count of pixels found with that value. If the number of pixels for a given value exceeds the capacity of count, that count will be returned at the maximum value (that is, 232 - 1). Pixel values that are not found in the data are not included in the histogram data: no entries are returned where count is zero.



In order to specify a subset of source data that will be operated on, the phototag, offset_x, and offset_y fields of the XieProcessDomain structure pointed to by domain must be supplied; XIElib does not provide a convenience function to create and/or fill in an XieProcessDomain structure. Only data that intersects with the subset specified by domain is included in the histogram. If the entire source data is to be operated on, a pointer to an XieProcessDomain structure must still be provided, with the phototag field set to zero (0); the offset_x and offset_y fields are ignored.



One of three standard export notify values can be assigned to notify:



xieValDisable

xieValFirstData

xieValNewData



If notify was specified as xieValFirstData, this event will be sent only the first time data become available; otherwise, if xieValNewData was specified, this event will be generated each time the amount of data available changes from zero to nonzero.



If notify is True, the total number of histogram entries are reported in the data field of the ExportAvailable event.

Structures

XieFloExportClientHistogram sets the XiePhotoElement structure field elemType to xieElemExportClientHistogram, which identifies the element as an ExportClientHistogram, and sets the fields of the member structure ExportClientHistogram using the arguments in the argument list.



typedef unsigned XieExportNotify;

typedef unsigned XiePhototag;

typedef struct {

	 int offset_x;

	 int offset_y;

	 XiePhototag phototag;

} XieProcessDomain;

typedef struct {

	unsigned long value;

	unsigned long count;

} XieHistogramData;



    element->elemType = xieElemExportClientHistogram;

    element->data.ExportClientHistogram.src             = src;

    element->data.ExportClientHistogram.domain.offset_x = domain->offset_x;

    element->data.ExportClientHistogram.domain.offset_y = domain->offset_y;

    element->data.ExportClientHistogram.domain.phototag = domain->phototag;

    element->data.ExportClientHistogram.notify          = notify;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			XieProcessDomain domain;

			XieExportNotify notify;

		} ExportClientHistogram;

		...

	} data;

} XiePhotoElement;



/* Definitions of ExportNotify */

#define xieValDisable	1

#define xieValFirstData	2

#define xieValNewData	3

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloDomain	Invalid domain

xieErrNoFloMatch	Unconstrained src data or�triple band src data

xieErrNoFloSource	Invalid src

xieErrNoFloValue	Invalid notify

See Also

XieGetClientData

 XIElib - Photoflo Element Functions	XieFloExportClientLUT 

�tc "XieFloExportClientLUT " \l 2�

conven.c

void XieFloExportClientLUT (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src */,

    XieOrientation	/* band_order */,

    XieExportNotify	/* notify */,

    XieLTriplet 	/* start */,

    XieLTriplet 	/* length */

);

Name

XieFloExportClientLUT - specify an ExportClientLUT element and set its parameters

Syntax

void XieFloExportClientLUT (element, src, band_order, notify, start, length)

XiePhotoElement *element;

XiePhototag src;

XieOrientation band_order;

XieExportNotify notify;

XieLTriplet start;

XieLTriplet length;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying lookup table data.

band_order	Specifies the order of triple band arrays.

notify	Specifies whether to enable sending an ExportAvailable event.

start	Specifies the index of the first array entry that should be returned.

length	Specifies the number of array entries that should be returned.

Returns



Description

An ExportClientLUT element allows data imported from an ImportLUT or an ImportClientLUT element to be retrieved by the client. The actual transport of lookup table data through the protocol stream is requested using XieGetClientData.



One of three standard export notify values can be assigned to notify:



xieValDisable

xieValFirstData

xieValNewData



If notify was specified as xieValFirstData, this event will be sent only the first time data become available; otherwise, if xieValNewData was specified, this event will be generated each time the amount of data available changes from zero to nonzero.



If notify is requested, the ExportAvailable event's data field will report the total number of array entries that can be retrieved from the band specified by the event.



band_order is the order in which triple band arrays are transmitted through the protocol stream.  One of the following standard orientation values can be assigned to band_order:



xieValLSFirst

xieValMSFirst



The least significant band of trichromatic data is the first band mentioned in the common name of the colorspace: for example, red is the least significant band of RGB data. For band-by-plane data, band_order specifies whether this band corresponds with the least significant or most significant LUT array. Each array is transported as a separate data stream:



band�LSFirst�MSFirst��0�R7R6R5R4R3R2R1R0�B7B6B5B4B3B2B1B0��1�G7G6G5G4G3G2G1G0�G7G6G5G4G3G2G1G0��2�B7B6B5B4B3B2B1B0�R7R6R5R4R3R2R1R0��

The size of each array entry is either 1, 2, or 4 bytes: the smallest size into which the output quantization levels can be stored. When array entries require multiple bytes, the byte order per entry is determined in the same manner as other numeric data: it is the byte orientation established at core X connection setup time.

Structures

XieFloExportClientLUT sets the XiePhotoElement structure field elemType to xieElemExportClientLUT, which identifies the element as an ExportClientLUT, and sets the fields of the member structure ExportClientLUT using the arguments in the argument list.



typedef unsigned XieExportNotify;

typedef unsigned XieOrientation;

typedef unsigned long XieLTriplet[3];

typedef unsigned XiePhototag;



    element->elemType = xieElemExportClientLUT;

    element->data.ExportClientLUT.src        = src;

    element->data.ExportClientLUT.band_order = band_order;

    element->data.ExportClientLUT.notify     = notify;



    for (i = 0; i < 3; i++)

    {

	element->data.ExportClientLUT.start[i] = start[i];

	element->data.ExportClientLUT.length[i] = length[i];

    }

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			XieOrientation band_order;

			XieExportNotify notify;

			XieLTriplet start;

			XieLTriplet length;

		} ExportClientLUT;

		...

	} data;

} XiePhotoElement;



/* Definitions of ExportNotify */

#define xieValDisable	1

#define xieValFirstData	2

#define xieValNewData	3



/* Definitions of Orientation Types */

#define xieValLSFirst	1

#define xieValMSFirst	2

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloMatch	start + length exceeds number of entries in an array

xieErrNoFloSource	Invalid src

xieErrNoFloValue	Invalid notify or band_order

See Also

 XieFloImportLUT, XieFloImportClientLUT, XieGetClientData

 XIElib - Photoflo Element Functions	XieFloExportClientPhoto 

�tc "XieFloExportClientPhoto " \l 2�

conven.c

void XieFloExportClientPhoto (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src */,

    XieExportNotify	/* notify */,

    XieEncodeTechnique	/* encode_tech */,

    XiePointer		/* encode_param */

);

Name

XieFloExportClientPhoto - specify an ExportClientPhoto element and set its parameters

Syntax

void XieFloExportClientPhoto (element, src, notify, encode_tech, encode_param)

XiePhotoElement *element;

XiePhototag src;

XieExportNotify notify;

XieEncodeTechnique encode_tech;

XiePointer encode_param;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying constrained data.

notify	Specifies whether to enable sending an ExportAvailable event.

encode_tech	Specifies the technique to compress or format the exported data.

encode_param	Specifies the list of additional parameters required by encode_tech.

Returns



Description

An ExportClientPhoto element makes image data available to the protocol stream. The attributes of the exported data are determined by the attributes of the source data. The format of the data is specified by the encode_tech technique and encode_param. The actual transport of image data through the protocol stream is requested using XieGetClientData.



One of three standard export notify values can be assigned to notify:



xieValDisable

xieValFirstData

xieValNewData



If notify was specified as xieValFirstData, this event will be sent only the first time data become available; otherwise, if xieValNewData was specified, this event will be generated each time the amount of data available changes from zero to nonzero.



Encode techniques define the techniques that can be used to compress an image or format it as uncompressed data. One of the following standard encode technique values can be assigned to encode_tech:



xieValEncodeServerChoice

xieValEncodeUncompressedSingle

xieValEncodeUncompressedTriple

xieValEncodeG31D

xieValEncodeG32D

xieValEncodeG42D

xieValEncodeJPEGBaseline

xieValEncodeJPEGLossless

xieValEncodeTIFF2

xieValEncodeTIFFPackBits



If a vendor defined additional private encode techniques, the private technique values given to these techniques can be assigned to encode_tech.

Structures

XieFloExportClientPhoto sets the XiePhotoElement structure field elemType to xieElemExportClientPhoto, which identifies the element as an ExportClientPhoto, and sets the fields of the member structure ExportClientPhoto using the arguments in the argument list.



typedef unsigned XieExportNotify;

typedef unsigned XiePhototag;

typedef unsigned XieEncodeTechnique;



    element->elemType = xieElemExportClientPhoto;

    element->data.ExportClientPhoto.src          = src;

    element->data.ExportClientPhoto.notify       = notify;

    element->data.ExportClientPhoto.encode_tech  = encode_tech;

    element->data.ExportClientPhoto.encode_param = encode_param;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			XieExportNotify notify;

			XieEncodeTechnique encode_tech;

			XiePointer encode_param;

		} ExportClientPhoto;

		...

	} data;

} XiePhotoElement;



/* Definitions of ExportNotify */

#define xieValDisable	1

#define xieValFirstData	2

#define xieValNewData	3



/* Definitions for EncodeTechniques */

#define xieValEncodeServerChoice	1

#define xieValEncodeUncompressedSingle	2

#define xieValEncodeUncompressedTriple	3

#define xieValEncodeG31D	4

#define xieValEncodeG32D	6

#define xieValEncodeG42D	8

#define xieValEncodeJPEGBaseline	10

#define xieValEncodeJPEGLossless	12

#define xieValEncodeTIFF2	14

#define xieValEncodeTIFFPackBits	16

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloMatch	Unconstrained src data

xieErrNoFloSource	Invalid src

xieErrNoFloTechnique	Invalid encode_tech or encode_param

xieErrNoFloValue	Invalid notify

See Also

XieGetClientData, XieFloExportClientPhoto,

XieTecEncodeUncompressedSingle, XieTecEncodeUncompressedTriple, XieTecEncodeG31D, XieTecEncodeG32D, XieTecEncodeG42D, XieTecEncodeServerChoice, XieTecEncodeJPEGBaseline, XieTecEncodeJPEGLossless, XieTecEncodeTIFF2, XieTecEncodeTIFFPackBits

 XIElib - Photoflo Element Functions	XieFloExportClientROI 

�tc "XieFloExportClientROI " \l 2�

conven.c

void XieFloExportClientROI (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src */,

    XieExportNotify	/* notify */

);

Name

XieFloExportClientROI - specify an ExportClientROI element and set its parameters

Syntax

void XieFloExportClientROI (element, src, notify)

XiePhotoElement *element;

XiePhototag src;

XieExportNotify notify;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying the list-of-rectangles.

notify	Specifies whether to enable sending an ExportAvailable event.

Returns



Description

An ExportClientROI element allows a list-of-rectangles, imported using an ImportROI or an ImportClientROI element, to be retrieved by the client. The actual transport of list-of-rectangles data through the protocol stream is requested using a GetClientData element.



One of three standard export notify values can be assigned to notify:



xieValDisable

xieValFirstData

xieValNewData



If notify was specified as xieValFirstData, this event will be sent only the first time data become available; otherwise, if xieValNewData was specified, this event will be generated each time the amount of data available changes from zero to nonzero.



If notify is requested, the ExportAvailable event's data field will report the total number of rectangles that can be retrieved.

Structures

XieFloExportClientROI sets the XiePhotoElement structure field elemType to xieElemExportClientROI, which identifies the element as an ExportClientROI, and sets the fields of the member structure ExportClientROI using the arguments in the argument list.



typedef unsigned XieExportNotify;

typedef unsigned XiePhototag;



    element->elemType = xieElemExportClientROI;

    element->data.ExportClientROI.src    = src;

    element->data.ExportClientROI.notify = notify;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			XieExportNotify notify;

		} ExportClientROI;

		...

	} data;

} XiePhotoElement;



/* Definitions of ExportNotify */

#define xieValDisable	1

#define xieValFirstData	2

#define xieValNewData	3

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloSource	Invalid src

xieErrNoFloValue	Invalid notify

See Also

XieFloImportROI, XieFloImportClientROI, XieGetClientData

 XIElib - Photoflo Element Functions	XieFloExportDrawable 

�tc "XieFloExportDrawable " \l 2�

conven.c

void XieFloExportDrawable (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src */,

    Drawable		/* drawable */,

    GC			/* gc */,

    int			/* dst_x */,

    int			/* dst_y */

);

Name

XieFloExportDrawable - specify an ExportDrawable element and set its parameters

Syntax

void XieFloExportDrawable (element, src, drawable, gc, dst_x, dst_y)

XiePhotoElement *element;

XiePhototag src;

Drawable drawable;

GC gc;

int dst_x;

int dst_y;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying constrained source data.

drawable	Specifies the Window or Pixmap into which the data will be written.

gc	Specifies the GContext to be used when transferring pixels to drawable.

dst_x	Specifies where the data should be placed in drawable.

dst_y	Specifies where the data should be placed in drawable.

Returns



Description

An ExportDrawable element allows Colormap index data to be exported to a Window or Pixmap.



The following components are used from gc: function, plane-mask, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.



The levels of src must exactly match the depth of drawable and gc  (that is, levels must be 2depth).

Structures

XieFloExportDrawable sets the XiePhotoElement structure field elemType to xieElemExportDrawable, which identifies the element as an ExportDrawable, and sets the fields of the member structure ExportDrawable using the arguments in the argument list.



typedef unsigned XiePhototag;



    element->elemType = xieElemExportDrawable;

    element->data.ExportDrawable.src      = src;

    element->data.ExportDrawable.drawable = drawable;

    element->data.ExportDrawable.gc       = gc;

    element->data.ExportDrawable.dst_x    = dst_x;

    element->data.ExportDrawable.dst_y    = dst_y;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			Drawable drawable;

			GC gc;

			int dst_x;

			int dst_y;

		} ExportDrawable;

		...

	} data;

} XiePhotoElement;

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloDrawable	Invalid drawable

xieErrNoFloGC	Invalid gc

xieErrNoFloMatch	Invalid src data: triple band, unconstrained, levels does not match depth

xieErrNoFloSource	Invalid src

See Also

XieFloExportDrawablePlane

See Also



 XIElib - Photoflo Element Functions	XieFloExportDrawablePlane 

�tc "XieFloExportDrawablePlane " \l 2�

conven.c

void XieFloExportDrawablePlane (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src */,

    Drawable		/* drawable */,

    GC			/* gc */,

    int			/* dst_x */,

    int			/* dst_y */

);

Name

XieFloExportDrawablePlane - specify an ExportDrawablePlane element and set its parameters

Syntax

void XieFloExportDrawablePlane (element, src, drawable, gc, dst_x, dst_y)

XiePhotoElement *element;

XiePhototag src;

Drawable drawable;

GC gc;

int dst_x;

int dst_y;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying constrained bitonal source data.

drawable	Specifies the Window or Pixmap into which the data will be written.

gc	Specifies the GContext to be used when transferring pixels to drawable.

dst_x	Specifies where the data should be placed in drawable.

dst_y	Specifies where the data should be placed in drawable.

Returns



Description

An ExportDrawablePlane element allows single-band single-bit (bitonal) data to be exported to a Window or a Pixmap.



The following components are used from gc: function, plane-mask, foreground, background, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. For the fill-style component of gc, values of FillSolid and FillTiled are treated as synonyms for FillOpaqueStippled.

Structures

XieFloExportDrawablePlane sets the XiePhotoElement structure field elemType to xieElemExportDrawablePlane, which identifies the element as an ExportDrawablePlane, and sets the fields of the member structure ExportDrawablePlane using the arguments in the argument list.



typedef unsigned XiePhototag;



    element->elemType = xieElemExportDrawablePlane;

    element->data.ExportDrawablePlane.src      = src;

    element->data.ExportDrawablePlane.drawable = drawable;

    element->data.ExportDrawablePlane.gc       = gc;

    element->data.ExportDrawablePlane.dst_x    = dst_x;

    element->data.ExportDrawablePlane.dst_y    = dst_y;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			Drawable drawable;

			GC gc;

			int dst_x;

			int dst_y;

		} ExportDrawablePlane;

		...

	} data;

} XiePhotoElement;

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloDrawable	Invalid drawable

xieErrNoFloGC	Invalid gc

xieErrNoFloMatch	Invalid src data: triple band, not constrained, levels > 2

xieErrNoFloSource	Invalid src

See Also

XieFloExportDrawable

See Also



 XIElib - Photoflo Element Functions	XieFloExportLUT 

�tc "XieFloExportLUT " \l 2�

conven.c

void XieFloExportLUT (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src */,

    XieLut		/* lut */,

    Bool		/* merge */,

    XieLTriplet 	/* start */

);

Name

XieFloExportLUT - specify an ExportLUT element and set its parameters

Syntax

void XieFloExportLUT (element, src, lut, merge, start)

XiePhotoElement *element;

XiePhototag src;

XieLut lut;

Bool merge;

XieLTriplet start;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying lookup table data.

lut	Specifies the ID of the LUT to receive the data.

merge	Specifies how new array entries replace existing entries.

start	Specifies the index of the first array entry that should be written in lut, per band.

Returns



Description

An ExportLUT element allows data imported from an ImportLUT or ImportClientLUT element to be saved in an existing LUT resource.



merge specifies that new array entries from src should replace entries that already exist within lut. If merge is False, start must be zero for each band. In this case, lut will inherit the attributes of src and be populated with its data; the previous attributes and data of lut are overwritten when the photoflo completes. If merge is True and lut has existing attributes, the data from src will replace the data from lut, beginning at position start. If merge is True,but lut has not yet been populated, it is an error.



The attributes of src must match those of lut, and the combination of start and the length of src must specify a valid subrange existing within lut.

Structures

XieFloExportLUT sets the XiePhotoElement structure field elemType to xieElemExportLUT, which identifies the element as an ExportLUT, and sets the fields of the member structure ExportLUT using the arguments in the argument list.



typedef XID XieLut;

typedef unsigned long XieLTriplet[3];

typedef unsigned XiePhototag;



    for (i = 0; i < 3; i++)

	element->data.ExportLUT.start[i] = start[i];



    element->elemType = xieElemExportLUT;

    element->data.ExportLUT.merge  = merge;

    element->data.ExportLUT.src    = src;

    element->data.ExportLUT.lut    = lut;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			XieLut lut;

			Bool merge;

			XieLTriplet start;

		} ExportLUT;

		...

	} data;

} XiePhotoElement;

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloLUT	Invalid lut

xieErrNoFloMatch	merge true and attributes do not match between src and lut, or�merge true and start + src length is not a subrange of lut

xieErrNoFloSource	Invalid src

xieErrNoFloValue	merge false and start nonzero

See Also

XieFloImportLUT, XieFloImportClientLUT

 XIElib - Photoflo Element Functions	XieFloExportPhotomap 

�tc "XieFloExportPhotomap " \l 2�

conven.c

void XieFloExportPhotomap (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src */,

    XiePhotomap		/* photomap */,

    XieEncodeTechnique	/* encode_tech */,

    XiePointer		/* encode_param */

);

Name

XieFloExportPhotomap - specify an ExportPhotomap element and set its parameters

Syntax

void XieFloExportPhotomap (element, src, photomap, encode_tech, encode_param)

XiePhotoElement *element;

XiePhototag src;

XiePhotomap photomap;

XieEncodeTechnique encode_tech;

XiePointer encode_param;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying source data.

photomap	Specifies the ID of the photomap resource to receive the data.

encode_tech	Specifies the image compression or formatting technique.

encode_param	Specifies the list of additional parameters required by encode_tech.

Returns



Description

An ExportPhotomap element allows data from photoflo operations to be saved in a photomap. A photomap is a server resource that can be used to store image data.



photomap will inherit the attributes of src and be populated with its data. The previous attributes and data of photomap are overwritten when the photoflo completes.



Encode techniques define the techniques that can be used to compress an image or format it as uncompressed data. One of the following standard encode technique values can be assigned to encode_tech:



xieValEncodeServerChoice	

xieValEncodeUncompressedSingle

xieValEncodeUncompressedTriple

xieValEncodeG31D

xieValEncodeG32D

xieValEncodeG42D

xieValEncodeJPEGBaseline

xieValEncodeJPEGLossless

xieValEncodeTIFF2

xieValEncodeTIFFPackBits



If a vendor defined additional private encode techniques, the private technique values given to these techniques can be assigned to encode_tech.

Structures

XieFloExportPhotomap sets the XiePhotoElement structure field elemType to xieElemExportPhotomap, which identifies the element as an ExportPhotomap, and sets the fields of the member structure ExportPhotomap using the arguments in the argument list.



typedef unsigned XiePhototag;

typedef XID XiePhotomap;

typedef unsigned XieEncodeTechnique;



    element->elemType = xieElemExportPhotomap;

    element->data.ExportPhotomap.src          = src;

    element->data.ExportPhotomap.photomap     = photomap;

    element->data.ExportPhotomap.encode_tech  = encode_tech;

    element->data.ExportPhotomap.encode_param = encode_param;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			XiePhotomap photomap;

			XieEncodeTechnique encode_tech;

			XiePointer encode_param;

		} ExportPhotomap;

		...

