CAMD User Guide

Patrick R. Amestoy* Yanqing (Morris) Chen Timothy A. Davist Iain S. Duff!

VERSION 2.3.1, Jun 20, 2012

Abstract

CAMD is a set of ANSI C routines that implements the approximate minimum degree order-
ing algorithm to permute sparse matrices prior to numerical factorization. Ordering constraints
can be optionally provided. A MATLAB interface is included.

CAMD Copyright(©2011 by Timothy A. Davis, Yanqing (Morris) Chen, Patrick R. Amestoy,
and Tain S. Duff. All Rights Reserved. CAMD is available under alternate licences; contact T.
Davis for details.

CAMD License: Your use or distribution of CAMD or any modified version of CAMD implies
that you agree to this License.

This library is free software; you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation; either version
2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301 USA

Permission is hereby granted to use or copy this program under the terms of the GNU LGPL,
provided that the Copyright, this License, and the Availability of the original version is retained on
all copies. User documentation of any code that uses this code or any modified version of this code
must cite the Copyright, this License, the Availability note, and ” Used by permission.” Permission
to modify the code and to distribute modified code is granted, provided the Copyright, this License,
and the Availability note are retained, and a notice that the code was modified is included.

Availability: http://www.suitesparse.com.

Acknowledgments:

This work was supported by the National Science Foundation, under grants ASC-9111263 and
DMS-9223088 and CCR-0203270, and by Sandia National Labs (a grant from DOE). The conversion

*ENSEEIHT-IRIT, 2 rue Camichel 31017 Toulouse, France. email: amestoy@enseeiht.fr.
http://www.enseeiht.fr/~amestoy.

femail: DrTimothyAldenDavis@gmail.com, http: //www.suitesparse.com. This work was supported by the Na-
tional Science Foundation, under grants ASC-9111263, DMS-9223088, and CCR-0203270. Portions of the work were
done while on sabbatical at Stanford University and Lawrence Berkeley National Laboratory (with funding from
Stanford University and the SciDAC program). Ordering constraints added with support from Sandia National
Laboratory (Dept. of Energy).

fRutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England. email: is.duff@rl.ac.uk.
http://www.numerical.rl.ac.uk/people/isd/isd.html. =~ This work was supported by the EPSRC under grant
GR/R46441.

to C, the addition of the elimination tree post-ordering, and the handling of dense rows and columns
were done while Davis was on sabbatical at Stanford University and Lawrence Berkeley National
Laboratory. The ordering constraints were added by Chen and Davis.

1 Overview

CAMD is a set of routines for preordering a sparse matrix prior to numerical factorization. It uses
an approximate minimum degree ordering algorithm [1, 2] to find a permutation matrix P so that
the Cholesky factorization PAPT = LLT has fewer (often much fewer) nonzero entries than the
Cholesky factorization of A. The algorithm is typically much faster than other ordering methods
and minimum degree ordering algorithms that compute an exact degree [4]. Some methods, such
as approximate deficiency [9] and graph-partitioning based methods [5, 7, 8, 10] can produce better
orderings, depending on the matrix.

The algorithm starts with an undirected graph representation of a symmetric sparse matrix A.
Node ¢ in the graph corresponds to row and column ¢ of the matrix, and there is an edge (i, 7)
in the graph if a;; is nonzero. The degree of a node is initialized to the number of off-diagonal
nonzeros in row ¢, which is the size of the set of nodes adjacent to ¢ in the graph.

The selection of a pivot a; from the diagonal of A and the first step of Gaussian elimination
corresponds to one step of graph elimination. Numerical fill-in causes new nonzero entries in the
matrix (fill-in refers to nonzeros in L that are not in A). Node 7 is eliminated and edges are added
to its neighbors so that they form a clique (or element). To reduce fill-in, node i is selected as the
node of least degree in the graph. This process repeats until the graph is eliminated.

The clique is represented implicitly. Rather than listing all the new edges in the graph, a single
list of nodes is kept which represents the clique. This list corresponds to the nonzero pattern of the
first column of L. As the elimination proceeds, some of these cliques become subsets of subsequent
cliques, and are removed. This graph can be stored in place, that is using the same amount of
memory as the original graph.