	} data;

} XiePhotoElement;



/* Definitions for EncodeTechniques */

#define xieValEncodeServerChoice	1

#define xieValEncodeUncompressedSingle	2

#define xieValEncodeUncompressedTriple	3

#define xieValEncodeG31D	4

#define xieValEncodeG32D	6

#define xieValEncodeG42D	8

#define xieValEncodeJPEGBaseline	10

#define xieValEncodeJPEGLossless	12

#define xieValEncodeTIFF2	14

#define xieValEncodeTIFFPackBits	16

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloPhotomap	Invalid photomap

xieErrNoFloSource	Invalid src

xieErrNoFloTechnique	Invalid encode_tech or encode_param

See Also

XieTecEncodeUncompressedSingle, XieTecEncodeUncompressedTriple, XieTecEncodeG31D, XieTecEncodeG32D, XieTecEncodeG42D, XieTecEncodeServerChoice, XieTecEncodeJPEGBaseline, XieTecEncodeTIFF2, XieTecEncodeTIFFPackBits

 XIElib - Photoflo Element Functions	XieFloExportROI 

�tc "XieFloExportROI " \l 2�

conven.c

void XieFloExportROI (

    XiePhotoElement *	/* element */,

    XiePhototag		/* src */,

    XieRoi		/* roi */

);

Name

XieFloExportROI - specify an ExportROI element and set its parameters

Syntax

void XieFloExportROI (element, src, roi)

XiePhotoElement *element;

XiePhototag src;

XieRoi roi;

Arguments

element	Specifies the XiePhotoElement structure to use.

src	Specifies the element supplying a list-of-rectangles.

roi	Specifies the ID of the ROI resource to receive the data.

Returns



Description

An ExportROI element allows data imported from an ImportROI or ImportClientROI element to be saved in an existing Rectangles-Of-Interest (ROI) resource.



roi will be populated with new data. The previous data of roi are overwritten after the photoflo completes.

Structures

XieFloExportROI sets the XiePhotoElement structure field elemType to xieElemExportROI, which identifies the element as an ExportROI, and sets the fields of the member structure ExportROI using the arguments in the argument list.



typedef XID XieRoi;

typedef unsigned XiePhototag;



    element->elemType = xieElemExportROI;

    element->data.ExportROI.src = src;

    element->data.ExportROI.roi = roi;

typedef struct {

	int elemType;

	union {

		...

		struct {

			XiePhototag src;

			XieRoi roi;

		} ExportROI;

		...

	} data;

} XiePhotoElement;

Errors

xieErrNoFloAlloc	Insufficient resources (for example, memory)

xieErrNoFloROI	Invalid roi

xieErrNoFloSource	Invalid src

See Also

XieFloImportROI, XieFloImportClientROI

 XIElib - Technique Functions	XieTecColorAllocAll 

�tc "Technique Functions " \l 1�

�tc "XieTecColorAllocAll " \l 2�

conven.c

XieColorAllocAllParam *XieTecColorAllocAll (

    unsigned long	/* fill */

);

Name

XieTecColorAllocAll - allocate and fill an XieColorAllocAllParam structure

Syntax

XieColorAllocAllParam *XieTecColorAllocAll (fill)

unsigned long fill;

Arguments

fill	Specifies thefill value to use for pixels which cannot be allocated.

Returns

The XieColorAllocAllParam structure.

Description

XieTecColorAllocAll allocates and returns a pointer to an XieColorAllocAllParam structure. The returned structure represents the list of parameters required by the AllocAll color allocation technique and may be used as the color_alloc_param argument of XieFloConvertToIndex (when the color_alloc_tech argument is xieValColorAllocAll).



If insufficient memory is available, XieTecColorAllocAll returns NULL. To free the memory allocated to this structure, use XFree.



The AllocAll color allocation technique allocates a read-only Colormap cell for each new pixel found. If the Colormap runs out of cells, the remaining new pixels are mapped to fill. A ColorAlloc event, which warns the client that results are of lesser fidelity than desired, will be sent if it is necessary to use fill, and the client has requested it (see XieFloConvertToIndex). AllocAll is appropriate only for dynamic Colormaps and requires that the number of discrete image pixels fit within the size of the Colormap to avoid running out of cells.

Structures

XieTecColorAllocAll sets the structure field fill to the value of the argument fill.



typedef struct {

	unsigned long fill;

} XieColorAllocAllParam;

    XieColorAllocAllParam *param = (XieColorAllocAllParam *)

	Xmalloc (sizeof (XieColorAllocAllParam));



    param->fill = fill;



    return (param);

Errors



See Also

XieFloConvertToIndex

 XIElib - Technique Functions	XieTecColorAllocMatch 

�tc "XieTecColorAllocMatch " \l 2�

conven.c

XieColorAllocMatchParam *XieTecColorAllocMatch (

    double		/* match_limit */,

    double		/* gray_limit */

);

Name

XieTecColorAllocMatch - allocate and fill an XieColorAllocMatchParam structure

Syntax

XieColorAllocMatchParam *XieTecColorAllocMatch (match_limit, gray_limit)

double match_limit;

double gray_limit;

Arguments

match_limit	Specifies the color allocation control value.

gray_limit	Specifies the gray scale allocation control value.

Returns

The XieColorAllocMatchParam structure.

Description

XieTecColorAllocMatch allocates and returns a pointer to an XieColorAllocMatchParam structure. The returned structure represents the list of parameters required by the AllocMatch color allocation technique and may be used as the color_alloc_param argument of XieFloConvertToIndex (when the color_alloc_tech argument is xieValColorAllocMatch).



If insufficient memory is available, XieTecColorAllocMatch returns NULL. To free the memory allocated to this structure, use XFree.



The AllocMatch color allocation technique allows a trade-off between image fidelity and Colormap usage via a pair of granularity parameters. The highest priority is given to allocating read-only cells in a sequence that provides an even distribution of pixels throughout the colorspace. Secondary priority is given to the frequency of usage of image pixels. Any image pixel that is a close enough match to an existing read-only cell will share that cell (where “close” is determined by the granularity controls). For other image pixels, new read-only allocations are made. When no more cells are available, each remaining image pixel is matched to the closest read-only cell. The AllocMatch color allocation technique is appropriate for both static and dynamic Colormaps. For the sake of computational efficiency the number of discrete image pixels should not exceed the size of the Colormap.



match_limit and gray_match control the allocation of colors and gray shades, respectively. The minimum value (0.0) specifies exact matches (within the limits of the Colormap). The maximum value (1.0) encompasses the entire colorspace within which no new cells are allocated. A ColorAlloc event, which warns the client that results are of lesser fidelity than desired, can be sent if the Colormap runs out of cells.

Structures

XieTecColorAllocMatch sets the structure field match_limit to the value of the argument match_limit; and the structure field gray_limit to the value of the argument gray_limit.



typedef struct {

	float match_limit;

	float gray_limit;

} XieColorAllocMatchParam;

    XieColorAllocMatchParam *param = (XieColorAllocMatchParam *)

	Xmalloc (sizeof (XieColorAllocMatchParam));



    param->match_limit = match_limit;

    param->gray_limit  = gray_limit;



    return (param);



Errors



See Also

XieFloConvertToIndex

 XIElib - Technique Functions	XieTecColorAllocRequantize 

�tc "XieTecColorAllocRequantize " \l 2�

conven.c

XieColorAllocRequantizeParam *XieTecColorAllocRequantize (

    unsigned long	/* max_cells */

);

Name

XieTecColorAllocRequantize - allocate and fill an XieColorAllocRequantizeParam structure

Syntax

XieColorAllocRequantizeParam *XieTecColorAllocRequantize (max_cells)

unsigned long max_cells;

Arguments

max_cells	Specifies the maximum number of Colormap allocations to allow.

Returns

The XieColorAllocRequantizeParam structure.

Description

XieTecColorAllocRequantize allocates and returns a pointer to an XieColorAllocRequantizeParam structure. The returned structure represents the list of parameters required by the AllocRequantize color allocation technique and may be used as the color_alloc_param argument of XieFloConvertToIndex (when the color_alloc_tech argument is xieValColorAllocRequantize).



If insufficient memory is available, XieTecColorAllocRequantize returns NULL. To free the memory allocated to this structure, use XFree.



The AllocRequantize color allocation technique first reduces the total number of discrete pixel values in the image to be no more than a specified number and then allocates the resulting pixel values as read-only cells from the Colormap. One method of accomplishing this reduction process can be found in "Color image quantization for frame buffer display" (Heckbert, P. S., Comput. Graph. 16, 3).



If max_cells is zero or greater than the number of unallocated Colormap cells, the reduction algorithm will restrict its output to the number of free cells. A ColorAlloc event, which warns the client that results are of lesser fidelity than desired, can be sent if the number of pixels had to be restricted to a lesser number than max_cells because of  a lack of free Colormap cells. The AllocRequantize color allocation technique is appropriate only for dynamic Colormaps.

Structures

XieTecColorAllocRequantize sets the structure field max_cells to the value of the argument max_cells.



typedef struct {

	unsigned long max_cells;

} XieColorAllocRequantizeParam;

    XieColorAllocRequantizeParam *param = (XieColorAllocRequantizeParam *)

	Xmalloc (sizeof (XieColorAllocRequantizeParam));



    param->max_cells = max_cells;



    return (param);



Errors



See Also

XieFloConvertToIndex

 XIElib - Technique Functions	XieTecRGBToCIELab 

�tc "XieTecRGBToCIELab " \l 2�

conven.c

XieRGBToCIELabParam *XieTecRGBToCIELab (

    XieMatrix			/* matrix */,

    XieWhiteAdjustTechnique	/* white_adjust_tech */,

    XiePointer			/* white_adjust_param */

);

Name

XieTecRGBToCIELab - allocate and fill an XieRGBToCIELabParam structure

Syntax

XieRGBToCIELabParam *XieTecRGBToCIELab (matrix, white_adjust_tech, white_adjust_param)

XieMatrix matrix;

XieWhiteAdjustTechnique white_adjust_tech;

XiePointer white_adjust_param;

Arguments

matrix	Specifies the conversion matrix.

white_adjust_tech	Specifies the WhiteAdjust technique to be used.

white_adjust_param	Specifies the list of parameters required by white_adjust_tech.

Returns

The XieRGBToCIELabParam structure.

Description

XieTecRGBToCIELab allocates and returns a pointer to an XieRGBToCIELabParam structure. The returned structure represents the list of parameters required by the RGBToCIELab color conversion technique and may be used as the color_param argument of XieFloConvertFromRGB (when the color_space argument is xieValRGBToCIELab).



If insufficient memory is available, XieTecRGBToCIELab returns NULL. To free the memory allocated to this structure, use XFree.



XieTecRGBToCIELab converts RGB data to the CIELab colorspace, an international standard designed for perceptual uniformity. The colorspace coordinates are denoted by L, a, and b and are defined in CIE, Recommendations on Uniform Color Spaces, Color-Difference Equations, Psychometric Color Terms (Bureau Central de la CIE [Supplement 2 of CIE Publication 15 (E-1.3.1) 1971], 1978).



matrix is a 3x3 RGB-to-CIEXYZ conversion matrix (the source white point is also encoded in matrix). white_adjust_tech is the WhiteAdjust technique that can be used to shift the white point of the output data. white_adjust_param is the list of parameters required by white_adjust_tech.



The input data type can be constrained or unconstrained; the output data type is always unconstrained. When the input is constrained, the data are normalized to the range [0, 1] (that is, scaled by 1/(levels - 1) prior to the conversion).



WhiteAdjust techniques define the white point adjustment techniques that can be used when converting to or from the RGB colorspace. One of the following standard WhiteAdjust technique values can be assigned to white_adjust_tech:



xieValWhiteAdjustDefault

xieValWhiteAdjustNone

xieValWhiteAdjustCIELabShift



If a vendor defined additional private WhiteAdjust techniques, the private technique values given to these techniques can be assigned to white_adjust_tech.



The server is required to support the default technique that is bound to one of the standard techniques defined or a private technique.

Structures

XieTecRGBToCIELab sets the structure field matrix to the values of the argument matrix; the structure field white_adjust_tech to the value of the argument white_adjust_tech; and the structure field white_adjust_param to the value of the argument white_adjust_param.



typedef float XieMatrix[9];

typedef unsigned XieWhiteAdjustTechnique;

typedef struct {

	XieMatrix matrix;

	XieWhiteAdjustTechnique white_adjust_tech;

	XiePointer white_adjust_param;

} XieRGBToCIELabParam;

    XieRGBToCIELabParam *param = (XieRGBToCIELabParam *)

	Xmalloc (sizeof (XieRGBToCIELabParam));



    memcpy (param->matrix, matrix, sizeof (XieMatrix));

    param->white_adjust_tech  = white_adjust_tech;

    param->white_adjust_param = white_adjust_param;



    return (param);





/* Definitions for WhiteAdjust Techniques */

#define xieValWhiteAdjustDefault	0

#define xieValWhiteAdjustNone	1

#define xieValWhiteAdjustCIELabShift	2

Errors



See Also

XieFloConvertFromRGB, XieTecWhiteAdjustCIELabShift

 XIElib - Technique Functions	XieTecRGBToCIEXYZ 

�tc "XieTecRGBToCIEXYZ " \l 2�

conven.c

XieRGBToCIEXYZParam *XieTecRGBToCIEXYZ (

    XieMatrix			/* matrix */,

    XieWhiteAdjustTechnique	/* white_adjust_tech */,

    XiePointer			/* white_adjust_param */

);

Name

XieTecRGBToCIEXYZ - allocate and fill an XieRGBToCIEXYZParam structure

Syntax

XieRGBToCIEXYZParam *XieTecRGBToCIEXYZ (matrix, white_adjust_tech, white_adjust_param)

XieMatrix matrix;

XieWhiteAdjustTechnique white_adjust_tech;

XiePointer white_adjust_param;

Arguments

matrix	Specifies the conversion matrix.

white_adjust_tech	Specifies the WhiteAdjust technique to be used.

white_adjust_param	Specifies the list of parameters required by white_adjust_tech.

Returns

The XieRGBToCIEXYZParam structure.

Description

XieTecRGBToCIEXYZ allocates and returns a pointer to an XieRGBToCIEXYZParam structure. The returned structure represents the list of parameters required by the RGBToCIEXYZ color conversion technique and may be used as the color_param argument of XieFloConvertFromRGB (when the color_space argument is xieValRGBToCIEXYZ).



If insufficient memory is available, XieTecRGBToCIEXYZ returns NULL. To free the memory allocated to this structure, use XFree.



XieTecRGBToCIEXYZ converts RGB data to the CIEXYZ colorspace, an international standard device-independent colorspace.



matrix is a 3x3 RGB-to-CIEXYZ conversion matrix (the source white point is also encoded in matrix). white_adjust_tech is the WhiteAdjust technique that can be used to shift the white point of the output data. white_adjust_param is the list of parameters required by white_adjust_tech.



The input data type can be constrained or unconstrained; the output data type is always unconstrained. When the input is constrained, the data are normalized to the range [0, 1] (that is, scaled by 1/(levels - 1) prior to the conversion).



WhiteAdjust techniques define the white point adjustment techniques that can be used when converting to or from the RGB colorspace. One of the following standard WhiteAdjust technique values can be assigned to white_adjust_tech:



xieValWhiteAdjustDefault

xieValWhiteAdjustNone

xieValWhiteAdjustCIELabShift



If a vendor defined additional private WhiteAdjust techniques, the private technique values given to these techniques can be assigned to white_adjust_tech.



The server is required to support the default technique that is bound to one of the standard techniques defined  or a private technique.

Structures

XieTecRGBToCIEXYZ sets the structure field matrix to the values of the argument matrix; the structure field white_adjust_tech to the value of the argument white_adjust_tech; and the structure field white_adjust_param to the value of the argument white_adjust_param.



typedef float XieMatrix[9];

typedef unsigned XieWhiteAdjustTechnique;

typedef struct {

	XieMatrix matrix;

	XieWhiteAdjustTechnique white_adjust_tech;

	XiePointer white_adjust_param;

} XieRGBToCIEXYZParam;

    XieRGBToCIEXYZParam *param = (XieRGBToCIEXYZParam *)

	Xmalloc (sizeof (XieRGBToCIEXYZParam));



    memcpy (param->matrix, matrix, sizeof (XieMatrix));

    param->white_adjust_tech  = white_adjust_tech;

    param->white_adjust_param = white_adjust_param;



    return (param);





/* Definitions for WhiteAdjust Techniques */

#define xieValWhiteAdjustDefault	0

#define xieValWhiteAdjustNone	1

#define xieValWhiteAdjustCIELabShift	2

Errors



See Also

XieFloConvertFromRGB, XieTecWhiteAdjustCIELabShift

 XIElib - Technique Functions	XieTecRGBToYCbCr 

�tc "XieTecRGBToYCbCr " \l 2�

conven.c

XieRGBToYCbCrParam *XieTecRGBToYCbCr (

    XieLevels		/* levels */,

    double		/* luma_red */,

    double		/* luma_green */,

    double		/* luma_blue */,

    XieConstant		/* bias */

);

Name

XieTecRGBToYCbCr - allocate and fill an XieRGBToYCbCrParam structure

Syntax

XieRGBToYCbCrParam *XieTecRGBToYCbCr (levels, luma_red, luma_green, luma_blue, bias)

XieLevels levels;

double luma_red;

double luma_green;

double luma_blue;

XieConstant bias;

Arguments

levels	Specifies the output levels.

luma_red	Specifies the proportion of red in the luminance band.

luma_green	Specifies the proportion of green in the luminance band.

luma_blue	Specifies the proportion of blue in the luminance band.

bias	Specifies an offset to add to the output pixels values.

Returns

The XieRGBToYCbCrParam structure.

Description

XieTecRGBToYCbCr allocates and returns a pointer to an XieRGBToYCbCrParam structure. The returned structure represents the list of parameters required by the RGBToYCbCr color conversion technique and may be used as the color_param argument of XieFloConvertFromRGB (when the color_space argument is xieValRGBToYCbCr).



If insufficient memory is available, XieTecRGBToYCbCr returns NULL. To free the memory allocated to this structure, use XFree.



XieTecRGBToYCbCr converts RGB data to the YCbCr colorspace. Source data may be constrained or unconstrained; the output type will match. If the source data is constrained, levels determines the output levels; otherwise levels is ignored.

Structures

XieTecRGBToYCbCr sets the structure field levels to the values of the argument levels; the structure fields luma_red, luma_green, luma_blue to the values of the arguments luma_red, luma_green, luma_blue; and the structure field bias to the values of the argument bias.



typedef float XieConstant[3];

typedef unsigned long XieLevels[3];

typedef struct {

	XieLevels levels;

	float luma_red;

	float luma_green;

	float luma_blue;

	XieConstant bias;

} XieRGBToYCbCrParam;

    XieRGBToYCbCrParam *param = (XieRGBToYCbCrParam *)

	Xmalloc (sizeof (XieRGBToYCbCrParam));



    param->levels[0]  = levels[0];

    param->levels[1]  = levels[1];

    param->levels[2]  = levels[2];

    param->luma_red   = luma_red;

    param->luma_green = luma_green;

    param->luma_blue  = luma_blue;

    param->bias[0]    = bias[0];

    param->bias[1]    = bias[1];

    param->bias[2]    = bias[2];



    return (param);



Errors



See Also

XieFloConvertFromRGB

 XIElib - Technique Functions	XieTecRGBToYCC 

�tc "XieTecRGBToYCC " \l 2�

conven.c

XieRGBToYCCParam *XieTecRGBToYCC (

    XieLevels		/* levels */,

    double		/* luma_red */,

    double		/* luma_green */,

    double		/* luma_blue */,

    double		/* scale */

);

Name

XieTecRGBToYCC - allocate and fill an XieRGBToYCCParam structure

Syntax

XieRGBToYCCParam *XieTecRGBToYCC (levels, luma_red, luma_green, luma_blue, scale)

XieLevels levels;

double luma_red;

double luma_green;

double luma_blue;

double scale;

Arguments

levels	Specifies the output levels.

luma_red	Specifies the proportion of red in the luminance band.

luma_green	Specifies the proportion of green in the luminance band.

luma_blue	Specifies the proportion of blue in the luminance band.

scale	Specifies a compression factor to apply to the output pixels values.

Returns

The XieRGBToYCCParam structure.

Description

XieTecRGBToYCC allocates and returns a pointer to an XieRGBToYCCParam structure. The returned structure represents the list of parameters required by the RGBToYCC color conversion technique and may be used as the color_param argument of XieFloConvertFromRGB (when the color_space argument is xieValRGBToYCC).



If insufficient memory is available, XieTecRGBToYCC returns NULL. To free the memory allocated to this structure, use XFree.



XieTecRGBToYCC converts RGB data to the YCC colorspace. The PhotoYCC color-encoding scheme is defined in: KODAK PhotoCD System - A Planning Guide for Developers (Eastman Kodak Co., Part no. DCI200R, 1991).



Source data may be constrained or unconstrained; the output type will match. If the source data is constrained, levels determines the output levels; otherwise levels is ignored. Typical values cited in the literature for scale are in the range of about 1.35 to 1.4.

Structures

XieTecRGBToYCC sets the structure field levels to the values of the argument levels; the structure fields luma_red, luma_green, luma_blue are set to the values of the arguments luma_red, luma_green, luma_blue; and the structure field scale to the value of the argument scale.



typedef unsigned long XieLevels[3];

typedef struct {

	XieLevels levels;

	float luma_red;

	float luma_green;

	float luma_blue;

	float scale;

} XieRGBToYCCParam;

    XieRGBToYCCParam *param = (XieRGBToYCCParam *)

	Xmalloc (sizeof (XieRGBToYCCParam));



    param->levels[0]  = levels[0];

    param->levels[1]  = levels[1];

    param->levels[2]  = levels[2];

    param->luma_red   = luma_red;

    param->luma_green = luma_green;

    param->luma_blue  = luma_blue;

    param->scale      = scale;



    return (param);



Errors



See Also

XieFloConvertFromRGB

 XIElib - Technique Functions	XieTecCIELabToRGB 

�tc "XieTecCIELabToRGB " \l 2�

conven.c

XieCIELabToRGBParam *XieTecCIELabToRGB (

    XieMatrix			/* matrix */,

    XieWhiteAdjustTechnique	/* white_adjust_tech */,

    XiePointer			/* white_adjust_param */,

    XieGamutTechnique		/* gamut_tech */,

    XiePointer			/* gamut_param */

);

Name

XieTecCIELabToRGB - allocate and fill an XieCIELabToRGBParam structure

Syntax

XieCIELabToRGBParam *XieTecCIELabToRGB (matrix, white_adjust_tech, white_adjust_param, gamut_tech, gamut_param)

XieMatrix matrix;

XieWhiteAdjustTechnique white_adjust_tech;

XiePointer white_adjust_param;

XieGamutTechnique gamut_tech;

XiePointer gamut_param;

Arguments

matrix	Specifies the conversion matrix.

white_adjust_tech	Specifies the WhiteAdjust technique to be used.

white_adjust_param	Specifies the list of parameters required by white_adjust_tech.

gamut_tech	Specifies the Gamut technique to be used.

gamut_param	Specifies the list of parameters required by gamut_tech.

Returns

The XieCIELabToRGBParam structure.

Description

XieTecCIELabToRGB allocates and returns a pointer to an XieCIELabToRGBParam structure. The returned structure represents the list of parameters required by the CIELabToRGB color conversion technique and may be used as the color_param argument of XieFloConvertToRGB (when the color_space argument is xieValCIELabToRGB).



If insufficient memory is available, XieTecCIELabToRGB returns NULL. To free the memory allocated to this structure, use XFree.



XieTecCIELabToRGB converts CIELab data to the RGB colorspace. The CIELab colorspace is an international standard designed for perceptual uniformity. The colorspace coordinates are denoted by L, a, and b and are defined in CIE, Recommendations on Uniform Color Spaces, Color-Difference Equations, Psychometric Color Terms (Bureau Central de la CIE [Supplement 2 of CIE Publication 15 (E-1.3.1) 1971], 1978).



matrix is a 3x3 CIEXYZ-to-RGB conversion matrix (the target white point is also encoded in matrix). white_adjust_tech is the WhiteAdjust technique that can be used to shift the white point of the source data prior to conversion. white_adjust_param is the list of parameters required by white_adjust_tech. gamut_tech is the Gamut technique that can be used to keep the output pixels within the bounds of the RGB colorspace. gamut_param is the list of parameters required by gamut_tech.



The input data type must be unconstrained; the output data type is also unconstrained.



WhiteAdjust techniques define the white point adjustment techniques that can be used when converting to or from the RGB colorspace. One of the following standard WhiteAdjust technique values can be assigned to white_adjust_tech:



xieValWhiteAdjustDefault

xieValWhiteAdjustNone

xieValWhiteAdjustCIELabShift



If a vendor defined additional private WhiteAdjust techniques, the private technique values given to these techniques can be assigned to white_adjust_tech.



The server is required to support the default technique that is bound to one of the standard techniques defined or a private technique.



Gamut techniques define the gamut compression techniques used to deal with converted colors that lie outside the gamut of the RGB space. One of the following standard gamut technique values can be assigned to gamut_tech:



xieValGamutDefault

xieValGamutNone

xieValGamutClipRGB



If a vendor defined additional private gamut techniques, the private technique values given to these techniques can be assigned to gamut_tech.



The server is required to support the default technique that is bound to one of the standard techniques defined or a private technique.

Structures

XieTecCIELabToRGB sets the structure field matrix to the values of the argument matrix; the structure field white_adjust_tech to the value of the argument white_adjust_tech; the structure field white_adjust_param to the value of the argument white_adjust_param; the structure field gamut_tech to the value of the argument gamut_tech; and the structure field gamut_param to the value of the argument gamut_param.



typedef float XieMatrix[9];

typedef unsigned XieGamutTechnique;

typedef unsigned XieWhiteAdjustTechnique;

typedef struct {

	XieMatrix matrix;

	XieWhiteAdjustTechnique white_adjust_tech;

	XiePointer white_adjust_param;

	XieGamutTechnique gamut_tech;

	XiePointer gamut_param;

} XieCIELabToRGBParam;

    XieCIELabToRGBParam *param = (XieCIELabToRGBParam *)

	Xmalloc (sizeof (XieCIELabToRGBParam));



    memcpy (param->matrix, matrix, sizeof (XieMatrix));

    param->white_adjust_tech  = white_adjust_tech;

    param->white_adjust_param = white_adjust_param;

    param->gamut_tech         = gamut_tech;

    param->gamut_param        = gamut_param;



    return (param);



/* Definitions for WhiteAdjust Techniques */

#define xieValWhiteAdjustDefault	0

#define xieValWhiteAdjustNone	1

#define xieValWhiteAdjustCIELabShift	2



/* Definitions for Gamut Techniques */

#define xieValGamutDefault	0

#define xieValGamutNone	1

#define xieValGamutClipRGB	2

Errors



See Also

XieFloConvertToRGB, XieTecWhiteAdjustCIELabShift

 XIElib - Technique Functions	XieTecCIEXYZToRGB 

�tc "XieTecCIEXYZToRGB " \l 2�

conven.c

XieCIEXYZToRGBParam *XieTecCIEXYZToRGB (

    XieMatrix			/* matrix */,

    XieWhiteAdjustTechnique	/* white_adjust_tech */,

    XiePointer			/* white_adjust_param */,

    XieGamutTechnique		/* gamut_tech */,

    XiePointer			/* gamut_param */

);

Name

XieTecCIEXYZToRGB -  allocate and fill an XieCIEXYZToRGBParam structure

Syntax

XieCIEXYZToRGBParam *XieTecCIEXYZToRGB (matrix, white_adjust_tech, white_adjust_param, gamut_tech, gamut_param)

XieMatrix matrix;

XieWhiteAdjustTechnique white_adjust_tech;

XiePointer white_adjust_param;

XieGamutTechnique gamut_tech;

XiePointer gamut_param;

Arguments

matrix	Specifies the conversion matrix.

white_adjust_tech	Specifies the WhiteAdjust technique to be used.

white_adjust_param	Specifies the list of parameters required by white_adjust_tech.

gamut_tech	Specifies the Gamut technique to be used.

gamut_param	Specifies the list of parameters required by gamut_tech.

Returns

The XieCIEXYZToRGBParam structure.

Description

XieTecCIEXYZToRGB allocates and returns a pointer to an XieCIEXYZToRGBParam structure. The returned structure represents the list of parameters required by the CIEXYZToRGB color conversion technique and may be used as the color_param argument of XieFloConvertToRGB (when the color_space argument is xieValCIEXYZToRGB).



If insufficient memory is available, XieTecCIEXYZToRGB returns NULL. To free the memory allocated to this structure, use XFree.



XieTecCIEXYZToRGB converts CIEXYZ data to the RGB colorspace. The CIEXYZ colorspace is an international standard device-independent colorspace.



matrix is a 3x3 CIEXYZ-to-RGB conversion matrix (the target white point is also encoded in matrix). white_adjust_tech is the WhiteAdjust technique that can be used to shift the white point of the source data prior to conversion. white_adjust_param is the list of parameters required by white_adjust_tech. gamut_tech is the Gamut technique that can be used to keep the output pixels within the bounds of the RGB colorspace. gamut_param is the list of parameters required by gamut_tech.



The input data type must be unconstrained; the output data type is also unconstrained.



WhiteAdjust techniques define the white point adjustment techniques that can be used when converting to or from the RGB colorspace. One of the following standard WhiteAdjust technique values can be assigned to white_adjust_tech:



xieValWhiteAdjustDefault

xieValWhiteAdjustNone

xieValWhiteAdjustCIELabShift



If a vendor defined additional private WhiteAdjust techniques, the private technique values given to these techniques can be assigned to white_adjust_tech.



The server is required to support the default technique that is bound to one of the standard techniques defined  or a private technique.



Gamut techniques define the gamut compression techniques used to deal with converted colors that lie outside the gamut of the RGB space. One of the following standard gamut technique values can be assigned to gamut_tech:



xieValGamutDefault

xieValGamutNone

xieValGamutClipRGB



If a vendor defined additional private gamut techniques, the private technique values given to these techniques can be assigned to gamut_tech.



The server is required to support the default technique that is bound to one of the standard techniques defined  or a private technique.

Structures

XieTecCIEXYZToRGB sets the structure field matrix to the values of the argument matrix; the structure field white_adjust_tech to the value of the argument white_adjust_tech; the structure field white_adjust_param to the value of the argument white_adjust_param; the structure field gamut_tech to the value of the argument gamut_tech; and the structure field gamut_param to the value of the argument gamut_param.



typedef float XieMatrix[9];

typedef unsigned XieGamutTechnique;

typedef unsigned XieWhiteAdjustTechnique;

typedef struct {

	XieMatrix matrix;

	XieWhiteAdjustTechnique white_adjust_tech;

	XiePointer white_adjust_param;

	XieGamutTechnique gamut_tech;

	XiePointer gamut_param;

} XieCIEXYZToRGBParam;

    XieCIEXYZToRGBParam *param = (XieCIEXYZToRGBParam *)

	Xmalloc (sizeof (XieCIEXYZToRGBParam));



    memcpy (param->matrix, matrix, sizeof (XieMatrix));

    param->white_adjust_tech  = white_adjust_tech;

    param->white_adjust_param = white_adjust_param;

    param->gamut_tech         = gamut_tech;

    param->gamut_param        = gamut_param;



    return (param);



/* Definitions for WhiteAdjust Techniques */

#define xieValWhiteAdjustDefault	0

#define xieValWhiteAdjustNone	1

#define xieValWhiteAdjustCIELabShift	2



/* Definitions for Gamut Techniques */

#define xieValGamutDefault	0

#define xieValGamutNone	1

#define xieValGamutClipRGB	2

Errors



See Also

XieFloConvertToRGB, XieTecWhiteAdjustCIELabShift

 XIElib - Technique Functions	XieTecYCbCrToRGB 

�tc "XieTecYCbCrToRGB " \l 2�

conven.c

XieYCbCrToRGBParam *XieTecYCbCrToRGB (

    XieLevels		/* levels */,

    double		/* luma_red */,

    double		/* luma_green */,

    double		/* luma_blue */,

    XieConstant		/* bias */,

    XieGamutTechnique	/* gamut_tech */,

    XiePointer		/* gamut_param */

);

Name

XieTecYCbCrToRGB - allocate and fill an XieYCbCrToRGBParam structure

Syntax

XieYCbCrToRGBParam *XieTecYCbCrToRGB (levels, luma_red, luma_green, luma_blue, bias, gamut_tech, gamut_param)

XieLevels levels;

double luma_red;

double luma_green;

double luma_blue;

XieConstant bias;

XieGamutTechnique gamut_tech;

XiePointer gamut_param;

Arguments

levels	Specifies the output levels.

luma_red	Specifies the proportion of red in the luminance band (Y).

luma_green	Specifies the proportion of green in the luminance band (Y).

luma_blue	Specifies the proportion of blue in the luminance band (Y).

bias	Specifies an offset to remove from the source pixels values.

gamut_tech	Specifies the Gamut technique to be used.

gamut_param	Specifies the list of parameters required by gamut_tech.

Returns

The XieYCbCrToRGBParam structure.

Description

XieTecYCbCrToRGB allocates and returns a pointer to an XieYCbCrToRGBParam structure. The returned structure represents the list of parameters required by the YCbCrToRGB color conversion technique and may be used as the color_param argument of XieFloConvertToRGB (when the color_space argument is xieValYCbCrToRGB).



If insufficient memory is available, XieTecYCbCrToRGB returns NULL. To free the memory allocated to this structure, use XFree.



XieTecYCbCrToRGB converts YCbCr data to the RGB colorspace. Source data may be constrained or unconstrained; the output type will match. If the source data is constrained, levels determines the output levels; otherwise levels is ignored.



Gamut techniques define the gamut compression techniques used to deal with converted colors that lie outside the gamut of the RGB space. One of the following standard gamut technique values can be assigned to gamut_tech:



xieValGamutDefault

xieValGamutNone

xieValGamutClipRGB



If a vendor defined additional private gamut techniques, the private technique values given to these techniques can be assigned to gamut_tech.



The server is required to support the default technique that is bound to one of the standard techniques defined or a private technique.

Structures

XieTecYCbCrToRGB sets the structure field levels to the values of the argument levels; the structure fields luma_red, luma_green, luma_blue to the values of the arguments luma_red, luma_green, luma_blue; the structure field bias to the values of the argument bias; the structure field gamut_tech to the value of the argument gamut_tech; and the structure field gamut_param to the value of the argument gamut_param.



typedef float XieConstant[3];

typedef unsigned long XieLevels[3];

typedef unsigned XieGamutTechnique;

typedef struct {

	XieLevels levels;

	float luma_red;

	float luma_green;

	float luma_blue;

	XieConstant bias;

	XieGamutTechnique gamut_tech;

	XiePointer gamut_param;

} XieYCbCrToRGBParam;

    XieYCbCrToRGBParam *param = (XieYCbCrToRGBParam *)

	Xmalloc (sizeof (XieYCbCrToRGBParam));



    param->levels[0]   = levels[0];

    param->levels[1]   = levels[1];

    param->levels[2]   = levels[2];

    param->luma_red    = luma_red;

    param->luma_green  = luma_green;

    param->luma_blue   = luma_blue;

    param->bias[0]     = bias[0];

    param->bias[1]     = bias[1];

    param->bias[2]     = bias[2];

    param->gamut_tech  = gamut_tech;

    param->gamut_param = gamut_param;



    return (param);



/* Definitions for Gamut Techniques */

#define xieValGamutDefault	0

#define xieValGamutNone	1

#define xieValGamutClipRGB	2

Errors



See Also

XieFloConvertToRGB

 XIElib - Technique Functions	XieTecYCCToRGB 

�tc "XieTecYCCToRGB " \l 2�

conven.c

XieYCCToRGBParam *XieTecYCCToRGB (

    XieLevels		/* levels */,

    double		/* luma_red */,

    double		/* luma_green */,

    double		/* luma_blue */,

    double		/* scale */,

    XieGamutTechnique	/* gamut_tech */,

    XiePointer		/* gamut_param */

);

Name

XieTecYCCToRGB - allocate and fill an XieYCCToRGBParam structure

Syntax

XieYCCToRGBParam *XieTecYCCToRGB (levels, luma_red, luma_green, luma_blue, scale, gamut_tech, gamut_param)

XieLevels levels;

double luma_red;

double luma_green;

double luma_blue;

double scale;

XieGamutTechnique gamut_tech;

XiePointer gamut_param;

Arguments

levels	Specifies the output levels.

luma_red	Specifies the proportion of red in the luminance band (Y).

luma_green	Specifies the proportion of green in the luminance band (Y).

luma_blue	Specifies the proportion of blue in the luminance band (Y).

scale	Specifies an expansion factor to apply to the output pixels values.

gamut_tech	Specifies the Gamut technique to be used.

gamut_param	Specifies the list of parameters required by gamut_tech.

Returns

The XieYCCToRGBParam structure.

Description

XieTecYCCToRGB allocates and returns a pointer to an XieYCCToRGBParam structure. The returned structure represents the list of parameters required by the YCCToRGB color conversion technique and may be used as the color_param argument of XieFloConvertToRGB (when the color_space argument is xieValYCCToRGB).



If insufficient memory is available, XieTecYCCToRGB returns NULL. To free the memory allocated to this structure, use XFree.



XieTecYCCToRGB converts YCC data to the RGB colorspace. The PhotoYCC color-encoding scheme is defined in KODAK PhotoCD System - A Planning Guide for Developers (Eastman Kodak Co., Part no. DCI200R, 1991).



Source data may be constrained or unconstrained; the output type will match. If the source data is constrained, levels determines the output levels; otherwise levels is ignored. Typical values cited in the literature for scale are in the range of about 1.35 to 1.4.



Gamut techniques define the gamut compression techniques used to deal with converted colors that lie outside the gamut of the RGB space. One of the following standard gamut technique values can be assigned to gamut_tech:



xieValGamutDefault

xieValGamutNone

xieValGamutClipRGB



If a vendor defined additional private gamut techniques, the private technique values given to these techniques can be assigned to gamut_tech .



The server is required to support the default technique that is bound to one of the standard techniques defined or a private technique.

Structures

XieTecYCCToRGB sets the structure field levels to the values of the argument levels; the structure fields luma_red, luma_green, luma_blue to the values of the arguments luma_red, luma_green, luma_blue; the structure field scale to the values of the argument scale; the structure field gamut_tech to the value of the argument gamut_tech; and the structure field gamut_param to the value of the argument gamut_param.



typedef unsigned long XieLevels[3];

typedef unsigned XieGamutTechnique;

typedef struct {

	XieLevels levels;

	float luma_red;

	float luma_green;

	float luma_blue;

	float scale;

	XieGamutTechnique gamut_tech;

	XiePointer gamut_param;

} XieYCCToRGBParam;

    XieYCCToRGBParam *param = (XieYCCToRGBParam *)

	Xmalloc (sizeof (XieYCCToRGBParam));



    param->levels[0]   = levels[0];

    param->levels[1]   = levels[1];

    param->levels[2]   = levels[2];

    param->luma_red    = luma_red;

    param->luma_green  = luma_green;

    param->luma_blue   = luma_blue;

    param->scale       = scale;

    param->gamut_tech  = gamut_tech;

    param->gamut_param = gamut_param;



    return (param);



/* Definitions for Gamut Techniques */

#define xieValGamutDefault	0

#define xieValGamutNone	1

#define xieValGamutClipRGB	2



Errors



See Also

XieFloConvertToRGB

 XIElib - Technique Functions	XieTecClipScale 

�tc "XieTecClipScale " \l 2�

conven.c

XieClipScaleParam *XieTecClipScale (

    XieConstant		/* in_low */,

    XieConstant		/* in_high */,

    XieLTriplet		/* out_low */,

    XieLTriplet		/* out_high */

);

Name

XieTecClipScale - allocate and fill an XieClipScaleParam structure

Syntax

XieClipScaleParam *XieTecClipScale (in_low, in_high, out_low, out_high)

XieConstant in_low;

XieConstant in_high;

XieLTriplet out_low;

XieLTriplet out_high;

Arguments

in_low	Specifies an input pixel limit.

in_high	Specifies an input pixel limit.

out_low	Specifies an output pixel limit.

out_high	Specifies an output pixel limit.

Returns

The XieClipScaleParam structure.

Description

XieTecClipScale allocates and returns a pointer to an XieClipScaleParam structure. The returned structure represents the list of parameters required by the constrain technique and may be used as the constrain_param argument of XieFloConstrain (when the constrain_tech argument is xieValClipScale).



If insufficient memory is available, XieTecClipScale returns NULL. To free the memory allocated to this structure, use XFree.



For each band, output pixels will be clipped to the range [out_low, out_high]. If in_low is less than in_high, then all pixels less than or equal to in_low will map to out_low, and all pixels that are greater than or equal to in_high will map to out_high. All intermediate pixel values are scaled proportionately to the output range. Nonintegral output values are rounded to the nearest integer.



If in_low is greater than in_high, then all pixels that are greater than or equal to in_low will map to out_low, and all pixels that are less than or equal to in_high will map to out_high. All intermediate pixel values will be linearly mapped to the output range, such that in_low maps to out_low, and in_high maps to out_high. Nonintegral output values are rounded to the nearest integer.



in_low should not equal in_high, out_low should be less than out_high, and out_high should not exceed levels - 1.



If in_low equals in_high, or if out_low is not less than out_high, or if out_high exceeds levels-1, a FloTechnique error is generated.

Structures

XieTecClipScale sets the structure fields input_low, input_high to the values of the arguments in_low, in_high; and the structure fields output_low, output_high to the values of the arguments out_low, out_high.



typedef float XieConstant[3];

typedef unsigned long XieLTriplet[3];

typedef struct {

	XieConstant input_low,input_high;

	XieLTriplet output_low,output_high;

} XieClipScaleParam;

    XieClipScaleParam *param = (XieClipScaleParam *)

	Xmalloc (sizeof (XieClipScaleParam));



    for (i = 0; i < 3; i++)

    {

    	param->input_low[i]   = in_low[i];

    	param->input_high[i]  = in_high[i];

    	param->output_low[i]  = out_low[i];

    	param->output_high[i] = out_high[i];

    }



    return (param);



Errors



See Also

XieFloConstrain

 XIElib - Technique Functions	XieTecConvolveConstant 

�tc "XieTecConvolveConstant " \l 2�

conven.c

XieConvolveConstantParam *XieTecConvolveConstant (

    XieConstant		/* constant */

);

Name

XieTecConvolveConstant - allocate and fill an XieConvolveConstantParam structure

Syntax

XieConvolveConstantParam *XieTecConvolveConstant (constant)

XieConstant constant;

Arguments

constant	Specifies the value to use if pixels are required from beyond the edge of the image.