The most costly part of the minimum degree algorithm is the recomputation of the degrees
of nodes adjacent to the current pivot element. Rather than keep track of the exact degree, the
approximate minimum degree algorithm finds an upper bound on the degree that is easier to
compute. For nodes of least degree, this bound tends to be tight. Using the approximate degree
instead of the exact degree leads to a substantial savings in run time, particularly for very irregularly
structured matrices. It has no effect on the quality of the ordering.

The elimination phase is followed by an elimination tree post-ordering. This has no effect on
fill-in, but reorganizes the ordering so that the subsequent numerical factorization is more efficient.
It also includes a pre-processing phase in which nodes of very high degree are removed (without
causing fill-in), and placed last in the permutation P (subject to the constraints). This reduces the
run time substantially if the matrix has a few rows with many nonzero entries, and has little effect
on the quality of the ordering. CAMD operates on the symmetric nonzero pattern of A+ AT, so it
can be given an unsymmetric matrix, or either the lower or upper triangular part of a symmetric
matrix.

CAMD has the ability to order the matrix with constraints. Each node ¢ in the graph (row/column
i in the matrix) has a constraint, C[i], which is in the range 0 to n-1. All nodes with C[i] = 0 are
ordered first, followed by all nodes with constraint 1, and so on. That is, C[P[k]] is monotonically
non-decreasing as k varies from 0 to n-1. If C is NULL, no constraints are used (the ordering will
be similar to AMD’s ordering, except that the postordering is different). The optional C parameter
is also provided in the MATLAB interface, (p = camd (A,Control,C)).

For a discussion of the long history of the minimum degree algorithm, see [4].

2 Availability

CAMD is available at http://www.suitesparse.com. The Fortran version is available as the rou-
tine MC47 in HSL (formerly the Harwell Subroutine Library) [6]. MC47 does not include ordering
constraints.

3 Using CAMD in MATLAB

To use CAMD in MATLAB, you must first compile the CAMD mexFunction. Just type make in the
Unix system shell, while in the CAMD directory. You can also type camd make in MATLAB, while
in the CAMD/MATLAB directory. Place the CAMD/MATLAB directory in your MATLAB path. This can
be done on any system with MATLAB, including Windows. See Section 6 for more details on how
to install CAMD.

The MATLAB statement p=camd(A) finds a permutation vector p such that the Cholesky
factorization chol(A(p,p)) is typically sparser than chol(A). If A is unsymmetric, camd(A) is
identical to camd (A+A’) (ignoring numerical cancellation). If A is not symmetric positive definite,
but has substantial diagonal entries and a mostly symmetric nonzero pattern, then this ordering
is also suitable for LU factorization. A partial pivoting threshold may be required to prevent
pivots from being selected off the diagonal, such as the statement [L,U,P] = 1u (A (p,p), 0.1).
Type help lu for more details. The statement [L,U,P,Q] = 1lu (A (p,p)) in MATLAB 6.5 is
not suitable, however, because it uses UMFPACK Version 4.0 and thus does not attempt to select
pivots from the diagonal. UMFPACK Version 4.1 in MATLAB 7.0 and later uses several strategies,
including a symmetric pivoting strategy, and will give you better results if you want to factorize
an unsymmetric matrix of this type. Refer to the UMFPACK User Guide for more details, at
http://www.suitesparse.com.

The CAMD mexFunction is much faster than the built-in MATLAB symmetric minimum degree
ordering methods, SYMAMD and SYMMMD. Its ordering quality is essentially identical to AMD,
comparable to SYMAMD, and better than SYMMMD [3].

An optional input argument can be used to modify the control parameters for CAMD (ag-
gressive absorption, dense row/column handling, and printing of statistics). An optional output
argument provides statistics on the ordering, including an analysis of the fill-in and the floating-
point operation count for a subsequent factorization. For more details (once CAMD is installed),
type help camd in the MATLAB command window.