Returns

The XieConvolveConstantParam structure.

Description

XieTecConvolveConstant allocates and returns a pointer to an XieConvolveConstantParam structure. The returned structure represents the list of parameters required by the convolve technique and may be used as the convolve_param argument of XieFloConvolve (when the convolve_tech argument is xieValConvolveConstant).



If insufficient memory is available, XieTecConvolveConstant returns NULL. To free the memory allocated to this structure, use XFree.



Various methods of handling edge conditions are provided for convolve techniques. These techniques determine what pixel values are used when the convolve technique requires data beyond the image bounds. Convolve techniques come into play only when the kernel is positioned partially off the edge of the image. Data around the edges of a process domain are convolved with adjacent image pixels wherever possible. A process domain is inserted in many element definitions and is used to restrict the element's processing to a subset of the source data pixels; it can be either a list-of-rectangles or a control-plane.



The Constant Convolve technique uses the value specified by constant if pixels are required from beyond the edge of the image.

Structures

XieTecConvolveConstant sets the structure field constant to the value of the argument constant.



typedef float XieConstant[3];

typedef struct {

	XieConstant constant;

} XieConvolveConstantParam;

    XieConvolveConstantParam *param = (XieConvolveConstantParam *)

	Xmalloc (sizeof (XieConvolveConstantParam));



    param->constant[0] = constant[0];

    param->constant[1] = constant[1];

    param->constant[2] = constant[2];



    return (param);



Errors



See Also

XieFloConvolve

 XIElib - Technique Functions	XieTecDecodeUncompressedSingle 

�tc "XieTecDecodeUncompressedSingle " \l 2�

conven.c

XieDecodeUncompressedSingleParam *XieTecDecodeUncompressedSingle (

    XieOrientation	/* fill_order */,

    XieOrientation	/* pixel_order */,

    unsigned int	/* pixel_stride */,

    unsigned int	/* left_pad */,

    unsigned int	/* scanline_pad */

);

Name

XieTecDecodeUncompressedSingle - allocate and fill an XieDecodeUncompressedSingleParam structure

Syntax

XieDecodeUncompressedSingleParam *XieTecDecodeUncompressedSingle (fill_order, pixel_order, pixel_stride, left_pad, scanline_pad)

XieOrientation fill_order;

XieOrientation pixel_order;

unsigned int pixel_stride;

unsigned int left_pad;

unsigned int scanline_pad;

Arguments

fill_order	Specifies the method of pixel packing.

pixel_order	Specifies pixel ordering within the data stream.

pixel_stride	Specifies the number of bits between consecutive pixels within a scanline.

left_pad	Specifies the number of pad bits in each scanline.

scanline_pad	Specifies a multiple of bytes to which each scanline is padded.

Returns

The XieDecodeUncompressedSingleParam structure.

Description

XieTecDecodeUncompressedSingle allocates and returns a pointer to an XieDecodeUncompressedSingleParam structure. The returned structure represents the list of parameters required by the decode technique and may be used as the decode_param argument of XieFloImportClientPhoto (when the decode_tech argument is xieValDecodeUncompressedSingle).



If insufficient memory is available, XieTecDecodeUncompressedSingle returns NULL. To free the memory allocated to this structure, use XFree.



The decode uncompressed single technique is used when no compression scheme has been applied to single band image data. The parameters define the format of the data stream of uncompressed data (the server may reformat the data as it chooses prior to processing or storage). When multiple pixels are put in the same byte, or a pixel spans multiple bytes, fill_order specifies whether the pixels (or parts of pixels) are packed into the most or least significant bits of a byte first. For pixels that span a byte boundary, pixel_order defines whether the most or least significant bits of the pixel are transported first within the data stream. One of the following standard orientation values can be assigned to fill_order and pixel_order:



xieValLSFirst

xieValMSFirst



The following table shows the relationship between fill_order and pixel_order, using two 10-bit pixels, each with two bits of pad (within each pixel the LS-bits are “0” and “a”, the MS-bits are “9” and “j”, the pad bits are “p”).



fill order�LSFirst (pixel order)�MSFirst (pixel order)��LSFirst�76543210  dcbapp98  ppjihgfe�98765432  jihgpp10  ppfedcba��MSFirst�76543210  98ppdcba  jihgfepp�98765432  10ppjihg  fedcbapp��

pixel_stride is the number of bits between the start of consecutive pixels within a scanline; it must be at least enough bits to contain the number of input levels. left_pad is the number of pad bits preceding the first image pixel in each scanline; if the server's Alignment attribute is Alignable, or pixel_stride fits the definition of Alignable, the value of left_pad must be a multiple of pixel_stride or a multiple of 8; otherwise, left_pad may be any arbitrary value. scanline_pad defines a multiple of bytes to which each scanline is padded; valid values are: 0 (not aligned), 1, 2, 4, 8, and 16. The total number of bits-per-scanline in the data stream includes: left_pad, the image data (width x pixel_stride), and sufficient additional bits to satisfy scanline_pad.

Structures

XieTecDecodeUncompressedSingle sets the structure field fill_order to the value of the argument fill_order; the structure field pixel_order to the value of the argument pixel_order; the structure field pixel_stride to the value of the argument pixel_stride; the structure field left_pad to the value of the argument left_pad; and the structure field scanline_pad to the value of the argument scanline_pad.



typedef unsigned XieOrientation;

typedef struct {

	XieOrientation fill_order;

	XieOrientation pixel_order;

	unsigned int pixel_stride;

	unsigned int left_pad;

	unsigned int scanline_pad;

} XieDecodeUncompressedSingleParam;

    XieDecodeUncompressedSingleParam *param =

	(XieDecodeUncompressedSingleParam *) Xmalloc (

	sizeof (XieDecodeUncompressedSingleParam));



    param->fill_order   = fill_order;

    param->pixel_order  = pixel_order;

    param->pixel_stride = pixel_stride;

    param->left_pad     = left_pad;

    param->scanline_pad = scanline_pad;



    return (param);



/* Definitions of Orientation Types */

#define xieValLSFirst	1

#define xieValMSFirst	2

Errors



See Also

XieFloImportClientPhoto, XiePutClientData

 XIElib - Technique Functions	XieTecDecodeUncompressedTriple 

�tc "XieTecDecodeUncompressedTriple " \l 2�

conven.c

XieDecodeUncompressedTripleParam *XieTecDecodeUncompressedTriple (

    XieOrientation	/* fill_order */,

    XieOrientation	/* pixel_order */,

    XieOrientation	/* band_order */,

    XieInterleave	/* interleave */,

    unsigned char[3]	/* pixel_stride[3] */,

    unsigned char[3]	/* left_pad[3] */,

    unsigned char[3]	/* scanline_pad[3] */

);

Name

XieTecDecodeUncompressedTriple - allocate and fill an XieDecodeUncompressedTripleParam structure

Syntax

XieDecodeUncompressedTripleParam *XieTecDecodeUncompressedTriple (fill_order, pixel_order, band_order, interleave, pixel_stride, left_pad, scanline_pad)

XieOrientation fill_order;

XieOrientation pixel_order;

XieOrientation band_order;

XieInterleave interleave;

unsigned char pixel_stride[3];

unsigned char left_pad[3];

unsigned char scanline_pad[3];

Arguments

fill_order	Specifies the method of pixel packing.

pixel_order	Specifies pixel ordering within the data stream.

band_order	Specifies the order of the image data sent through the protocol stream.

interleave	Specifies how the image bands are interleaved.

pixel_stride	Specifies the number of bits between consecutive pixels within a scanline.

left_pad	Specifies the number of pad bits in each scanline.

scanline_pad	Specifies a multiple of bytes to which each scanline is padded.

Returns

The XieDecodeUncompressedTripleParam structure.

Description

XieTecDecodeUncompressedTriple allocates and returns a pointer to an XieDecodeUncompressedTripleParam structure. The returned structure represents the list of parameters required by the decode technique and may be used as the decode_param argument of XieFloImportClientPhoto (when the decode_tech argument is xieValDecodeUncompressedTriple).



If insufficient memory is available, XieTecDecodeUncompressedTriple returns NULL. To free the memory allocated to this structure, use XFree.



The decode uncompressed triple technique is used when no compression scheme has been applied to triple band image data. The parameters define the format of the data stream of uncompressed data (the server may reformat the data as it chooses prior to processing or storage). When multiple pixels are put in the same byte, or a pixel spans multiple bytes, fill_order specifies whether the pixels (or parts of pixels) are packed into the most or least significant bits of a byte first. For pixels that span a byte boundary, pixel_order defines whether the most or least significant bits of the pixel are transported first within the data stream. 



One of the following standard orientation values can be assigned to fill_order and pixel_order:



xieValLSFirst

xieValMSFirst



The following table shows the relationship between fill_order and pixel_order, using two 10-bit pixels, each with two bits of pad (within each pixel the LS-bits are “0” and “a”, the MS-bits are “9” and “j”, the pad bits are “p”)



fill order�LSFirst (pixel order)�MSFirst (pixel order)��LSFirst�76543210  dcbapp98  ppjihgfe�98765432  jihgpp10  ppfedcba��MSFirst�76543210  98ppdcba  jihgfepp�98765432  10ppjihg  fedcbapp��

pixel_stride is the number of bits between the start of consecutive pixels within a scanline; It must be at least enough bits to contain the number of input levels. left_pad is the number of pad bits preceding the first image pixel in each scanline; if the server's Alignment attribute is Alignable, or pixel_stride fits the definition of Alignable, the value of left_pad must be a multiple of pixel_stride or a multiple of 8; otherwise, left_pad may be any arbitrary value. scanline_pad defines a multiple of bytes to which each scanline is padded; valid values are: 0 (not aligned), 1, 2, 4, 8, and 16. The total number of bits-per-scanline in the data stream includes: left_pad, the image data (width x pixel_stride), and sufficient additional bits to satisfy scanline_pad.



interleave describes how the image bands are interleaved (per pixel within a single plane, or sent as three separate planes); if interleave is xieValBandByPixel, inter-band dimensions must match: the widths and the heights of all bands must match. One of the following standard interleave values can be assigned to interleave:



xieValBandByPixel

xieValBandByPlane



band_order is the order of the image bands or image planes as they are transmitted through the protocol stream. band_order can be set to one of the standard orientation values. The least significant band of trichromatic data is the first band mentioned in the common name of the colorspace : red is the least significant band of RGB data. For band-by-pixel data, band_order specifies whether this band is put in the least or most significant bits of a pixel:



LSFirst�MSFirst��B1B0G2G1G0R2R1R0�R2R1R0G2G1G0B1B0��

For band-by-plane data, band_order specifies whether this band corresponds with the least significant or most significant image plane. Each plane is transported as a separate data stream:



band�LSFirst�MSFirst��0�R7R6R5R4R3R2R1R0�B7B6B5B4B3B2B1B0��1�G7G6G5G4G3G2G1G0�G7G6G5G4G3G2G1G0��2�B7B6B5B4B3B2B1B0�R7R6R5R4R3R2R1R0��

Structures

XieTecDecodeUncompressedTriple sets the structure field fill_order to the value of the argument fill_order; the structure field pixel_order to the value of the argument pixel_order; the structure field band_order to the value of the argument band_order; the structure field interleave to the value of the argument interleave; the structure field pixel_stride to the value of the argument pixel_stride; the structure field left_pad to the value of the argument left_pad; and the structure field scanline_pad to the value of the argument scanline_pad.



typedef unsigned XieOrientation;

typedef unsigned XieInterleave;

typedef struct {

	unsigned char left_pad[3];

	XieOrientation fill_order;

	unsigned char pixel_stride[3];

	XieOrientation pixel_order;

	unsigned char scanline_pad[3];

	XieOrientation band_order;

	XieInterleave interleave;

} XieDecodeUncompressedTripleParam;

    XieDecodeUncompressedTripleParam *param =

	(XieDecodeUncompressedTripleParam *) Xmalloc (

	sizeof (XieDecodeUncompressedTripleParam));



    param->left_pad[0]     = left_pad[0];

    param->left_pad[1]     = left_pad[1];

    param->left_pad[2]     = left_pad[2];

    param->fill_order      = fill_order;

    param->pixel_stride[0] = pixel_stride[0];

    param->pixel_stride[1] = pixel_stride[1];

    param->pixel_stride[2] = pixel_stride[2];

    param->pixel_order     = pixel_order;

    param->scanline_pad[0] = scanline_pad[0];

    param->scanline_pad[1] = scanline_pad[1];

    param->scanline_pad[2] = scanline_pad[2];

    param->band_order      = band_order;

    param->interleave      = interleave;



    return (param);



/* Definitions of Orientation Types */

#define xieValLSFirst	1

#define xieValMSFirst	2



/* Definitions for Interleave */

#define xieValBandByPixel	1

#define xieValBandByPlane	2

Errors



See Also

XieFloImportClientPhoto, XiePutClientData

 XIElib - Technique Functions	XieTecDecodeG31D 

�tc "XieTecDecodeG31D " \l 2�

conven.c

XieDecodeG31DParam *XieTecDecodeG31D (

    XieOrientation	/* encoded_order */,

    Bool		/* normal */,

    Bool		/* radiometric */

);

Name

XieTecDecodeG31D - allocate and fill an XieDecodeG31DParam structure

Syntax

XieDecodeG31DParam *XieTecDecodeG31D (encoded_order, normal, radiometric)

XieOrientation encoded_order;

Bool normal;

Bool radiometric;

Arguments

encoded_order	Specifies the bit order of the encoded data.

normal	Specifies how the data was processed when it was originally encoded.

radiometric	Specifies how “white runs” are decoded.

Returns

The XieDecodeG31DParam structure.

Description

XieTecDecodeG31D allocates and returns a pointer to an XieDecodeG31DParam structure. The returned structure represents the list of parameters required by the decode technique and may be used as the decode_param argument of XieFloImportClientPhoto (when the decode_tech argument is xieValDecodeG31D).



If insufficient memory is available, XieTecDecodeG31D returns NULL. To free the memory allocated to this structure, use XFree.



CCITT-G31D is the CCITT group 3 one-dimensional encoding technique as defined by CCITT T.4, "Standardization of Group 3 Facsimile Apparatus for Document Transmission".



encoded_order specifies the bit order of the encoded data. One of the following standard orientation values can be assigned to encoded_order:



xieValLSFirst

xieValMSFirst



The following table shows the encoded bit order of two bytes (within each byte the first encoded bit is “0”, and the last is bit “7”):



LSFirst�MSFirst��76543210  76543210�01234567  01234567��

radiometric specifies that “white runs” in the encoded data should be represented as image ones upon decode (maximum intensity), or conversely, they will be decoded as image zeros if radiometric is False. normal specifies that the data was processed according to its normal fill-order when it was originally encoded.

Structures

XieTecDecodeG31D sets the structure field encoded_order to the value of the argument encoded_order; the structure field normal to the value of the argument normal; and the structure field radiometric to the value of the argument radiometric.



typedef unsigned XieOrientation;

typedef struct {

	XieOrientation encoded_order;

	Bool normal;

	Bool radiometric;

} XieDecodeG31DParam;

    XieDecodeG31DParam *param = (XieDecodeG31DParam *)

	Xmalloc (sizeof (XieDecodeG31DParam));



    param->encoded_order = encoded_order;

    param->normal        = normal;

    param->radiometric   = radiometric;



    return (param);



/* Definitions of Orientation Types */

#define xieValLSFirst	1

#define xieValMSFirst	2

Errors



See Also

XieFloImportClientPhoto, XiePutClientData

 XIElib - Technique Functions	XieTecDecodeG32D 

�tc "XieTecDecodeG32D " \l 2�

conven.c

XieDecodeG32DParam *XieTecDecodeG32D (

    XieOrientation	/* encoded_order */,

    Bool		/* normal */,

    Bool		/* radiometric */

);

Name

XieTecDecodeG32D - allocate and fill an XieDecodeG32DParam structure

Syntax

XieDecodeG32DParam *XieTecDecodeG32D (encoded_order, normal, radiometric)

XieOrientation encoded_order;

Bool normal;

Bool radiometric;

Arguments

encoded_order	Specifies the bit order of the encoded data.

normal	Specifies how the data was processed when it was originally encoded.

radiometric	Specifies how “white runs” are decoded.

Returns

The XieDecodeG32DParam structure.

Description

XieTecDecodeG32D allocates and returns a pointer to an XieDecodeG32DParam structure. The returned structure represents the list of parameters required by the decode technique and may be used as the decode_param argument of XieFloImportClientPhoto (when the decode_tech argument is xieValDecodeG32D).



If insufficient memory is available, XieTecDecodeG32D returns NULL. To free the memory allocated to this structure, use XFree.



CCITT-G32D is the CCITT group 3 two-dimensional encoding technique as defined by CCITT T.4, "Standardization of Group 3 Facsimile Apparatus for Document Transmission".



encoded_order specifies the bit order of the encoded data. One of the following standard orientation values can be assigned to encoded_order:



xieValLSFirst

xieValMSFirst



The following table shows the encoded bit order of two bytes (within each byte the first encoded bit is “0”,  and the last is bit “7”):



LSFirst�MSFirst��76543210  76543210�01234567  01234567��

radiometric specifies that “white runs” in the encoded data should be represented as image ones upon decode (maximum intensity), or conversely, they will be decoded as image zeros if radiometric is False. normal specifies that the data was processed according to its normal fill-order when it was originally encoded.

Structures

XieTecDecodeG32D sets the structure field encoded_order to the value of the argument encoded_order; the structure field normal to the value of the argument normal; and the structure field radiometric to the value of the argument radiometric.



typedef unsigned XieOrientation;

typedef struct {

	XieOrientation encoded_order;

	Bool normal;

	Bool radiometric;

} XieDecodeG32DParam;

    XieDecodeG32DParam *param = (XieDecodeG32DParam *)

	Xmalloc (sizeof (XieDecodeG32DParam));



    param->encoded_order = encoded_order;

    param->normal        = normal;

    param->radiometric   = radiometric;



    return (param);



/* Definitions of Orientation Types */

#define xieValLSFirst	1

#define xieValMSFirst	2

Errors



See Also

XieFloImportClientPhoto, XiePutClientData

 XIElib - Technique Functions	XieTecDecodeG42D 

�tc "XieTecDecodeG42D " \l 2�

conven.c

XieDecodeG42DParam *XieTecDecodeG42D (

    XieOrientation	/* encoded_order */,

    Bool		/* normal */,

    Bool		/* radiometric */

);

Name

XieTecDecodeG42D - allocate and fill an XieDecodeG42DParam structure

Syntax

XieDecodeG42DParam *XieTecDecodeG42D (encoded_order, normal, radiometric))

XieOrientation encoded_order;

Bool normal;

Bool radiometric;

Arguments

encoded_order	Specifies the bit order of the encoded data.

normal	Specifies how the data was processed when it was originally encoded.

radiometric	Specifies how “white runs” are decoded.

Returns

The XieDecodeG42DParam structure.

Description

XieTecDecodeG42D allocates and returns a pointer to an XieDecodeG42DParam structure. The returned structure represents the list of parameters required by the decode technique and may be used as the decode_param argument of XieFloImportClientPhoto (when the decode_tech argument is xieValDecodeG42D).



If insufficient memory is available, XieTecDecodeG42D returns NULL. To free the memory allocated to this structure, use XFree.



CCITT-G42D is the CCITT group 4 two-dimensional encoding technique as defined by CCITT T.6, "Facsimile Coding Schemes and Coding Control Functions for Group 4 Facsimile Apparatus".



encoded_order specifies the bit order of the encoded data. One of the following standard orientation values can be assigned to encoded_order:



xieValLSFirst

xieValMSFirst



The following table shows the encoded bit order of two bytes (within each byte the first encoded bit is “0”, and the last is bit “7”):



LSFirst�MSFirst��76543210  76543210�01234567  01234567��

radiometric specifies that “white runs” in the encoded data should be represented as image ones upon decode (maximum intensity), or conversely, they will be decoded as image zeros if radiometric is False. normal specifies that the data was processed according to its normal fill-order when it was originally encoded.

Structures

XieTecDecodeG42D sets the structure field encoded_order to the value of the argument encoded_order; the structure field normal to the value of the argument normal; and the structure field radiometric to the value of the argument radiometric.



typedef unsigned XieOrientation;

typedef struct {

	XieOrientation encoded_order;

	Bool normal;

	Bool radiometric;

} XieDecodeG42DParam;

    XieDecodeG42DParam *param = (XieDecodeG42DParam *)

	Xmalloc (sizeof (XieDecodeG42DParam));



    param->encoded_order = encoded_order;

    param->normal        = normal;

    param->radiometric   = radiometric;



    return (param);



/* Definitions of Orientation Types */

#define xieValLSFirst	1

#define xieValMSFirst	2

Errors



See Also

XieFloImportClientPhoto, XiePutClientData

 XIElib - Technique Functions	XieTecDecodeTIFF2 

�tc "XieTecDecodeTIFF2 " \l 2�

conven.c

XieDecodeTIFF2Param *XieTecDecodeTIFF2 (

    XieOrientation	/* encoded_order */,

    Bool		/* normal */,

    Bool		/* radiometric */

);

Name

XieTecDecodeTIFF2 - allocate and fill an XieDecodeTIFF2Param structure

Syntax

XieDecodeTIFF2Param *XieTecDecodeTIFF2 (encoded_order, normal, radiometric)

XieOrientation encoded_order;

Bool normal;

Bool radiometric;

Arguments

encoded_order	Specifies the bit order of the encoded data.

normal	Specifies how the data was processed when it was originally encoded.

radiometric	Specifies how “white runs” are decoded.

Returns

The XieDecodeTIFF2Param structure.

Description

XieTecDecodeTIFF2 allocates and returns a pointer to an XieDecodeTIFF2Param structure. The returned structure represents the list of parameters required by the decode technique and may be used as the decode_param argument of XieFloImportClientPhoto (when the decode_tech argument is xieValDecodeTIFF2).



If insufficient memory is available, XieTecDecodeTIFF2 returns NULL. To free the memory allocated to this structure, use XFree.



TIFF-2 is modified Huffman encoding as described in "TIFF Tag Image File Format", revision 6.0, draft 2, by Aldus Corporation (TIFF compression scheme 2).



encoded_order specifies the bit order of the encoded data. One of the following standard orientation values can be assigned to encoded_order:



xieValLSFirst

xieValMSFirst



The following table shows the encoded bit order of two bytes (within each byte the first encoded bit is “0”, and the last is bit “7”):



LSFirst�MSFirst��76543210  76543210�01234567  01234567��

radiometric specifies that “white runs” in the encoded data should be represented as image ones upon decode (maximum intensity), or conversely, they will be decoded as image zeros if radiometric is False. normal specifies that the data was processed according to its normal fill-order when it was originally encoded.

Structures

XieTecDecodeTIFF2 sets the structure field encoded_order to the value of the argument encoded_order; the structure field normal to the value of the argument normal; and the structure field radiometric to the value of the argument radiometric.



typedef unsigned XieOrientation;

typedef struct {

	XieOrientation encoded_order;

	Bool normal;

	Bool radiometric;

} XieDecodeTIFF2Param;

    XieDecodeTIFF2Param *param = (XieDecodeTIFF2Param *)

	Xmalloc (sizeof (XieDecodeTIFF2Param));



    param->encoded_order = encoded_order;

    param->normal        = normal;

    param->radiometric   = radiometric;



    return (param);



/* Definitions of Orientation Types */

#define xieValLSFirst	1

#define xieValMSFirst	2

Errors



See Also

XieFloImportClientPhoto, XiePutClientData

 XIElib - Technique Functions	XieTecDecodeTIFFPackBits 

�tc "XieTecDecodeTIFFPackBits " \l 2�

conven.c

XieDecodeTIFFPackBitsParam *XieTecDecodeTIFFPackBits (

    XieOrientation	/* encoded_order */,

    Bool		/* normal */

);

Name

XieTecDecodeTIFFPackBits - allocate and fill an XieDecodeTIFFPackBitsParam structure

Syntax

XieDecodeTIFFPackBitsParam *XieTecDecodeTIFFPackBits (encoded_order, normal)

XieOrientation encoded_order;

Bool normal;

Arguments

encoded_order	Specifies the bit order of the encoded data.

normal	Specifies how the data was processed when it was originally encoded.

Returns

The XieDecodeTIFFPackBitsParam structure.

Description

XieTecDecodeTIFFPackBits allocates and returns a pointer to an XieDecodeTIFFPackBitsParam structure. The returned structure represents the list of parameters required by the decode technique and may be used as the decode_param argument of XieFloImportClientPhoto (when the decode_tech argument is xieValDecodeTIFFPackBits).



If insufficient memory is available, XieTecDecodeTIFFPackBits returns NULL. To free the memory allocated to this structure, use XFree.



TIFF-PackBits is byte-oriented run-length encoding as described in "TIFF Tag Image File Format", revision 6.0, draft 2, by Aldus Corporation (TIFF compression scheme 32773).



encoded_order specifies the bit order of the encoded data. One of the following standard orientation values can be assigned to encoded_order:



xieValLSFirst

xieValMSFirst



The following table shows the encoded bit order of two bytes (within each byte the first encoded bit is “0”, and the last is bit “7”):



LSFirst�MSFirst��76543210  76543210�01234567  01234567��

normal specifies that the data was processed according to its normal fill-order when it was originally encoded.

Structures

XieTecDecodeTIFFPackBits sets the structure field encoded_order to the value of the argument encoded_order and the structure field normal to the value of the argument normal.



typedef unsigned XieOrientation;

typedef struct {

	XieOrientation encoded_order;

	Bool normal;

} XieDecodeTIFFPackBitsParam;

    XieDecodeTIFFPackBitsParam *param = (XieDecodeTIFFPackBitsParam *)

	Xmalloc (sizeof (XieDecodeTIFFPackBitsParam));



    param->encoded_order = encoded_order;

    param->normal        = normal;



    return (param);



/* Definitions of Orientation Types */

#define xieValLSFirst	1

#define xieValMSFirst	2

Errors



See Also

XieFloImportClientPhoto, XiePutClientData

 XIElib - Technique Functions	XieTecDecodeJPEGBaseline 

�tc "XieTecDecodeJPEGBaseline " \l 2�

conven.c

XieDecodeJPEGBaselineParam *XieTecDecodeJPEGBaseline (

    XieInterleave	/* interleave */,

    XieOrientation	/* band_order */,

    Bool		/* up_sample  */

);

Name

XieTecDecodeJPEGBaseline - allocate and fill an XieDecodeJPEGBaselineParam structure

Syntax

XieDecodeJPEGBaselineParam *XieTecDecodeJPEGBaseline (interleave, band_order, up_sample)

XieInterleave interleave;

XieOrientation band_order;

Bool up_sample;

Arguments

interleave	Specifies how the image bands will be interleaved.

band_order	Specifies the order in which the image bands were originally encoded.

up_sample	Specifies how interleaved encoded data are up-sampled.

Returns

The XieTecDecodeJPEGBaselineParam structure.

Description

XieDecodeJPEGBaseline allocates and returns a pointer to an XieDecodeJPEGBaselineParam structure. The returned structure represents the list of parameters required by the decode technique and may be used as the decode_param argument of XieFloImportClientPhoto (when the decode_tech argument is xieValDecodeJPEGBaseline).



If insufficient memory is available, XieTecDecodeJPEGBaseline returns NULL. To free the memory allocated to this structure, use XFree.



The JPEG baseline technique is the baseline Huffman DCT encoding technique that is defined in ISO DIS 10918-1 "Digital Compression and Coding of Continuous-tone Still Images". Only JPEG Interchange Format (JIF) is supported: all tables, compressed data, and so on are embedded in the data stream, all delineated by markers.



interleave determines whether all bands of a triple band image will be interleaved within a single encoded stream  or whether three separate encoded streams will be supplied. One of the following standard interleave values can be assigned to interleave:



xieValBandByPixel

xieValBandByPlane



For triple band data, band_order specifies the order in which the image bands were originally encoded.  One of the following standard orientation values can be assigned to band_order:



xieValLSFirst

xieValMSFirst



The least significant band of trichromatic data is the first band mentioned in the common name of the colorspace: red is the least significant band of RGB data. band_order specifies whether this band corresponds with the least significant or most significant image plane. Each plane is decoded into a separate data stream:



band�LSFirst�MSFirst��0�Red band�Blue band��1�Green band�Green band��2�Blue band�Red band��

up_sample specifies that if any bands in an interleaved encoded data stream are down-sampled, they should be up-sampled by the JPEG decoder.



The arguments interleave, band_order, and up_sample are ignored for single band images, and up_sample is always ignored if interleave is band-by-plane. If up_sample is False and some of the encoded bands of an interleaved image were down-sampled, an alternative method for up-sampling the image would be to use a geometry element with appropriate band_mask and sample technique parameters.

Structures

XieTecDecodeJPEGBaseline sets the structure field interleave to the value of the argument interleave; the structure field band_order to the value of the argument band_order; and the structure field up_sample to the value of the argument up_sample.



typedef unsigned XieOrientation;

typedef struct {

	XieInterleave interleave;

	XieOrientation band_order;

	Bool up_sample;

} XieDecodeJPEGBaselineParam;

    XieDecodeJPEGBaselineParam *param = (XieDecodeJPEGBaselineParam *)

	Xmalloc (sizeof (XieDecodeJPEGBaselineParam));



    param->interleave = interleave;

    param->band_order = band_order;

    param->up_sample  = up_sample;



    return (param);



/* Definitions for Interleave */

#define xieValBandByPixel	1

#define xieValBandByPlane	2



/* Definitions of Orientation Types */

#define xieValLSFirst	1

#define xieValMSFirst	2

Errors



See Also

XieFloImportClientPhoto, XieFloConvertToRGB, XieTecYCbCrToRGB, XiePutClientData

 XIElib - Technique Functions	XieTecDecodeJPEGLossless 

�tc "XieTecDecodeJPEGLossless " \l 2�

conven.c

XieDecodeJPEGLosslessParam *XieTecDecodeJPEGLossless (

    XieInterleave	/* interleave */,

    XieOrientation	/* band_order */

);

Name

XieTecDecodeJPEGLossless - allocate and fill an XieDecodeJPEGLosslessParam structure

Syntax

XieDecodeJPEGLosslessParam *XieTecDecodeJPEGLossless (interleave, band_order)

XieInterleave interleave;

XieOrientation band_order;

Arguments

interleave	Specifies how the image bands will be interleaved.

band_order	Specifies the order in which the image bands were originally encoded.

Returns

The XieDecodeJPEGLosslessParam structure.

Description

XieTecDecodeJPEGLossless allocates and returns a pointer to an XieDecodeJPEGLosslessParam structure. The returned structure represents the list of parameters required by the decode technique and may be used as the decode_param argument of XieFloImportClientPhoto (when the decode_tech argument is xieValDecodeJPEGLossless).



If insufficient memory is available, XieTecDecodeJPEGLossless returns NULL. To free the memory allocated to this structure, use XFree.



The JPEG lossless technique is the Huffman predictive sequential lossless encoding technique that is defined in ISO DIS 10918-1 "Digital Compression and Coding of Continuous-tone Still Images".�This technique is not available in the R6 sample implementation of XIE.



interleave describes how the bands of triple band data are interleaved; either all bands are interleaved within a single encoded stream, or three separate encoded streams are expected. One of the following standard interleave values can be assigned to interleave:



xieValBandByPixel

xieValBandByPlane



For triple band data, band_order specifies the order in which the image bands were originally encoded. One of the following standard orientation values can be assigned to band_order:



xieValLSFirst

xieValMSFirst



The least significant band of trichromatic data is the first band mentioned in the common name of the colorspace: red is the least significant band of RGB data. band_order specifies whether this band corresponds with the least significant or most significant image plane. Each plane is decoded into a separate data stream:



band�LSFirst�MSFirst��0�Red band�Blue band��1�Green band�Green band��2�Blue band�Red band��

The arguments interleave and band_order are ignored for single band images.

Structures

XieTecDecodeJPEGLossless sets the structure field interleave to the value of the argument interleave; and the structure field band_order to the value of the argument band_order.



typedef unsigned XieOrientation;

typedef struct {

	XieInterleave interleave;

	XieOrientation band_order;

} XieDecodeJPEGLosslessParam;

    XieDecodeJPEGLosslessParam *param = (XieDecodeJPEGLosslessParam *)

	Xmalloc (sizeof (XieDecodeJPEGLosslessParam));



    param->interleave = interleave;

    param->band_order = band_order;



    return (param);



/* Definitions for Interleave */

#define xieValBandByPixel	1

#define xieValBandByPlane	2



/* Definitions of Orientation Types */

#define xieValLSFirst	1

#define xieValMSFirst	2

Errors



See Also

XieFloImportClientPhoto, XiePutClientData

 XIElib - Technique Functions	XieTecDitherOrdered

�tc "XieTecDitherOrderedParam " \l 2�

conven.c

XieDitherOrderedParam *XieTecDitherOrderedParam (

    unsigned int	/* threshold_order */

);

Name

XieTecDitherOrdered -  allocate and fill an XieDitherOrderedParam structure

Syntax

XieDitherOrderedParam *XieTecDitherOrdered (threshold_order)

unsigned int threshold_order;

Arguments

threshold_order	Specifies a value to determine the size of the dither matrix.

Returns

The XieDitherOrderedParam structure.

Description

XieTecDitherOrdered allocates and returns a pointer to an XieDitherOrderedParam structure. The returned structure represents the list of parameters required by the decode technique and may be used as the decode_param argument of XieFloImportClientPhoto (when the decode_tech argument is xieValDitherOrdered).



If insufficient memory is available, XieTecDitherOrdered returns NULL. To free the memory allocated to this structure, use XFree.



The dispersed-dot ordered dither technique replaces a matrix, or block, of pixels with a patterned matrix of pixels. This patterned matrix of pixels is applied across the entire image. Because these patterns may introduce artifacts that are distracting to the eye, the threshold_order parameter is available to determine the size of the dither matrix, and therefore, the number of levels that can be simulated. If the value of threshold_order is m, the threshold matrix can simulate 2m + 1 levels.

Structures

XieTecDitherOrdered sets the structure field threshold_order to the value of the argument threshold_order.



typedef struct {

	unsigned int threshold_order;

} XieDitherOrderedParam;

    XieDitherOrderedParam *param = (XieDitherOrderedParam *)

	Xmalloc (sizeof (XieDitherOrderedParam));



    param->threshold_order = threshold_order;



    return (param);



Errors



See Also

XieFloDither

 XIElib - Technique Functions	XieTecEncodeUncompressedSingle 

�tc "XieTecEncodeUncompressedSingle " \l 2�

conven.c

XieEncodeUncompressedSingleParam *XieTecEncodeUncompressedSingle (

    XieOrientation	/* fill_order */,

    XieOrientation	/* pixel_order */,

    unsigned int	/* pixel_stride */,

    unsigned int	/* scanline_pad */

);

Name

XieTecEncodeUncompressedSingle - allocate and fill an XieEncodeUncompressedSingleParam structure

Syntax

XieEncodeUncompressedSingleParam *XieTecEncodeUncompressedSingle (fill_order, pixel_order, pixel_stride, scanline_pad)

XieOrientation fill_order;

XieOrientation pixel_order;

unsigned int pixel_stride;

unsigned int scanline_pad;

Arguments

fill_order	Specifies the method of pixel packing.

pixel_order	Specifies pixel ordering within the data stream.

pixel_stride	Specifies the number of bits between consecutive pixels within a scanline.

scanline_pad	Specifies a multiple of bytes to which each scanline is padded.

Returns

The XieEncodeUncompressedSingleParam structure.

Description

XieTecEncodeUncompressedSingle allocates and returns a pointer to an XieEncodeUncompressedSingleParam structure. The returned structure represents the list of parameters required by the encode technique and may be used as the encode_param argument of XieFloExportClientPhoto and XieFloExportPhotomap (when the encode_tech argument is xieValEncodeUncompressedSingle).



If insufficient memory is available, XieTecEncodeUncompressedSingle returns NULL. To free the memory allocated to this structure, use XFree.



The encode uncompressed single technique is used when no compression scheme is to be applied to single band image data. The parameters define the format of the data stream of uncompressed data that is made available for client retrieval via XieGetClientData. When multiple pixels are put in the same byte or a pixel spans multiple bytes, fill_order specifies whether the pixels (or parts of pixels) are packed into the most or least significant bits of a byte first. For pixels that span a byte boundary, pixel_order defines whether the most or least significant bits of the pixel are put first within the data stream. 



One of the following standard orientation values can be assigned to fill_order and pixel_order:



xieValLSFirst

xieValMSFirst



The following table shows the relationship between fill_order and pixel_order, using two 10-bit pixels, each with two bits of pad (within each pixel the LS-bits are “0” and “a”, the MS-bits are “9” and “j”,  and the pad bits are “p”).



fill order�LSFirst (pixel order)�MSFirst (pixel order)��LSFirst�76543210  dcbapp98  ppjihgfe�98765432  jihgpp10  ppfedcba��MSFirst�76543210  98ppdcba  jihgfepp�98765432  10ppjihg  fedcbapp��

pixel_stride is the number of bits between the start of consecutive pixels within a scanline. It must be at least enough bits to contain the number of source levels. scanline_pad defines a multiple of bytes to which each scanline is padded; valid values are: 0 (not aligned), 1, 2, 4, 8, and 16.

Structures

XieTecEncodeUncompressedSingle sets the structure field fill_order to the value of the argument fill_order; the structure field pixel_order to the value of the argument pixel_order; the structure field pixel_stride to the value of the argument pixel_stride; and the structure field scanline_pad to the value of the argument scanline_pad.



typedef unsigned XieOrientation;

typedef struct {

	XieOrientation fill_order;

	XieOrientation pixel_order;

	unsigned int pixel_stride;

	unsigned int scanline_pad;

} XieEncodeUncompressedSingleParam;

    XieEncodeUncompressedSingleParam *param =

	(XieEncodeUncompressedSingleParam *) Xmalloc (

	sizeof (XieEncodeUncompressedSingleParam));



    param->fill_order   = fill_order;

    param->pixel_order  = pixel_order;

    param->pixel_stride = pixel_stride;

    param->scanline_pad = scanline_pad;



    return (param);



/* Definitions of Orientation Types */

#define xieValLSFirst	1

#define xieValMSFirst	2

Errors



See Also

XieFloExportClientPhoto, XieFloExportPhotomap, XieGetClientData

 XIElib - Technique Functions	XieTecEncodeUncompressedTriple 

�tc "XieTecEncodeUncompressedTriple " \l 2�

conven.c

XieEncodeUncompressedTripleParam *XieTecEncodeUncompressedTriple (

    XieOrientation	/* fill_order */,

    XieOrientation	/* pixel_order */,

    XieOrientation	/* band_order */,

    XieInterleave	/* interleave */,

    unsigned char[3]	/* pixel_stride[3] */,

    unsigned char[3]	/* scanline_pad[3] */

);

Name

XieTecEncodeUncompressedTriple - allocate and fill an XieEncodeUncompressedTripleParam structure

Syntax

XieEncodeUncompressedTripleParam *XieTecEncodeUncompressedTriple (fill_order, pixel_order, band_order, interleave, pixel_stride, scanline_pad)

XieOrientation fill_order;

XieOrientation pixel_order;

XieOrientation band_order;

XieInterleave interleave;

unsigned char pixel_stride[3];

unsigned char scanline_pad[3];

Arguments

fill_order	Specifies the method of pixel packing.

pixel_order	Specifies pixel ordering within the data stream.

band_order	Specifies the order of the image data sent through the protocol stream.

interleave	Specifies how the image bands are interleaved.

pixel_stride	Specifies the number of bits between consecutive pixels within a scanline.

scanline_pad	Specifies a multiple of bytes to which each scanline is padded.

Returns

The XieEncodeUncompressedTripleParam structure.

Description

XieTecEncodeUncompressedTriple allocates and returns a pointer to an XieEncodeUncompressedTripleParam structure. The returned structure represents the list of parameters required by the encode technique and may be used as the encode_param argument of XieFloExportClientPhoto and XieFloExportPhotomap (when the encode_tech argument is xieValEncodeUncompressedTriple).



If insufficient memory is available, XieTecEncodeUncompressedTriple returns NULL. To free the memory allocated to this structure, use XFree.



The encode uncompressed triple technique is used when no compression scheme is to be applied to triple band image data. The parameters define the format of the data stream of uncompressed data that is made available for client retrieval via XieGetClientData. When multiple pixels are put in the same byte or a pixel spans multiple bytes, fill_order specifies whether the pixels (or parts of pixels) are packed into the most or least significant bits of a byte first. For pixels that span a byte boundary, pixel_order defines whether the most or least significant bits of the pixel are put first within the data stream. 



One of the following standard orientation values can be assigned to fill_order and pixel_order:



xieValLSFirst

xieValMSFirst



The following  table shows the relationship between fill_order and pixel_order, using two 10-bit pixels, each with two bits of pad (within each pixel the LS-bits are “0” and “a”, the MS-bits are “9” and “j”, and the pad bits are “p”)



fill order�LSFirst (pixel order)�MSFirst (pixel order)��LSFirst�76543210  dcbapp98  ppjihgfe�98765432  jihgpp10  ppfedcba��MSFirst�76543210  98ppdcba  jihgfepp�98765432  10ppjihg  fedcbapp��

pixel_stride is the number of bits between the start of consecutive pixels within a scanline. It must be at least enough bits to contain the number of source levels. scanline_pad defines a multiple of bytes to which each scanline is padded; valid values are: 0 (not aligned), 1, 2, 4, 8, and 16. band_order is the order of the image bands or image planes as they are transmitted through the protocol stream. One of the following standard orientation values can be assigned to band_order:



xieValLSFirst

xieValMSFirst



The least significant band of trichromatic data is the first band mentioned in the common name of the colorspace: red is the least significant band of RGB data. For band-by-pixel data, band_order specifies whether this band is put in the least or most significant bits of a pixel:



LSFirst�MSFirst��B1B0G2G1G0R2R1R0�R2R1R0G2G1G0B1B0��

For band-by-plane data, band_order specifies whether this band corresponds with the least significant or most significant image plane. Each plane is transported as a separate data stream:



band�LSFirst�MSFirst��0�R7R6R5R4R3R2R1R0�B7B6B5B4B3B2B1B0��1�G7G6G5G4G3G2G1G0�G7G6G5G4G3G2G1G0��2�B7B6B5B4B3B2B1B0�R7R6R5R4R3R2R1R0��

interleave describes how the bands are interleaved (per pixel within a single plane, or sent as three separate planes). One of the following standard interleave values can be assigned to interleave:



xieValBandByPixel

xieValBandByPlane



Export of down-sampled band-by-pixel data is not supported: all bands must have equal widths and equal heights.