4 Using CAMD in a C program

The C-callable CAMD library consists of seven user-callable routines and one include file. There
are two versions of each of the routines, with int and long integers. The routines with prefix
camd_1_ use long integer arguments; the others use int integer arguments. If you compile CAMD
in the standard ILP32 mode (32-bit int’s, long’s, and pointers) then the versions are essentially
identical. You will be able to solve problems using up to 2GB of memory. If you compile CAMD in
the standard LP64 mode, the size of an int remains 32-bits, but the size of a long and a pointer
both get promoted to 64-bits.
The following routines are fully described in Section 7:

e camd order (long version: camd_1_order)

#include "camd.h"

int n, Ap [n+1], Ai [nz], P [n], C [n] ;
double Control [CAMD_CONTROL], Info [CAMD_INFO] ;
int result = camd_order (n, Ap, Ai, P, Control, Info, C) ;

Computes the approximate minimum degree ordering of an n-by-n matrix A. Returns a
permutation vector P of size n, where P[k] = i if row and column i are the kth row and
column in the permuted matrix. This routine allocates its own memory of size 1.2e + 9n
integers, where e is the number of nonzeros in A + AT. It computes statistics about the
matrix A, such as the symmetry of its nonzero pattern, the number of nonzeros in L, and the
number of floating-point operations required for Cholesky and LU factorizations (which are
returned in the Info array). The user’s input matrix is not modified. It returns CAMD_OK if
successful, CAMD_OK_BUT_JUMBLED if successful (but the matrix had unsorted and/or duplicate
row indices), CAMD_INVALID if the matrix is invalid, CAMD_OUT_OF _MEMORY if out of memory.

The array C provides the ordering constraints. On input, C may be null (to denote no con-
straints); otherwise, it must be an array size n, with entries in the range 0 to n-1. On output,
C[P[0..n-1]] is monotonically non-descreasing.

e camd defaults (long version: camd 1 defaults)

#include "camd.h"
double Control [CAMD_CONTROL] ;
camd_defaults (Control) ;

Sets the default control parameters in the Control array. These can then be modified as
desired before passing the array to the other CAMD routines.

e camd control (long version: camd_1_control)

#include "camd.h"
double Control [CAMD_CONTROL] ;
camd_control (Control) ;

Prints a description of the control parameters, and their values.

e camd_info (long version: camd_1_info)

#include "camd.h"
double Info [CAMD_INFO] ;
camd_info (Info) ;

Prints a description of the statistics computed by CAMD, and their values.

e camd valid (long version: camd_valid)

#include "camd.h"
int n, Ap [n+1], Ai [nz] ;
int result = camd_valid (n, n, Ap, Ai) ;

Returns CAMD_OK or CAMD_0K_BUT_JUMBLED if the matrix is valid as input to camd_order;
the latter is returned if the matrix has unsorted and/or duplicate row indices in one or
more columns. Returns CAMD_INVALID if the matrix cannot be passed to camd_order. For
camd_order, the matrix must also be square. The first two arguments are the number of rows
and the number of columns of the matrix. For its use in CAMD, these must both equal n.

e camd 2 (long version: camd_12) CAMD ordering kernel. It is faster than camd_order, and can
be called by the user, but it is difficult to use. It does not check its inputs for errors. It does
not require the columns of its input matrix to be sorted, but it destroys the matrix on output.
Additional workspace must be passed. Refer to the source file CAMD/Source/camd_2.c for a
description.

The nonzero pattern of the matrix A is represented in compressed column form. For an n-by-n
matrix A with nz nonzero entries, the representation consists of two arrays: Ap of size n+1 and
Ai of size nz. The row indices of entries in column j are stored in Ai[Ap[j] ... Ap[j+1]1-1]. For
camd_order, if duplicate row indices are present, or if the row indices in any given column are not
sorted in ascending order, then camd_order creates an internal copy of the matrix with sorted rows
and no duplicate entries, and orders the copy. This adds slightly to the time and memory usage of
camd_order, but is not an error condition.

The matrix is 0-based, and thus row indices must be in the range 0 to n-1. The first entry
Ap[0] must be zero. The total number of entries in the matrix is thus nz = Ap[n].

The matrix must be square, but it does not need to be symmetric. The camd_order routine
constructs the nonzero pattern of B = A + AT (without forming AT explicitly if A has sorted
columns and no duplicate entries), and then orders the matrix B. Thus, either the lower triangular
part of A, the upper triangular part, or any combination may be passed. The transpose AT may
also be passed to camd_order. The diagonal entries may be present, but are ignored.