Structures

XieTecEncodeUncompressedTriple sets the structure field fill_order to the value of the argument fill_order; the structure field pixel_order to the value of the argument pixel_order; the structure field band_order to the value of the argument band_order; the structure field interleave to the value of the argument interleave; the structure field pixel_stride to the value of the argument pixel_stride; and the structure field scanline_pad to the value of the argument scanline_pad.



typedef unsigned XieOrientation;

typedef struct {

	unsigned char pixel_stride[3];

	XieOrientation pixel_order;

	unsigned char scanline_pad[3];

	XieOrientation fill_order;

	XieOrientation band_order;

	XieInterleave interleave;

} XieEncodeUncompressedTripleParam;

    XieEncodeUncompressedTripleParam *param =

	(XieEncodeUncompressedTripleParam *) Xmalloc (

	sizeof (XieEncodeUncompressedTripleParam));



    param->pixel_stride[0] = pixel_stride[0];

    param->pixel_stride[1] = pixel_stride[1];

    param->pixel_stride[2] = pixel_stride[2];

    param->pixel_order     = pixel_order;

    param->scanline_pad[0] = scanline_pad[0];

    param->scanline_pad[1] = scanline_pad[1];

    param->scanline_pad[2] = scanline_pad[2];

    param->fill_order      = fill_order;

    param->band_order      = band_order;

    param->interleave      = interleave;



    return (param);



/* Definitions of Orientation Types */

#define xieValLSFirst	1

#define xieValMSFirst	2



/* Definitions for Interleave */

#define xieValBandByPixel	1

#define xieValBandByPlane	2

Errors



See Also

XieFloExportClientPhoto, XieFloExportPhotomap, XieGetClientData

 XIElib - Technique Functions	XieTecEncodeG31D 

�tc "XieTecEncodeG31D " \l 2�

conven.c

XieEncodeG31DParam *XieTecEncodeG31D (

    Bool		/* align_eol */,

    Bool		/* radiometric */,

    XieOrientation	/* encoded_order */

);

Name

XieTecEncodeG31D - allocate and fill an XieEncodeG31DParam structure

Syntax

XieEncodeG31DParam *XieTecEncodeG31D (align_eol, radiometric, encoded_order)

Bool align_eol;

Bool radiometric;

XieOrientation encoded_order;

Arguments

align_eol	Specifies the use of fill bits preceding EOL codes.

radiometric	Specifies how “white runs” are encoded.

encoded_order	Specifies the bit order of the encoded data.

Returns

The XieEncodeG31DParam structure.

Description

XieTecEncodeG31D allocates and returns a pointer to an XieEncodeG31DParam structure. The returned structure represents the list of parameters required by the encode technique and may be used as the encode_param argument of XieFloExportClientPhoto and XieFloExportPhotomap (when the encode_tech argument is xieValEncodeG31D).



If insufficient memory is available, XieTecEncodeG31D returns NULL. To free the memory allocated to this structure, use XFree.



CCITT-G31D is the CCITT group 3 one-dimensional encoding technique as defined by CCITT T.4, "Standardization of Group 3 Facsimile Apparatus for Document Transmission".



If True, align_eol, specifies that sufficient fill bits must precede EOL codes to guarantee that each EOL will end on a byte boundary (thus EOL will be a nibble of zero followed by a byte of one: xxxx,00002 0000,00012). radiometric specifies that image ones will be encoded as “white runs”, or conversely, image zeros will be encoded as “white runs”, if radiometric is False. encoded_order specifies the bit order for the encoded data. One of the following standard orientation values can be assigned to encoded_order:



xieValLSFirst

xieValMSFirst



The following table shows the encoded bit order of two bytes (within each byte the first encoded bit is “0”, and the last is bit “7”):



LSFirst�MSFirst��76543210  76543210�01234567  01234567��Structures

XieTecEncodeG31D sets the structure field align_eol to the value of the argument align_eol; the structure field radiometric to the value of the argument radiometric; and the structure field encoded_order to the value of the argument encoded_order.



typedef unsigned XieOrientation;

typedef struct {

	Bool align_eol;

	Bool radiometric;

	XieOrientation encoded_order;

} XieEncodeG31DParam;

    XieEncodeG31DParam *param = (XieEncodeG31DParam *)

	Xmalloc (sizeof (XieEncodeG31DParam));



    param->align_eol     = align_eol;

    param->radiometric   = radiometric;

    param->encoded_order = encoded_order;



    return (param);



/* Definitions of Orientation Types */

#define xieValLSFirst	1

#define xieValMSFirst	2

Errors



See Also

XieFloExportClientPhoto, XieFloExportPhotomap, XieGetClientData

 XIElib - Technique Functions	XieTecEncodeG32D 

�tc "XieTecEncodeG32D " \l 2�

conven.c

XieEncodeG32DParam *XieTecEncodeG32D (

    Bool		/* uncompressed */,

    Bool		/* align_eol */,

    Bool		/* radiometric */,

    XieOrientation	/* encoded_order */,

    unsigned long	/* k_factor */

);

Name

XieTecEncodeG32D - allocate and fill an XieEncodeG32DParam structure

Syntax

XieEncodeG32DParam *XieTecEncodeG32D (uncompressed, align_eol, radiometric, encoded_order, k_factor)

Bool uncompressed;

Bool align_eol;

Bool radiometric;

XieOrientation encoded_order;

unsigned long k_factor;

Arguments

uncompressed	Specifies the use of the uncompressed-mode CCITT extension.

align_eol	Specifies the use of fill bits preceding EOL codes.

radiometric	Specifies how “white runs” are encoded.

encoded_order	Specifies the bit order of the encoded data.

k_factor	Specifies the number of  two-dimensional scanlines to produce for each  one-dimensional scanline.

Returns

The XieEncodeG32DParam structure.

Description

XieTecEncodeG32D allocates and returns a pointer to an XieEncodeG32DParam structure. The returned structure represents the list of parameters required by the encode technique and may be used as the encode_param argument of XieFloExportClientPhoto and XieFloExportPhotomap (when the encode_tech argument is xieValEncodeG32D).



If insufficient memory is available, XieTecEncodeG32D returns NULL. To free the memory allocated to this structure, use XFree.



CCITT-G32D is the CCITT group 3 two-dimensional encoding technique as defined by CCITT T.4, "Standardization of Group 3 Facsimile Apparatus for Document Transmission".



If True, uncompressed, will enable the use of the uncompressed-mode CCITT extension. If True, align_eol, specifies that sufficient fill bits must precede EOL codes to guarantee that each EOL will end on a byte boundary (thus EOL will be a nibble of zero followed by a byte of  one: xxxx,00002 0000,00012). radiometric specifies that image ones will be encoded as “white runs”, or conversely, image zeros will be encoded as “white runs”, if radiometric is False. encoded_order specifies the bit order for the encoded data.  One of the following standard orientation values can be assigned to encoded_order:



xieValLSFirst

xieValMSFirst



The following table shows the encoded bit order of two bytes (within each byte the first encoded bit is “0”, and the last is bit “7”):



LSFirst�MSFirst��76543210  76543210�01234567  01234567��

k_factor specifies the number of  two-dimensional scanlines to produce for each one-dimensional scanline.

Structures

XieTecEncodeG32D sets the structure field uncompressed to the value of the argument uncompressed; the structure field align_eol to the value of the argument align_eol; the structure field radiometric to the value of the argument radiometric; the structure field encoded_order to the value of the argument encoded_order; and the structure field k_factor to the value of the argument k_factor.



typedef unsigned XieOrientation;

typedef struct {

	Bool uncompressed;

	Bool align_eol;

	Bool radiometric;

	XieOrientation encoded_order;

	unsigned long k_factor;

} XieEncodeG32DParam;

    XieEncodeG32DParam *param = (XieEncodeG32DParam *)

	Xmalloc (sizeof (XieEncodeG32DParam));



    param->uncompressed  = uncompressed;

    param->align_eol     = align_eol;

    param->radiometric   = radiometric;

    param->encoded_order = encoded_order;

    param->k_factor      = k_factor;



    return (param);



/* Definitions of Orientation Types */

#define xieValLSFirst	1

#define xieValMSFirst	2

Errors



See Also

XieFloExportClientPhoto, XieFloExportPhotomap, XieGetClientData

 XIElib - Technique Functions	XieTecEncodeG42D 

�tc "XieTecEncodeG42D " \l 2�

conven.c

XieEncodeG42DParam *XieTecEncodeG42D (

    Bool		/* uncompressed */,

    Bool		/* radiometric */,

    XieOrientation	/* encoded_order */

);

Name

XieTecEncodeG42D - allocate and fill an XieEncodeG42DParam structure

Syntax

XieEncodeG42DParam *XieTecEncodeG42D (uncompressed, radiometric, encoded_order)

Bool uncompressed;

Bool radiometric;

XieOrientation encoded_order;

Arguments

uncompressed	Specifies the use of the uncompressed-mode CCITT extension.

radiometric	Specifies how “white runs” are encoded.

encoded_order	Specifies the bit order of the encoded data.

Returns

The XieEncodeG42DParam structure.

Description

XieTecEncodeG42D allocates and returns a pointer to an XieEncodeG42DParam structure. The returned structure represents the list of parameters required by the encode technique and may be used as the encode_param argument of XieFloExportClientPhoto and XieFloExportPhotomap (when the encode_tech argument is xieValEncodeG42D).



If insufficient memory is available, XieTecEncodeG42D returns NULL. To free the memory allocated to this structure, use XFree.



CCITT-G42D is the CCITT group 4 two-dimensional encoding technique as defined by CCITT T.6, "Facsimile Coding Schemes and Coding Control Functions for Group 4 Facsimile Apparatus".



If True, uncompressed will enable the use of the uncompressed-mode CCITT extension. radiometric specifies that image ones will be encoded as “white runs”, or conversely, image zeros will be encoded as “white runs”, if radiometric is False. encoded_order specifies the bit order for the encoded data.  One of the following standard orientation values can be assigned to encoded_order:



xieValLSFirst

xieValMSFirst



The following table shows the encoded bit order of two bytes (within each byte the first encoded bit is “0”, and the last is bit “7”):



LSFirst�MSFirst��76543210  76543210�01234567  01234567��Structures

XieTecEncodeG42D sets the structure field uncompressed to the value of the argument uncompressed; the structure field radiometric to the value of the argument radiometric; and the structure field encoded_order to the value of the argument encoded_order.



typedef unsigned XieOrientation;

typedef struct {

	Bool uncompressed;

	Bool radiometric;

	XieOrientation encoded_order;

} XieEncodeG42DParam;

    XieEncodeG42DParam *param = (XieEncodeG42DParam *)

	Xmalloc (sizeof (XieEncodeG42DParam));



    param->uncompressed  = uncompressed;

    param->radiometric   = radiometric;

    param->encoded_order = encoded_order;



    return (param);



/* Definitions of Orientation Types */

#define xieValLSFirst	1

#define xieValMSFirst	2

Errors



See Also

XieFloExportClientPhoto, XieFloExportPhotomap, XieGetClientData

 XIElib - Technique Functions	XieTecEncodeServerChoice 

�tc "XieTecEncodeServerChoice " \l 2�

conven.c

XieEncodeServerChoiceParam *XieTecEncodeServerChoice (

    unsigned int	/* preference */

);

Name

XieTecEncodeServerChoice - allocate and fill an XieEncodeServerChoiceParam structure

Syntax

XieEncodeServerChoiceParam *XieTecEncodeServerChoice (preference)

unsigned int preference;

Arguments

preference	Specifies a “hint” to help the server make its choice.

Returns

The XieEncodeServerChoiceParam structure.

Description

XieTecEncodeServerChoice allocates and returns a pointer to an XieEncodeServerChoiceParam structure. The returned structure represents the list of parameters required by the encode technique and may be used as the encode_param argument of XieFloExportPhotomap (when the encode_tech argument is xieValEncodeServerChoice).



If insufficient memory is available, XieTecEncodeServerChoice returns NULL. To free the memory allocated to this structure, use XFree.



The server choice technique allows the server to choose an encode technique when exporting to a photomap. A photomap is a server resource that can be used to store image data. preference specifies an optional “hint” that can be provided to help the server make its choice, but the server is not obligated to obey the hint. One of the following standard server choice preference values can be assigned to preference:



xieValPreferDefault

xieValPreferSpace

xieValPreferTime



xieValPreferTime hints that retrieval performance is the desired metric, whereas xieValPreferSpace indicates that frugal use of storage space is more important. Normally the server choice technique must choose a lossless encode technique, but when data is received from an adjacent upstream import element, it may choose to pass the import element’s input data directly to the photomap.

Structures

XieTecEncodeServerChoice sets the structure field preference to the value of the argument preference.



typedef struct {

	unsigned int preference;

} XieEncodeServerChoiceParam;

    XieEncodeServerChoiceParam *param = (XieEncodeServerChoiceParam *)

	Xmalloc (sizeof (XieEncodeServerChoiceParam));



    param->preference = preference;



    return (param);





/* Definitions for ServerChoice Preference Hints */

#define xieValPreferDefault	0

#define xieValPreferSpace	1

#define xieValPreferTime	2

Errors



See Also

XieFloExportPhotomap

 XIElib - Technique Functions	XieTecEncodeJPEGBaseline 

�tc "XieTecEncodeJPEGBaseline " \l 2�

conven.c

XieEncodeJPEGBaselineParam *XieTecEncodeJPEGBaseline (

    XieInterleave	/* interleave */,

    XieOrientation	/* band_order */,

    unsigned char[3]	/* horizontal_samples[3] */,

    unsigned char[3]	/* vertical_samples[3] */,

    char *		/* q_table */,

    unsigned int	/* q_size */,

    char *		/* ac_table */,

    unsigned int	/* ac_size */,

    char *		/* dc_table */,

    unsigned int	/* dc_size */

);

Name

XieTecEncodeJPEGBaseline - allocate and fill an XieEncodeJPEGBaselineParam structure

Syntax

XieEncodeJPEGBaselineParam *XieTecEncodeJPEGBaseline (interleave, band_order, horizontal_samples, vertical_samples, q_table, q_size, ac_table, ac_size, dc_table, dc_size)

XieInterleave interleave;

XieOrientation band_order;

unsigned char horizontal_samples[3];

unsigned char vertical_samples[3];

char *q_table;

unsigned int q_size;

char *ac_table;

unsigned int ac_size;

char *dc_table;

unsigned int dc_size;

Arguments

interleave	Specifies how the image bands will be interleaved.

band_order	Specifies the order in which the image bands were originally encoded.

horizontal_samples	Specifies the horizontal sampling factor.

vertical_samples	Specifies the vertical sampling factor.

q_table	Specifies the quantization table.

q_size	Specifies the number of elements in q_table.

ac_table	Specifies the AC Huffman table.

ac_size	Specifies the number of elements in ac_table.

dc_table	Specifies the DC Huffman table.

dc_size	Specifies the number of elements in dc_table.

Returns

The XieEncodeJPEGBaselineParam structure.

Description

XieTecEncodeJPEGBaseline allocates and returns a pointer to an XieEncodeJPEGBaselineParam structure. The returned structure represents the list of parameters required by the encode technique and may be used as the encode_param argument of XieFloExportClientPhoto and XieFloExportPhotomap (when the encode_tech argument is xieValEncodeJPEGBaseline).



If insufficient memory is available, XieTecEncodeJPEGBaseline returns NULL. XieTecEncodeJPEGBaseline allocates memory for the structure fields q_table, ac_table, and dc_table; to free the memory allocated to the structure XieEncodeJPEGBaselineParam, use XieFreeEncodeJPEGBaseline.



JPEG-Baseline is baseline Huffman DCT encoding as defined by ISO DIS 10918-1 "Digital Compression and Coding of Continuous-tone Still Images". A stream of JPEG Interchange Format (JIF) data is produced: all tables, compressed data, and so on are embedded in the data stream, all delineated by markers.



For optimal results, clients should ensure that the colorspace of triple band image data flowing into ExportClientPhoto or ExportPhotomap, for encoding by the JPEGBaseline encoder, is YCbCr.



interleave determines whether all bands of a triple band image will be interleaved within a single encoded stream or whether three separate encoded streams will be produced. One of the following standard interleave values can be assigned to interleave:



xieValBandByPixel

xieValBandByPlane



For triple band data, band_order specifies the order in which the image bands were originally encoded. One of the following standard orientation values can be assigned to band_order:



xieValLSFirst

xieValMSFirst



The least significant band of trichromatic data is the first band mentioned in the common name of the colorspace: red is the least significant band of RGB data. band_order specifies whether this band corresponds with the least significant or most significant image plane. Each plane is encoded from a separate data stream:



band�LSFirst�MSFirst��0�Red band�Blue band��1�Green band�Green band��2�Blue band�Red band��

The arguments horizontal_samples and vertical_samples are the horizontal and vertical sampling factors. q_table is the quantization table. ac_table specifies the AC Huffman table and dc_table specifies the DC Huffman table.



There may be one q_table per band or a single q_table shared between all bands. Generally there is a single AC/DC pair of Huffman tables, but for triple band band-by-pixel data there may be two pairs of tables (one for the luminance band and the other for the chromanance bands). If any table is specified with zero length, it indicates that the server implementor is to supply that table (for example, the example tables defined in ISO DIS 10918-1 "Digital Compression and Coding of Continuous-tone Still Images").



The arguments interleave, band_order, horizontal_samples, and vertical_samples are ignored for single band images, and horizontal_samples and vertical_samples are always ignored if interleave is band-by-plane. horizontal_samples and vertical_samples share the definitions and restrictions stipulated for parameters Hi and Vi, respectively, that are specified in annexes A and B of ISO DIS 10918-1 "Digital Compression and Coding of Continuous-tone Still Images".

Structures

XieTecEncodeJPEGBaseline sets the structure field interleave to the value of the argument interleave; the structure field band_order to the value of the argument band_order; the structure field horizontal_sample to the values of the argument horizontal_sample; the structure field vertical_sample to the values of the argument vertical_sample; and the structure fields q_table, q_size, ac_table, ac_size, dc_table, dc_size to the values of the arguments q_table, q_size, ac_table, ac_size, dc_table, dc_size.



typedef unsigned XieOrientation;

typedef struct {

	XieInterleave interleave;

	XieOrientation band_order;

	unsigned char horizontal_samples[3];

	unsigned char vertical_samples[3];

	char *q_table;

	unsigned int q_size;

	char *ac_table;

	unsigned int ac_size;

	char *dc_table;

	unsigned int dc_size;

} XieEncodeJPEGBaselineParam;

    XieEncodeJPEGBaselineParam *param = (XieEncodeJPEGBaselineParam *)

	Xmalloc (sizeof (XieEncodeJPEGBaselineParam));

    

    param->interleave            = interleave;

    param->band_order            = band_order;



    param->horizontal_samples[0] = horizontal_samples[0];

    param->horizontal_samples[1] = horizontal_samples[1];

    param->horizontal_samples[2] = horizontal_samples[2];



    param->vertical_samples[0]   = vertical_samples[0];

    param->vertical_samples[1]   = vertical_samples[1];

    param->vertical_samples[2]   = vertical_samples[2];



    param->q_size                = q_size;

    param->ac_size               = ac_size;

    param->dc_size               = dc_size;



    param->q_table               = (char *) Xmalloc (q_size);

    param->ac_table              = (char *) Xmalloc (ac_size);

    param->dc_table              = (char *) Xmalloc (dc_size);



    memcpy (param->q_table, q_table, q_size);

    memcpy (param->ac_table, ac_table, ac_size);

    memcpy (param->dc_table, dc_table, dc_size);



    return (param);



/* Definitions for Interleave */

#define xieValBandByPixel	1

#define xieValBandByPlane	2



/* Definitions of Orientation Types */

#define xieValLSFirst	1

#define xieValMSFirst	2

Errors



See Also

XieFloExportClientPhoto, XieFloExportPhotomap, XieFreeEncodeJPEGBaseline, XieFloConvertFromRGB, XieTecRGBToYCbCr, XieGetClientData

 XIElib - Technique Functions	XieTecEncodeJPEGLossless 

�tc "XieTecEncodeJPEGLossless " \l 2�

conven.c

XieEncodeJPEGLosslessParam *XieTecEncodeJPEGLossless (

    XieInterleave	/* interleave */,

    XieOrientation	/* band_order */,

    unsigned char[3]	/* predictor[3] */,

    char *		/* table */,

    unsigned int	/* table_size */

);

Name

XieTecEncodeJPEGLossless - allocate and fill an XieEncodeJPEGLosslessParam structure

Syntax

XieEncodeJPEGLosslessParam *XieTecEncodeJPEGLossless (interleave, band_order, predictor, table, table_size)

XieInterleave interleave;

XieOrientation band_order;

unsigned char predictor[3];

char *table;

unsigned int table_size;

Arguments

interleave	Specifies how the image bands will be interleaved.

band_order	Specifies the order in which the image bands were originally encoded.

predictor	Specifies the predictor selection value.

table	Specifies the lossless entropy encoding table.

table_size	Specifies the number of elements in table.

Returns

The XieEncodeJPEGLosslessParam structure.

Description

XieTecEncodeJPEGLossless allocates and returns a pointer to an XieEncodeJPEGLosslessParam structure. The returned structure represents the list of parameters required by the encode technique and may be used as the encode_param argument of XieFloExportClientPhoto and XieFloExportPhotomap (when the encode_tech argument is xieValEncodeJPEGLossless).



If insufficient memory is available, XieTecEncodeJPEGLossless returns NULL. XieTecEncodeJPEGLossless allocates memory for the structure field table; to free the memory allocated to the structure XieEncodeJPEGLosslessParam, use XieFreeEncodeJPEGLossless.



JPEG-Lossless, corresponds to frames encoded using Huffman, predictive sequential lossless encoding as defined by ISO DIS 10918-1 "Digital Compression and Coding of Continuous-tone Still Images". A data stream of JPEG Interchange Format (JIF) data is returned: all tables, compressed data, and so on are embedded in the data stream, all delineated by markers.�This technique is not available in the R6 sample implementation of XIE.





interleave determines whether all bands of a triple band image will be interleaved within a single encoded stream or whether three separate encoded streams will be produced. One of the following standard interleave values can be assigned to interleave:



xieValBandByPixel

xieValBandByPlane



For triple band data, band_order specifies the order in which the image bands were originally encoded.  One of the following standard orientation values can be assigned to band_order:



xieValLSFirst

xieValMSFirst



The least significant band of trichromatic data is the first band mentioned in the common name of the colorspace: red is the least significant band of RGB data. band_order specifies whether this band corresponds with the least significant or most significant image plane. Each plane is encoded from a separate data stream:



band�LSFirst�MSFirst��0�Red band�Blue band��1�Green band�Green band��2�Blue band�Red band��

The arguments interleave and band_order are ignored for single band images. 



predictor is the predictor selection value (one per band). table is the lossless entropy encoding table (up to one per band). Specifying a table of length zero indicates that the server implementor should supply a table (for example, the example tables defined in ISO DIS 10918-1 "Digital Compression and Coding of Continuous-Tone Still Images").



Structures

XieTecEncodeJPEGLossless sets the structure field interleave to the value of the argument interleave; the structure field band_order to the value of the argument band_order; the structure field predictor to the values of the argument predictor; and the structure fields table, table_size to the values of the arguments table, table_size.



typedef unsigned XieOrientation;

typedef struct {

	XieInterleave interleave;

	XieOrientation band_order;

	unsigned char predictor[3];

	char *table;

	unsigned int table_size;

} XieEncodeJPEGLosslessParam;

    XieEncodeJPEGLosslessParam *param = (XieEncodeJPEGLosslessParam *)

	Xmalloc (sizeof (XieEncodeJPEGLosslessParam));



    param->interleave   = interleave;

    param->band_order   = band_order;

    param->predictor[0] = predictor[0];

    param->predictor[1] = predictor[1];

    param->predictor[2] = predictor[2];

    param->table_size   = table_size;



    param->table = (char *) Xmalloc (table_size);

    memcpy (param->table, table, table_size);



    return (param);



/* Definitions for Interleave */

#define xieValBandByPixel	1

#define xieValBandByPlane	2



/* Definitions of Orientation Types */

#define xieValLSFirst	1

#define xieValMSFirst	2

Errors



See Also

XieFloExportClientPhoto, XieFloExportPhotomap, XieGetClientData

 XIElib - Technique Functions	XieTecEncodeTIFF2 

�tc "XieTecEncodeTIFF2 " \l 2�

conven.c

XieEncodeTIFF2Param *XieTecEncodeTIFF2 (

    XieOrientation	/* encoded_order */,

    Bool		/* radiometric */

);

Name

XieTecEncodeTIFF2 - allocate and fill an XieEncodeTIFF2Param structure

Syntax

XieEncodeTIFF2Param *XieTecEncodeTIFF2 (encoded_order, radiometric)

XieOrientation encoded_order;

Bool radiometric;

Arguments

encoded_order	Specifies the bit order of the encoded data.

radiometric	Specifies how “white runs” are decoded.

Returns

The XieEncodeTIFF2Param structure.

Description

XieTecEncodeTIFF2 allocates and returns a pointer to an XieEncodeTIFF2Param structure. The returned structure represents the list of parameters required by the encode technique and may be used as the encode_param argument of XieFloExportClientPhoto and XieFloExportPhotomap (when the encode_tech argument is xieValEncodeTIFF2).



If insufficient memory is available, XieTecEncodeTIFF2 returns NULL. To free the memory allocated to this structure, use XFree.



TIFF-2 is modified Huffman compression as described in "TIFF Tag Image File Format", revision 6.0, draft 2, by Aldus Corporation (TIFF compression scheme 2).



radiometric specifies that image ones will be encoded as “white runs”, or conversely, image zeros will be encoded as “white runs”, if radiometric is False. encoded_order specifies the bit order for the encoded data. One of the following standard orientation values can be assigned to encoded_order:



xieValLSFirst

xieValMSFirst



The following table shows the encoded bit order of two bytes (within each byte the first encoded bit is “0”, and the last is bit “7”):



LSFirst�MSFirst��76543210  76543210�01234567  01234567��Structures

XieTecEncodeTIFF2 sets the structure field encoded_order to the value of the argument encoded_order; and the structure field radiometric to the value of the argument radiometric.



typedef unsigned XieOrientation;

typedef struct {

	XieOrientation encoded_order;

	Bool radiometric;

} XieEncodeTIFF2Param;

    XieEncodeTIFF2Param *param = (XieEncodeTIFF2Param *)

	Xmalloc (sizeof (XieEncodeTIFF2Param));



    param->encoded_order = encoded_order;

    param->radiometric   = radiometric;



    return (param);



/* Definitions of Orientation Types */

#define xieValLSFirst	1

#define xieValMSFirst	2

Errors



See Also

XieFloExportClientPhoto, XieFloExportPhotomap, XieGetClientData

 XIElib - Technique Functions	XieTecEncodeTIFFPackBits 

�tc "XieTecEncodeTIFFPackBits " \l 2�

conven.c

XieEncodeTIFFPackBitsParam *XieTecEncodeTIFFPackBits (

    XieOrientation	/* encoded_order */

);

Name

XieTecEncodeTIFFPackBits - allocate and fill an XieEncodeTIFFPackBitsParam structure

Syntax

XieEncodeTIFFPackBitsParam *XieTecEncodeTIFFPackBits (encoded_order)

XieOrientation encoded_order;

Arguments

encoded_order	Specifies the bit order of the encoded data.

Returns

The XieEncodeTIFFPackBitsParam structure.

Description

XieTecEncodeTIFFPackBits allocates and returns a pointer to an XieEncodeTIFFPackBitsParam structure. The returned structure represents the list of parameters required by the encode technique and may be used as the encode_param argument of XieFloExportClientPhoto and XieFloExportPhotomap (when the encode_tech argument is xieValEncodeTIFFPackBits).



If insufficient memory is available, XieTecEncodeTIFFPackBits returns NULL. To free the memory allocated to this structure, use XFree.



TIFF-PackBits is byte-oriented run-length encoding as described in "TIFF Tag Image File Format", revision 6.0, draft 2, by Aldus Corporation  (TIFF compression scheme 32773).



encoded_order specifies the bit order of the encoded data. One of the following standard orientation values can be assigned to encoded_order:



xieValLSFirst

xieValMSFirst



The following table shows the encoded bit order of two bytes (within each byte the first encoded bit is “0”, and the last is bit “7”):



LSFirst�MSFirst��76543210  76543210�01234567  01234567��Structures

XieTecEncodeTIFFPackBits sets the structure field encoded_order to the value of the argument encoded_order.



typedef unsigned XieOrientation;

typedef struct {

	XieOrientation encoded_order;

} XieEncodeTIFFPackBitsParam;

    XieEncodeTIFFPackBitsParam *param = (XieEncodeTIFFPackBitsParam *)

	Xmalloc (sizeof (XieEncodeTIFFPackBitsParam));



    param->encoded_order = encoded_order;



    return (param);



/* Definitions of Orientation Types */

#define xieValLSFirst	1

#define xieValMSFirst	2

Errors



See Also

XieFloExportClientPhoto, XieFloExportPhotomap, XieGetClientData

 XIElib - Technique Functions	XieTecGeomAntialiasByArea 

�tc "XieTecGeomAntialiasByArea " \l 2�

conven.c

XieGeomAntialiasByAreaParam *XieTecGeomAntialiasByArea (

    int			/* simple */

);

Name

XieTecGeomAntialiasByArea - allocate and fill an XieGeomAntialiasByAreaParam structure

Syntax

XieGeomAntialiasByAreaParam *XieTecGeomAntialiasByArea (simple)

int simple;

Arguments

simple	Specifies the approximation form to use.

Returns

The XieGeomAntialiasByAreaParam structure.

Description

XieTecGeomAntialiasByArea allocates and returns a pointer to an XieGeomAntialiasByAreaParam structure. The returned structure represents the list of parameters required by the geometry technique and may be used as the sample_param argument of XieFloGeometry (when the sample_tech argument is xieValGeomAntialiasByArea).



If insufficient memory is available, XieTecGeomAntialiasByArea returns NULL. To free the memory allocated to this structure, use XFree.



Antialiasing techniques incorporate information from an "area" of pixels in the input image in order to produce each output pixel. This implies that line dropouts and other artifacts will occur less often, and the output image may have markedly better resemblance to the input image. The technique AntialiasByArea computes the output image by assigning to each output pixel the weighted average of the intensity values of input pixels that fall within its “area”. That is, the four corners of the output pixel are projected back onto the input image.



If simple is zero (0), the size and shape of the "area" are determined by the parameters of the geometric transformation. The boundaries of the "area" may not fall on pixel boundaries and, in the case of nonorthogonal rotation of the image, "area" may not be rectangular. Partial input pixel values may have to be calculated: the antialias-by-area technique preserves shape but can be very slow computationally.



Because of the computational complexity of this method, two approximations are supported. If simple is nonzero, the pixels covered by the projected area will be averaged without regard to the relative amount of area that they contain: if they are touched by the area, they are included in a simple average. If simple is set to N, with N odd and greater than one (3,5,7, ...), then only the center point of the output pixel is projected, and a simple average is taken of an N by N window centered on the projection. For best results, N should correspond roughly to the amount of scaling that will be done.



Structures

XieTecGeomAntialiasByArea sets the structure field simple to the value of the argument simple.



typedef struct {

	int simple;

} XieGeomAntialiasByAreaParam;

    XieGeomAntialiasByAreaParam *param = (XieGeomAntialiasByAreaParam *)

	Xmalloc (sizeof (XieGeomAntialiasByAreaParam));



    param->simple = simple;



    return (param)

Errors



See Also

XieFloGeometry

 XIElib - Technique Functions	XieTecGeomAntialiasByLowpass 

�tc "XieTecGeomAntialiasByLowpass " \l 2�

conven.c

XieGeomAntialiasByLowpassParam *XieTecGeomAntialiasByLowpass (

    int			/* kernel_size */

);

Name

XieTecGeomAntialiasByLowpass - allocate and fill an XieGeomAntialiasByLowpassParam structure

Syntax

XieGeomAntialiasByLowpassParam *XieTecGeomAntialiasByLowpass (kernel_size)

int kernel_size;

Arguments

kernel_size	Specifies the size of the image kernel.

Returns

The XieGeomAntialiasByLowpassParam structure.

Description

XieTecGeomAntialiasByLowpass allocates and returns a pointer to an XieGeomAntialiasByLowpassParam structure. The returned structure represents the list of parameters required by the geometry technique and may be used as the sample_param argument of XieFloGeometry (when the sample_tech argument is xieValGeomAntialiasByLowpass).



If insufficient memory is available, XieTecGeomAntialiasByLowpass returns NULL. To free the memory allocated to this structure, use XFree.



Antialiasing techniques incorporate information from an "area" of pixels in the input image in order to produce each output pixel. This implies that line dropouts and other artifacts will occur less often, and the output image may have markedly better resemblance to the input image. The technique AntialiasByLowpass represents an approximation to antialias-by-area that can be faster, yet provides similar results. First, a low-pass filter is applied by passing an nxn boxcar kernel over the original input image. Output pixel values are then derived using a nearest neighbor sampling method that selects the value of the input pixel in the upper-left corner of the area mapped back from the output pixel.



The user is allowed to select the size of the image kernel via the kernel_size parameter. For best results, kernel_size should be chosen to correspond roughly to the amount of scaling that will be done. Note that the server chooses the best kernel for the appropriate size; the values used in the kernel are not alterable by the client application. Clients wishing to specify the kernel in more detail should use the convolve technique directly.

Structures

XieTecGeomAntialiasByLowpass sets the structure field kernel_size to the value of the argument kernel_size.



typedef struct {

	int kernel_size;

} XieGeomAntialiasByLowpassParam;

    XieGeomAntialiasByLowpassParam *param = (XieGeomAntialiasByLowpassParam *)

	Xmalloc (sizeof (XieGeomAntialiasByLowpassParam));



    param->kernel_size = kernel_size;



    return (param);



Errors



See Also

XieFloGeometry, XieFloConvolve, XieTecGeomAntialiasByArea

 XIElib - Technique Functions	XieTecGeomGaussian 

�tc "XieTecGeomGaussian " \l 2�

conven.c

XieGeomGaussianParam *XieTecGeomGaussian (

    double		/* sigma */,

    double		/* normalize */,

    unsigned int	/* radius */,

    Bool		/* simple */

);

Name

XieTecGeomGaussian - allocate and fill an XieGeomGaussianParam structure

Syntax

XieGeomGaussianParam *XieTecGeomGaussian (sigma, normalize, radius, simple)

double sigma;

double normalize;

unsigned int radius;

Bool simple;

Arguments

sigma	Specifies the drop-off rate.

normalize	Specifies a normalization constant.

radius	Specifies the extent of computation.

simple	Specifies the approximation form to use.

Returns

The XieGeomGaussianParam structure.

Description

XieTecGeomGaussian allocates and returns a pointer to an XieGeomGaussianParam structure. The returned structure represents the list of parameters required by the geometry technique and may be used as the sample_param argument of XieFloGeometry (when the sample_tech argument is xieValGeomGaussian).



If insufficient memory is available, XieTecGeomGaussian returns NULL. To free the memory allocated to this structure, use XFree.



A Geometry element can be visualized as stepping through each possible output pixel location in turn, and computing the location from which to obtain each input pixel value. Each pixel (x',y') in the output image is mapped to the coordinate location (x,y) in src by:



�embed EQUATION ���



It is not unusual that the input location (x,y) so derived will be nonintegral and will not correspond exactly to a single pixel in the input image. 



From sampling theory, a bandwidth limited continuous input image can be recovered perfectly (under certain conditions) from its sampled output by computing the convolution:



�embed EQUATION ���



Here I(x,y) is the continuous image, i(m,n) the discrete sampled image, and h(u,v) is the impulse response function for an appropriate low-pass filter. The specific form of h(u,v) for a Gaussian impulse response function is given by:



�embed EQUATION ���



The �embed EQUATION ��� term is called the "normalization constant" and may be altered using the normalize parameter. The suggested value for �symbol 115 \f "Symbol" \s 10�� (sigma, the drop-off rate) is 1. Note that all technique parameters must be chosen in concert



radius defines the extent of computation. A suggested value for radius is one, that is, only pixels within a distance of one in either the x or y direction are involved in the calculation.



For computational convenience, a simplified form of Gaussian interpolation is provided. If simple is True, the impulse-response function h(u,v) is:



�embed EQUATION ���



The normalization factor N is defined by normalize. As with true Gaussian interpolation, the radius parameter is used to determine the number of pixels involved in the computation.

Structures

XieTecGeomGaussian sets the structure field sigma to the value of the argument sigma; the structure field normalize to the value of the argument normalize; the structure field radius to the value of the argument radius; and the structure field simple to the value of the argument simple.



typedef struct {

	float sigma;

	float normalize;

	unsigned int radius;

	Bool simple;

} XieGeomGaussianParam;

    XieGeomGaussianParam *param = (XieGeomGaussianParam *)

	Xmalloc (sizeof (XieGeomGaussianParam));



    param->sigma     = sigma;

    param->normalize = normalize;

    param->radius    = radius;

    param->simple    = simple;



    return (param);



Errors



See Also

XieFloGeometry

 XIElib - Technique Functions	XieTecGeomNearestNeighbor 

�tc "XieTecGeomNearestNeighbor " \l 2�

conven.c

XieGeomNearestNeighborParam *XieTecGeomNearestNeighbor (

    unsigned int	/* modify */

);

Name

XieTecGeomNearestNeighbor - allocate and fill an XieGeomNearestNeighborParam structure

Syntax

XieGeomNearestNeighborParam *XieTecGeomNearestNeighbor (modify)

    unsigned int modify;

Arguments

modify	Specifies technique behavior on even boundaries.

Returns

The XieGeomNearestNeighborParam structure.

Description

XieTecGeomNearestNeighbor allocates and returns a pointer to an XieGeomNearestNeighborParam structure. The returned structure represents the list of parameters required by the geometry technique and may be used as the sample_param argument of XieFloGeometry (when the sample_tech argument is xieValGeomNearestNeighbor).



If insufficient memory is available, XieTecGeomNearestNeighbor returns NULL. To free the memory allocated to this structure, use XFree.



A Geometry element can be visualized as stepping through each possible output pixel location in turn, and computing the location from which to obtain each input pixel value. Each pixel (x',y') in the output image is mapped to the coordinate location (x,y) in src by:



�embed EQUATION ���



It is not unusual that the input location (x,y) so derived will be nonintegral and will not correspond exactly to a single pixel in the input image. 



To illustrate NearestNeighbor technique, assume that the pixel grid locations P, Q, R, and S are integral. Pixel location X = (x,y)T, obtained from the mapping equation above, differs from P by fractional amounts s in the x direction and t in the y direction.

�embed MSDraw \* mergeformat ���





Let I(P) be the value of the input image at coordinate P, if P is within the image extent. Otherwise, let I(P) be constant, where constant is the pixel value passed to the Geometry element. A value of I(X) must be estimated from I(P), I(Q), I(R), and I(S). In nearest-neighbor sampling, we simply choose the image value from the discrete location closest to X. Thus,



if s < 1/2, t < 1/2, set I(X) = I(P),

if s > 1/2, t < 1/2, set I(X) = I(Q),

if s > 1/2, t > 1/2, set I(X) = I(R),

if s < 1/2, t > 1/2, set I(X) = I(S).



The behavior on even boundaries (s = 1/2 or t = 1/2) is determined by the modify parameter. One of the standard nearest neighbor modify values can be assigned to modify:



xieValFavorDown

xieValFavorUp

xieValRoundNW

xieValRoundNE

xieValRoundSE

xieValRoundSW





If modify is xieValFavorDown, all “less than” signs in the above are replaced with “less than” or “equal “signs. Thus, P would win all ties, S and Q would lose to P but win over R, and R would lose all ties. If modify is xieValFavorUp, then all greater than signs would be replaced with greater than or equals, and the opposite behavior would occur. Four additional options are provided. The xieValRoundxx options will always choose a specific integral pixel grid location; these are not strictly nearest neighbor algorithms but are available for computational/filtering convenience.

Structures

XieTecGeomNearestNeighbor sets the structure field modify to the value of the argument modify.



typedef struct {

	unsigned int modify;

} XieGeomNearestNeighborParam;

    XieGeomNearestNeighborParam *param = (XieGeomNearestNeighborParam *)

	Xmalloc (sizeof (XieGeomNearestNeighborParam));



    param->modify = modify;



    return (param);



/* Definitions of NearestNeighbor Modify */

#define xieValFavorDown	1

#define xieValFavorUp	2

#define xieValRoundNW	3

#define xieValRoundNE	4

#define xieValRoundSE	5

#define xieValRoundSW	6

Errors



See Also

XieFloGeometry

 XIElib - Technique Functions	XieTecHistogramGaussian 

�tc "XieTecHistogramGaussian " \l 2�

conven.c

XieHistogramGaussianParam *XieTecHistogramGaussian (

    double		/* mean */,

    double		/* sigma */

);

Name

XieTecHistogramGaussian - allocate and fill an XieHistogramGaussianParam structure

Syntax

XieHistogramGaussianParam *XieTecHistogramGaussian (mean, sigma)

double mean;

double sigma;

Arguments

mean	Specifies the center of the Gaussian probability density function.

sigma	Specifies the "spread" of the Gaussian probability density function.

Returns

The XieHistogramGaussianParam structure.

Description

XieTecHistogramGaussian allocates and returns a pointer to an XieHistogramGaussianParam structure. The returned structure represents the list of parameters required by the match-histogram shape technique and may be used as the shape_param argument of XieFloMatchHistogram (when the shape argument is xieValHistogramGaussian).



If insufficient memory is available, XieTecHistogramGaussian returns NULL. To free the memory allocated to this structure, use XFree.