4.1 Control parameters

Control parameters are set in an optional Control array. It is optional in the sense that if a NULL
pointer is passed for the Control input argument, then default control parameters are used.

e Control [CAMD_DENSE] (or Control(1) in MATLAB): controls the threshold for “dense”
rows/columns. A dense row/column in A + AT can cause CAMD to spend significant
time in ordering the matrix. If Control [CAMD_DENSE] > 0, rows/columns with more than
Control [CAMD DENSE] +/n entries are ignored during the ordering, and placed last in the out-
put order. The default value of Control [CAMD_DENSE] is 10. If negative, no rows/columns are
treated as “dense.” Rows/columns with 16 or fewer off-diagonal entries are never considered
“dense.”

e Control [CAMD_AGGRESSIVE] (or Control(2) in MATLAB): controls whether or not to use
aggressive absorption, in which a prior element is absorbed into the current element if it is a
subset of the current element, even if it is not adjacent to the current pivot element (refer to
[1, 2] for more details). The default value is nonzero, which means that aggressive absorption
will be performed. This nearly always leads to a better ordering (because the approximate
degrees are more accurate) and a lower execution time. There are cases where it can lead to
a slightly worse ordering, however. To turn it off, set Control [CAMD_AGGRESSIVE] to 0.

Statistics are returned in the Info array (if Info is NULL, then no statistics are returned). Refer
to camd.h file, for more details (14 different statistics are returned, so the list is not included here).

4.2 Sample C program

The following program, camd_demo. c, illustrates the basic use of CAMD. See Section 5 for a short
description of each calling sequence.

#include <stdio.h>
#include "camd.h"

int n = 5 ;

int Ap [1 ={0, 2, 6, 10, 12, 14} ;
int A1 [] ={0,1, 0,1,2,4, 1,2,3,4, 2,3, 1,4 } ;
intcC[]l={2,0,0,0,11%};

int P [5] ;

int main (void)

{
int k ;
(void) camd_order (m, Ap, Ai, P, (double *) NULL, (double *) NULL, C) ;
for (k =0 ; k < n ; k++) printf ("P [%d] = %d\n", k, P [k]) ;
return (0) ;
}

The Ap and Ai arrays represent the binary matrix

>

I
SO O ==
—_ O = =
_ === O
O = = O O
_ o O = O

The diagonal entries are ignored. CAMD constructs the pattern of A + AT, and returns a permu-
tation vector of (3,2,1,4,0). Note that nodes 1, 2, and 3 appear first (they are in the constraint set
0), node 4 appears next (since C[4] = 1), and node 0 appears last. Since the matrix is unsymmet-
ric but with a mostly symmetric nonzero pattern, this would be a suitable permutation for an LU
factorization of a matrix with this nonzero pattern and whose diagonal entries are not too small.
The program uses default control settings and does not return any statistics about the ordering,
factorization, or solution (Control and Info are both (double *) NULL). It also ignores the status
value returned by camd_order.

More example programs are included with the CAMD package. The camd_demo . c program pro-
vides a more detailed demo of CAMD. Another example is the CAMD mexFunction, camd_mex. c.

4.3 A note about zero-sized arrays

CAMD uses several user-provided arrays of size n or nz. Either n or nz can be zero. If you attempt
tomalloc an array of size zero, however, malloc will return a null pointer which CAMD will report
as invalid. If you malloc an array of size n or nz to pass to CAMD), make sure that you handle the
n = 0 and nz = 0 cases correctly.

5 Synopsis of C-callable routines

The matrix A is n-by-n with nz entries.

#include "camd.h"

int n, status, Ap [n+1], Ai [nz], P [n], C [n] ;
double Control [CAMD_CONTROL], Info [CAMD_INFO] ;
camd_defaults (Control) ;

status = camd_order (n, Ap, Ai, P, Control, Info, C) ;
camd_control (Control) ;

camd_info (Info) ;

status = camd_valid (n, n, Ap, Ai) ;

The camd_1_* routines are identical, except that all int arguments become long:

#include "camd.h"

long n, status, Ap [n+1], Ai [nz], P [n], C [n] ;

double Control [CAMD_CONTROL], Info [CAMD_INFO] ;
camd_1_defaults (Control) ;

status = camd_l_order (n, Ap, Ai, P, Control, Info, C) ;
camd_1_control (Control) ;

camd_1_info (Info) ;

status = camd_1_valid (n, n, Ap, Ai) ;

6 Installation

The following discussion assumes you have the make program, either in Unix, or in Windows with
Cygwin.

System-dependent configurations are in the ../SuiteSparse_config/SuiteSparse_config.mk
file. You can edit that file to customize the compilation. The default settings will work on most
systems. Sample configuration files are provided for Linux, Sun Solaris, SGI TRIX, IBM AIX, and
the DEC/Compaq Alpha.

To compile and install the C-callable CAMD library, go to the CAMD directory and type make.
The library will be placed in CAMD/Lib/1ibcamd.a. Three demo programs of the CAMD ordering
routine will be compiled and tested in the CAMD/Demo directory. The outputs of these demo programs
will then be compared with output files in the distribution.

Typing make clean will remove all but the final compiled libraries and demo programs. Typing
make purge or make distclean removes all files not in the original distribution. If you compile
CAMD and then later change the ../SuiteSparse_config/SuiteSparse_config.mk file then you
should type make purge and then make to recompile.

When you compile your program that uses the C-callable CAMD library, you need to add
the CAMD/Lib/libcamd.a library and you need to tell your compiler to look in the CAMD/Include
directory for include files. See CAMD/Demo/Makefile for an example.

If all you want to use is the CAMD mexFunction in MATLAB, you can skip the use of the
make command entirely. Simply type camd _make in MATLAB while in the CAMD/MATLAB directory.
This works on any system with MATLAB, including Windows. Alternately, type make in the
CAMD/MATLAB directory.

If you are including CAMD as a subset of a larger library and do not want to link the C standard
I/0 library, or if you simply do not need to use them, you can safely remove the camd_control.c and
camd_info.c files. Similarly, if you use default parameters (or define your own Control array),
then you can exclude the camd defaults.c file. Each of these files contains the user-callable
routines of the same name. None of these auxiliary routines are directly called by camd_order. The
camd_dump. c file contains debugging routines that are neither used nor compiled unless debugging is
enabled. The camd_internal.h file must be edited to enable debugging; refer to the instructions in
that file. The bare minimum files required to use just camd_order are camd.h and camd_internal.h

in the Include directory, and camd_1.c, camd_2.c, camd_aat.c, camd_global.c, and_order.c,
camd_postorder.c, camd_preprocess.c, and camd_valid.c in the Source directory.

7 The CAMD routines

The file CAMD/Include/camd.h listed below describes each user-callable routine in CAMD, and
gives details on their use.

/* */
/* === CAMD: approximate minimum degree ordering */
/* */
/* - e -—- —- */
/* CAMD Version 2.2, Copyright (c) 2007 by Timothy A. Davis, Yanqing Chen, */
/* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */
/* email: DrTimothyAldenDavis@gmail.com */
/* - - - - ———— */
/* CAMD finds a symmetric ordering P of a matrix A so that the Cholesky

factorization of P*A*P’ has fewer nonzeros and takes less work than the
Cholesky factorization of A. If A is not symmetric, then it performs its
ordering on the matrix A+A’. Two sets of user-callable routines are
provided, one for int integers and the other for SuiteSparse_long integers.

The method is based on the approximate minimum degree algorithm, discussed
in Amestoy, Davis, and Duff, "An approximate degree ordering algorithm",
SIAM Journal of Matrix Analysis and Applications, vol. 17, no. 4, pp.
886-905, 1996.

L I I S R R N N

*
~

#ifndef CAMD_H
#define CAMD_H

/* make it easy for C++ programs to include CAMD */
#ifdef __cplusplus

extern "C" {
#endif

/* get the definition of size_t: */
#include <stddef.h>

#include "SuiteSparse_config.h"

int camd_order /* returns CAMD_O0K, CAMD_OK_BUT_JUMBLED,
* CAMD_INVALID, or CAMD_OUT_OF_MEMORY */
(
int n, /* A is n-by-n. n must be >= 0. */
const int Ap [1, /* column pointers for A, of size n+1 */
const int Ai [], /* row indices of A, of size nz = Ap [n] */
int P [], /* output permutation, of size n */
double Control [1, /* input Control settings, of size CAMD_CONTROL */
double Info [], /* output Info statistics, of size CAMD_INFQO */
const int C [] /* Constraint set of A, of size n; can be NULL */
)

SuiteSparse_long camd_l_order /* see above for description of arguments */
(

SuiteSparse_long n,

const SuiteSparse_long Ap [1],

const SuiteSparse_long Ai [],

SuiteSparse_long P [1,

double Control [1,

10

~
*

¥R R K K K X K X X X X K K K K K X X X X K K K K K X X X X K O K K K X X X X X K K K K X X ¥ X X X X ¥ * *

double Info [],
const SuiteSparse_long C []

Input arguments (not modified):

n: the matrix A is n-by-n.

Ap: an int/SuiteSparse_long array of size n+1, containing column
pointers of A.

Ai: an int/SuiteSparse_long array of size nz, containing the row
indices of A, where nz = Ap [n].

Control: a double array of size CAMD_CONTROL, containing control
parameters. Defaults are used if Control is NULL.

Output arguments (not defined on input):

P: an int/SuiteSparse_long array of size n, containing the output
permutation. If row i is the kth pivot row, then P [k] = i. 1In
MATLAB notation, the reordered matrix is A (P,P).

Info: a double array of size CAMD_INFO, containing statistical
information. Ignored if Info is NULL.

On input, the matrix A is stored in column-oriented form. The row indices
of nonzero entries in column j are stored in Ai [Ap [j] ... Ap [j+1]1-1].

If the row indices appear in ascending order in each column, and there

are no duplicate entries, then camd_order is slightly more efficient in
terms of time and memory usage. If this condition does not hold, a copy
of the matrix is created (where these conditions do hold), and the copy is
ordered.

Row indices must be in the range 0 to

n-1. Ap [0] must be zero, and thus nz = Ap [n] is the number of nonzeros
in A. The array Ap is of size n+l, and the array Ai is of size nz = Ap [n].
The matrix does not need to be symmetric, and the diagonal does not need to
be present (if diagonal entries are present, they are ignored except for
the output statistic Info [CAMD_NZDIAG]). The arrays Ai and Ap are not
modified. This form of the Ap and Ai arrays to represent the nonzero
pattern of the matrix A is the same as that used internally by MATLAB.

If you wish to use a more flexible input structure, please see the
umfpack_*_triplet_to_col routines in the UMFPACK package, at
http://www.suitesparse.com.

Restrictions: n >= 0. Ap [0] = 0. Ap [j] <= Ap [j+1] for all j in the
range O to n-1. nz = Ap [n] >= 0. Ai [0..nz-1] must be in the range 0
to n-1. Finally, Ai, Ap, and P must not be NULL. If any of these
restrictions are not met, CAMD returns CAMD_INVALID.

CAMD returns:

CAMD_OK if the matrix is valid and sufficient memory can be allocated to
perform the ordering.

CAMD_OUT_OF_MEMORY if not enough memory can be allocated.

CAMD_INVALID if the input arguments n, Ap, Ai are invalid, or if P is
NULL.

CAMD_OK_BUT_JUMBLED if the matrix had unsorted columns, and/or duplicate

11

¥R R K K K K K X X X X K K K K K X X X X R K K K K X X X X R K K K K X X X X X K K K K X X X X X X K K K X ¥ ¥ ¥ X *

The CAMD
computes

entries, but was otherwise valid.

routine first forms the pattern of the matrix A+A’, and then
a fill-reducing ordering, P. If P [k] = i, then row/column i of

the original is the kth pivotal row. In MATLAB notation, the permuted
matrix is A (P,P), except that O-based indexing is used instead of the
1-based indexing in MATLAB.

The Control array is used to set various parameters for CAMD. If a NULL
pointer is passed, default values are used. The Control array is not

modified.

Control [CAMD_DENSE]: controls the threshold for "dense" rows/columns.

A dense row/column in A+A’ can cause CAMD to spend a lot of time in
ordering the matrix. If Control [CAMD_DENSE] >= 0, rows/columns
with more than Control [CAMD_DENSE] * sqrt (n) entries are ignored
during the ordering, and placed last in the output order. The
default value of Control [CAMD_DENSE] is 10. If negative, no
rows/columns are treated as "dense". Rows/columns with 16 or

fewer off-diagonal entries are never considered "dense".

Control [CAMD_AGGRESSIVE]: controls whether or not to use aggressive

absorption, in which a prior element is absorbed into the current
element if is a subset of the current element, even if it is not
adjacent to the current pivot element (refer to Amestoy, Davis,

& Duff, 1996, for more details). The default value is nonzero,
which means to perform aggressive absorption. This nearly always
leads to a better ordering (because the approximate degrees are
more accurate) and a lower execution time. There are cases where
it can lead to a slightly worse ordering, however. To turn it off,
set Control [CAMD_AGGRESSIVE] to O.

Control [2..4] are not used in the current version, but may be used in

The Info

future versions.

array provides statistics about the ordering on output. If it is

not present, the statistics are not returned. This is not an error
condition.

Info [CAMD_STATUS]: the return value of CAMD, either CAMD_OK,

CAMD_OK_BUT_JUMBLED, CAMD_OUT_OF_MEMORY, or CAMD_INVALID.

Info [CAMD_N]: n, the size of the input matrix

Info [CAMD_NZ]: the number of nonzeros in A, nz = Ap [n]

Info [CAMD_SYMMETRY]: the symmetry of the matrix A. It is the number

of "matched" off-diagonal entries divided by the total number of
off-diagonal entries. An entry A(i,j) is matched if A(j,i) is also
an entry, for any pair (i,j) for which i != j. In MATLAB notation,

S = spones (4) ;

B = tril (S, -1) + triu (S, 1) ;

symmetry = nnz (B & B’) / nnz (B) ;

Info [CAMD_NZDIAG]: the number of entries on the diagonal of A.

Info [CAMD_NZ_A_PLUS_AT]:

the number of nonzeros in A+A’, excluding the
diagonal. If A is perfectly symmetric (Info [CAMD_SYMMETRY] = 1)
with a fully nonzero diagonal, then Info [CAMD_NZ_A_PLUS_AT] = nz-n

12

¥R X X X X K K K X X X X X X K K K K X X X X X K K K K X X X X X X X K X X * ¥

*
~

/*
/*
/*

/*

* X X X X ¥

(the smallest possible value). If A is perfectly unsymmetric
(Info [CAMD_SYMMETRY] = 0, for an upper triangular matrix, for
example) with no diagonal, then Info [CAMD_NZ_A_PLUS_AT] = 2*nz
(the largest possible value).

Info [CAMD_NDENSE]: the number of "dense" rows/columns of A+A’ that were
removed from A prior to ordering. These are placed last in the
output order P.

Info [CAMD_MEMORY]: the amount of memory used by CAMD, in bytes. In the
current version, this is 1.2 * Info [CAMD_NZ_A_PLUS_AT] + 9*n
times the size of an integer. This is at most 2.4nz + 9n. This
excludes the size of the input arguments Ai, Ap, and P, which have
a total size of nz + 2*n + 1 integers.

Info [CAMD_NCMPA]: the number of garbage collections performed.

Info [CAMD_LNZ]: the number of nonzeros in L (excluding the diagonal).
This is a slight upper bound because mass elimination is combined
with the approximate degree update. It is a rough upper bound if
there are many "dense" rows/columns. The rest of the statistics,
below, are also slight or rough upper bounds, for the same reasons.
The post-ordering of the assembly tree might also not exactly
correspond to a true elimination tree postordering.

Info [CAMD_NDIV]: the number of divide operations for a subsequent LDL’
or LU factorization of the permuted matrix A (P,P).

Info [CAMD_NMULTSUBS_LDL]: the number of multiply-subtract pairs for a
subsequent LDL’ factorization of A (P,P).

Info [CAMD_NMULTSUBS_LU]: the number of multiply-subtract pairs for a