The Gaussian match-histogram shape technique specifies that the output image is to have a histogram that approximates a Gaussian probability density. The supplied parameters are used to generate a Gaussian probability density function centered around the mean level with a “spread” specified by sigma:



�embed EQUATION ���



Structures

XieTecHistogramGaussian sets the structure field mean to the value of the argument mean; and the structure field sigma to the value of the argument sigma.



typedef struct {

	float mean;

	float sigma;

} XieHistogramGaussianParam;

    XieHistogramGaussianParam *param = (XieHistogramGaussianParam *)

	Xmalloc (sizeof (XieHistogramGaussianParam));



    param->mean    = mean;

    param->sigma   = sigma;



    return (param);



Errors



See Also

XieFloMatchHistogram

 XIElib - Technique Functions	XieTecHistogramHyperbolic 

�tc "XieTecHistogramHyperbolic " \l 2�

conven.c

XieHistogramHyperbolicParam *XieTecHistogramHyperbolic (

    double		/* constant */,

    Bool		/* shape_factor */

);

Name

XieTecHistogramHyperbolic - allocate and fill an XieHistogramHyperbolicParam structure

Syntax

XieHistogramHyperbolicParam *XieTecHistogramHyperbolic (constant, shape_factor)

double constant;

Bool shape_factor;

Arguments

constant	Specifies a value used to generate a hyperbolic probability density function

shape_factor	Specifies the relationship between the histogram shape and image levels.

Returns

The XieHistogramHyperbolicParam structure.

Description

XieTecHistogramHyperbolic allocates and returns a pointer to an XieHistogramHyperbolicParam structure. The returned structure represents the list of parameters required by the match-histogram shape technique and may be used as the shape_param argument of XieFloMatchHistogram (when the shape argument is xieValHistogramHyperbolic).



If insufficient memory is available, XieTecHistogramHyperbolic returns NULL. To free the memory allocated to this structure, use XFree.



The hyperbolic match-histogram shape technique specifies that the output image is to have a histogram that approximates a hyperbolic probability density.



constant is used to generate a hyperbolic probability density function:



�embed EQUATION ���



shape_factor should be specified as False if the histogram shape represents decreasing values for higher levels or True if the shape represents increasing values for higher levels.

Structures

XieTecHistogramHyperbolic sets the structure field constant to the value of the argument constant; and the structure field shape_factor to the value of the argument shape_factor.



typedef struct {

	float constant;

	Bool shape_factor;

} XieHistogramHyperbolicParam;

    XieHistogramHyperbolicParam *param = (XieHistogramHyperbolicParam *)

	Xmalloc (sizeof (XieHistogramHyperbolicParam));



    param->constant     = constant;

    param->shape_factor = shape_factor;



    return (param);



Errors



See Also

XieFloMatchHistogram

 XIElib - Technique Functions	XieTecWhiteAdjustCIELabShift 

�tc "XieTecWhiteAdjustCIELabShift " \l 2�

conven.c

XieWhiteAdjustCIELabShiftParam *XieTecWhiteAdjustCIELabShift (

    XieConstant		/* white_point */

);

Name

XieTecWhiteAdjustCIELabShift - allocate and fill an XieWhiteAdjustCIELabShiftParam structure

Syntax

XieWhiteAdjustCIELabShiftParam *XieTecWhiteAdjustCIELabShift (white_point)

XieConstant white_point;

Arguments

white_point	Specifies the white point of the (source or output) data.

Returns

The XieWhiteAdjustCIELabShiftParam structure.

Description

XieTecWhiteAdjustCIELabShift allocates and returns a pointer to an XieWhiteAdjustCIELabShiftParam structure. The returned structure represents the list of parameters required by the WhiteAdjust technique and may be used as the white_adjust_param argument of XieTecRGBToCIELab, XieTecRGBToCIEXYZ, XieTecCIELabToRGB, and XieTecCIEXYZToRGB (when the white_adjust_tech argument is xieValWhiteAdjustCIELabShift).



If insufficient memory is available, XieTecWhiteAdjustCIELabShift returns NULL. To free the memory allocated to this structure, use XFree.



White point correction can be used to ensure that white "looks" white, or it can be used to change the overall tint of an image.



The CIELabShift WhiteAdjust technique specifies that white point correction is to be accomplished by adding the white point displacement to the ab plane in the CIELab colorspace. The white_point is specified using CIEXYZ encodings. If the WhiteAdjust technique is used with a color conversion technique that converts from RGB, white_point specifies the desired white point of the output data; if the conversion is to RGB, white_point specifies the white point of the source data.

Structures

XieTecWhiteAdjustCIELabShift sets the structure field white_point to the value of the argument white_point.



typedef float XieConstant[3];

typedef unsigned XieWhiteAdjustTechnique;

typedef struct {

	XieConstant white_point;

} XieWhiteAdjustCIELabShiftParam;

    XieWhiteAdjustCIELabShiftParam *param = (XieWhiteAdjustCIELabShiftParam *)

	Xmalloc (sizeof (XieWhiteAdjustCIELabShiftParam));



    param->white_point[0] = white_point[0];

    param->white_point[1] = white_point[1];

    param->white_point[2] = white_point[2];



    return (param);



Errors



See Also

XieTecRGBToCIELab, XieTecRGBToCIEXYZ, XieTecCIELabToRGB, XieTecCIEXYZToRGB

 XIElib - Free Functions	XieFreeTechniques 

�tc "Free Functions " \l 1�

�tc "XieFreeTechniques " \l 2�

free.c

void XieFreeTechniques (

    XieTechnique *	/* techs */,

    unsigned int	/* count */

);

Name

XieFreeTechniques - free memory allocated for a list of techniques

Syntax

void XieFreeTechniques (techs, count)

XieTechnique *techs;

unsigned int count;

Arguments

techs	Specifies the list of techniques to be freed.

count	Specifies the number of items in the list of techniques to be freed.

Returns



Description

XieFreeTechniques frees the memory previously allocated for techs. Care should be taken that the argument pair techs/count match an argument pair techniques_ret/ ntechniques_ret returned from XieQueryTechniques.



See XieQueryTechniques for a description of the XieTechnique structure.

Structures

typedef unsigned XieTechniqueGroup;

typedef struct {

	Bool needs_param;

	XieTechniqueGroup group;

	unsigned int number;

	unsigned int speed;

	char *name;

} XieTechnique;

Errors



See Also

 XieQueryTechniques

 XIElib - Free Functions	XieFreePhotofloGraph 

�tc "XieFreePhotofloGraph " \l 2�

photoflo.c

void XieFreePhotofloGraph (

    XiePhotoElement *	/* elements */,

    unsigned int	/* count */

);

Name

XieFreePhotofloGraph - free memory allocated for an array of XiePhotoElement structures

Syntax

void XieFreePhotofloGraph (elements, count)

XiePhotoElement *elements;

unsigned int count;

Arguments

elements	Specifies the array of XiePhotoElement structures to be freed.

count	Specifies the number of XiePhotoElement structures in the array.

Returns



Description

XieFreePhotofloGraph frees the specified array of XiePhotoElement structures.



Care should be taken that the argument pair elements/count match a returned value (an array of XiePhotoElement structures) and argument count from a call to XieAllocatePhotofloGraph.



Technique parameters are not freed by using XieFreePhotofloGraph. Most of the technique parameters, with the exception of the JPEG baseline and JPEG lossless encode techniques, which are allocated using XIElib convenience functions are freed using XFree. This is so the client can reuse technique parameters between photoflos.

Structures

typedef struct {

	int elemType;

	/* union of ALL element types */

	union {

		...

		...

	} data;

} XiePhotoElement;

Errors



See Also

XieAllocatePhotofloGraph, XieCreatePhotoflo, XieExecutePhotoflo, XieExecuteImmediate

 XIElib - Free Functions	XieFreeEncodeJPEGBaseline 

�tc "XieFreeEncodeJPEGBaseline " \l 2�

free.c

void XieFreeEncodeJPEGBaseline (

    XieEncodeJPEGBaselineParam *	/* param */

);

Name

XieFreeEncodeJPEGBaseline - free the memory allocated to the structure XieEncodeJPEGBaselineParam

Syntax

void XieFreeEncodeJPEGBaseline (param)

XieEncodeJPEGBaselineParam *param

Arguments

param	Specifies a pointer to the structure that is to be freed.

Returns



Description

XieFreeEncodeJPEGBaseline (rather than XFree) should be used to free the memory allocated by XieTecEncodeJPEGBaseline.

Structures

typedef struct {

	XieInterleave interleave;

	XieOrientation band_order;

	unsigned char horizontal_samples[3];

	unsigned char vertical_samples[3];

	char *q_table;

	unsigned int q_size;

	char *ac_table;

	unsigned int ac_size;

	char *dc_table;

	unsigned int dc_size;

} XieEncodeJPEGBaselineParam;

Errors



See Also

XieTecEncodeJPEGBaseline

 XIElib - Free Functions	XieFreeEncodeJPEGLossless 

�tc "XieFreeEncodeJPEGLossless " \l 2�

free.c

void XieFreeEncodeJPEGLossless (

    XieEncodeJPEGLosslessParam *	/* param */

);

Name

XieFreeEncodeJPEGLossless - free the memory allocated to the structure XieEncodeJPEGLosslessParam

Syntax

void XieFreeEncodeJPEGLossless (param)

XieEncodeJPEGLosslessParam *param;

Arguments

param	Specifies a pointer to the structure that is to be freed.

Returns



Description

XieFreeEncodeJPEGLossless (rather than XFree) should be used to free the memory allocated by XieTecEncodeJPEGLossless.



Note that the JPEG Lossless technique is not available in the R6 sample implementation of XIE.

Structures

typedef struct {

	XieInterleave interleave;

	XieOrientation band_order;

	unsigned char predictor[3];

	char *table;

	unsigned int table_size;

} XieEncodeJPEGLosslessParam;

Errors



See Also

XieTecEncodeJPEGLossless

 XIElib - Free Functions	XieFreePasteUpTiles 

�tc "XieFreePasteUpTiles " \l 2�

free.c

void XieFreePasteUpTiles (

    XiePhotoElement *	/* element */

);

Name

XieFreePasteUpTiles - free the memory allocated to the tiles field of a PasteUp structure

Syntax

void XieFreePasteUpTiles (element)

XiePhotoElement *element;

Arguments

element	Specifies the XiePhotoElement structure to use.

Returns



Description

XieFreePasteUpTiles frees the memory allocated to the tiles field in the specified PasteUp member structure; after the memory has been freed, the field value is set to NULL.

Structures

    XieTile *tiles= element->data.PasteUp.tiles;



    if (tiles)

    {

	Xfree (tiles);

	element->data.PasteUp.tiles=NULL;

typedef struct {

	int elemType;

	union {

		...

		struct {

			unsigned int width;

			unsigned int height;

			XieConstant constant;

			XieTile *tiles;

			unsigned int tile_count;

		} PasteUp;

		...

	} data;

} XiePhotoElement;

Errors



See Also

XieFloPasteUp



/* Event Code */

#define xieEvnNoColorAlloc	0

#define xieEvnNoDecodeNotify	1

#define xieEvnNoExportAvailable	2

#define xieEvnNoImportObscured	3

#define xieEvnNoPhotofloDone	4



typedef struct {

	CARD8 event;

	CARD8 pad1;

	CARD16 sequenceNum B16;

	CARD32 time B32;

	CARD32 instanceNameSpace B32;

	CARD32 instanceFloID B32;

	xieTypPhototag src B16;

	CARD16 type B16;

	CARD32 pad2 B32;

	CARD32 pad3 B16;

	CARD32 pad4 B32;

} xieFloEvn;

� XIElib Events	ColorAlloc 

�tc "XIElib Events " \l 1�

�tc "ColorAlloc Event " \l 2�

Description

The client is notified that a ConvertToIndex element has completed color allocation, but has produced a result of lesser fidelity than was requested using the technique that was specified for the ConvertToIndex element.



The structure fields name_space, flo_id, src, and elem_type identify the photoflo and specific ConvertToIndex element from which the ColorAlloc event originated. The structure field time is the server time when the ColorAlloc event occurred, in milliseconds. The structure field color_list is the color list resource that received the allocated colors. The structure field color_alloc_technique is the ColorAlloc technique specified to the ConvertToIndex element. The structure field color_alloc_data can be used for other information that is specific to the ColorAlloc technique.

Structures

/* ColorAlloc Event Code */

#define xieEvnNoColorAlloc	0



typedef struct {

	int type;

	unsigned long serial;

	Bool send_event;

	Display *display;

	unsigned long name_space;

	Time time;

	unsigned long flo_id;

	XiePhototag src;

	unsigned int elem_type;

	XieColorList color_list;

	XieColorAllocTechnique color_alloc_technique;

	unsigned long color_alloc_data;

} XieColorAllocEvent;

See Also

XieFloConvertToIndex, XieTecColorAllocAll

 XIElib Events	DecodeNotify 

�tc "DecodeNotify Event " \l 2�

Description

A DecodeNotify event notifies the client that anomalies were encountered while decoding a compressed image (see the notify arguments of XieFloImportClientPhoto and XieFloImportPhotomap). Either an error has been encountered while decoding an image, or the image data received does not satisfy the expected dimensions.



The structure fields name_space, flo_id, src, and elem_type identify the photoflo and element from which the DecodeNotify event originated. The structure field time is the server time when the DecodeNotify event occurred, in milliseconds. The structure field band_number associates the event with a specific band of the image. The structure field decode_technique is the Decode technique being used. The structure fields width and height are the dimensions discovered while decoding the data. The structure field aborted is True if decoding was aborted, or False if recovery was possible.



Recovery from a decode error may result in some missing or garbled image data. This may also cause the height of the decoded data to be less than was expected. If the structure fields width or height do not match the width and height specified to XieFloImportClientPhoto, the image data is clipped or padded (with zeros), as required, to enforce the XieFloImportClientPhoto specified dimensions.

Structures

/* DecodeNotify Event Code */

#define xieEvnNoDecodeNotify	1



typedef struct {

	int type;

	unsigned long serial;

	Bool send_event;

	Display *display;

	unsigned long name_space;

	Time time;

	unsigned long flo_id;

	XiePhototag src;

	unsigned int elem_type;

	XieDecodeTechnique decode_technique;

	Bool aborted;

	unsigned int band_number;

	unsigned long width;

	unsigned long height;

} XieDecodeNotifyEvent;

See Also

XieFloImportClientPhoto, XieFloImportPhotomap

 XIElib Events	ExportAvailable 

�tc "ExportAvailable Event " \l 2�

Description

The client is notified that an ExportClient element has data available (see the notify argument of the applicable XieFloExportClient... function). If notify was specified as xieValFirstData, this event will be sent only the first time data become available from the ExportClient element. Otherwise (that is, xieValNewData was specified), this event will be generated each time the amount of data available changes from zero to nonzero.



The structure fields name_space, flo_id, src, and elem_type identify the photoflo and specific ExportClient element from which the ExportAvailable event originated. The structure field time is the server time when the ExportAvailable event occurred, in milliseconds. The structure field band_number associates the event with a specific band of the image or LUT. The structure field data is information specific to elem_type (for example, the number of LUT entries or ROI rectangles available).



Where there is a single ExportClient element, the client can just read bytes or be event-driven. For photoflos containing multiple ExportClient elements, the client should be event-driven.

Structures

/* ExportAvailable Event Code */

#define xieEvnNoExportAvailable	2



typedef struct {

	int type;

	unsigned long serial;

	Bool send_event;

	Display *display;

	unsigned long name_space;

	Time time;

	unsigned long flo_id;

	XiePhototag src;

	unsigned int elem_type;

	unsigned int band_number;

	unsigned long data[3];

} XieExportAvailableEvent;

See Also

XieFloExportClientHistogram, XieFloExportClientLUT, XieFloExportClientPhoto, XieFloExportClientROI

 XIElib Events	ImportObscured 

�tc "ImportObscured Event " \l 2�

Description

The client is notified when an ImportDrawable or ImportDrawablePlane element encounters obscured regions in a Window that cannot be retrieved from backing store (see the notify argument of the import element routine). A separate ImportObscured event is returned for each affected region.



The structure fields name_space, flo_id, and src identify the photoflo and the specific import element from which the ImportObscured event originated. The structure field time is the server time when the ImportObscured event occurred, in milliseconds. The structure field window identifies the Window. The obscured region of the window is specified by the structure fields x, y, width, and height.



Note: image data within obscured regions will be populated with the fill argument supplied to the import element.

Structures

/* ImportObscured Event Code */

#define xieEvnNoImportObscured	3



typedef struct {

	int type;

	unsigned long serial;

	Bool send_event;

	Display *display;

	unsigned long name_space;

	Time time;

	unsigned long flo_id;

	XiePhototag src;

	unsigned int elem_type;

	Window window;

	int x;

	int y;

	unsigned int width;

	unsigned int height;

} XieImportObscuredEvent;

See Also

XieFloImportDrawable, XieFloImportDrawablePlane

 XIElib Events	PhotofloDone 

�tc "PhotofloDone Event " \l 2�

Description

A PhotofloDone event notifies the client that a photoflo has left the active state. It is enabled by the notify argument of XieExecutePhotoflo or XieExecuteImmediate.



The photoflo from which the PhotofloDone event originated is identified by the structure fields name_space and flo_id. The structure field time is the server time when the PhotofloDone event occurred, in milliseconds. The reason the photoflo left the active state is indicated by the structure field type.



If the Photoflo terminated because of an error condition, the details concerning the error have preceded this event in an error message.

Structures

/* PhotofloDone Event Code */

#define xieEvnNoPhotofloDone	4



typedef struct {

	int type;

	unsigned long serial;

	Bool send_event;

	Display *display;

	unsigned long name_space;

	Time time;

	unsigned long flo_id;

} XiePhotofloDoneEvent;

See Also

XieExecuteImmediate, XieExecutePhotoflo

� XIElib Errors	Resource Errors 

�tc "XIElib Errors " \l 1�

�tc "Resource Errors " \l 2�

The following error codes are allocated from the extension error space to provide for the errors returned by XIE:



Error	Cause

xieErrNoColorlist	The value for a color_list argument does not name a defined color list.

xieErrNoLUT	The value for a lut argument does not name a defined LUT.

xieErrNoPhotoflo	The value for a photoflo argument does not name a defined photoflo.

xieErrNoPhotomap	The value for a photomap argument does not name a defined photomap.

xieErrNoPhotospace	The value for a photospace argument does not name a defined photospace.

xieErrNoROI	The value for a roi argument does not name a defined ROI.

xieErrNoFlo	An error has been detected while defining, executing, or accessing a photoflo (see Photoflo Errors).



XIE also uses the core protocol BadAccess, BadAlloc, BadIDChoice, BadLength, BadRequest, and BadValue errors.

 XIElib Errors	Photoflo Errors 

�tc "Photoflo Errors " \l 2�

If an error is detected while defining, executing, or accessing a photoflo, an xieErrNoFlo... error is returned. This single error code is allocated from the extension error space for all photoflo related errors. The following subcodes are defined to provide the details of the error:



Error	Cause

xieErrNoFloAccess	Attempt to execute, modify, or redefine an active photoflo or�attempt to Get/Put client data from/to an inactive photoflo.

xieErrNoFloAlloc	Insufficient resources (for example, memory).

xieErrNoFloColormap	An unknown Colormap has been specified.

xieErrNoFloColorList	An unknown color list has been specified.

xieErrNoFloDomain	Invalid domain phototag:� - source data is not a list-of-rectangles or control-plane or� - specified nonzero on a DIS server.

xieErrNoFloDrawable	An unknown Drawable has been specified.

xieErrNoFloElement	An unknown element type has been specified, or�invalid element type for request, or�attempt to change or add an element type.

xieErrNoFloGC	An unknown GContext has been specified.

xieErrNoFloID	Invalid executable:� - an unknown photoflo has been specified or� - an unknown photospace has been specified.

xieErrNoFloLength	An element was received with the incorrect number of bytes.

xieErrNoFloLUT	An unknown LUT has been specified.

xieErrNoFloMatch	Some argument or pair of arguments has the correct type and range, but it fails to match in some other way required by the element.

xieErrNoFloOperator	An unknown operator has been specified.

xieErrNoFloPhotomap	An unknown photomap has been specified.

xieErrNoFloROI	An unknown ROI has been specified.

xieErrNoFloSource	An invalid phototag has been specified:� - zero, but a phototag is required, or� - downstream from the particular element, or� - beyond the bounds of the photoflo.

xieErrNoFloTechnique	An unknown technique has been specified , or�invalid technique specific-parameters have been specified,  or�the wrong number of technique-specific parameters have been given.

xieErrNoFloValue	Some numeric value falls outside of the range of values accepted by the element.

xieErrNoFloImplementation	Some aspect of a request is not implemented by the server: the client should be prepared to receive and handle this error.

�Structures

/* Definition of Error Codes */

#define xieErrNoColorList	0

#define xieErrNoLUT	1

#define xieErrNoPhotoflo	2

#define xieErrNoPhotomap	3

#define xieErrNoPhotospace	4

#define xieErrNoROI	5

#define xieErrNoFlo	6



/* Definitions of Flo Error (Sub-) Codes */

#define xieErrNoFloAccess	1

#define xieErrNoFloAlloc	2

#define xieErrNoFloColormap	3

#define xieErrNoFloColorList	4

#define xieErrNoFloDomain	5

#define xieErrNoFloDrawable	6

#define xieErrNoFloElement	7

#define xieErrNoFloGC	8

#define xieErrNoFloID	9

#define xieErrNoFloLength	10

#define xieErrNoFloLUT	11

#define xieErrNoFloMatch	12

#define xieErrNoFloOperator	13

#define xieErrNoFloPhotomap	14

#define xieErrNoFloROI	15

#define xieErrNoFloSource	16

#define xieErrNoFloTechnique	17

#define xieErrNoFloValue	18

#define xieErrNoFloImplementation	19





XIElib		�PAGE�188�



XIElib		Events-�PAGE�5�



XIElib		Errors-�PAGE�3�








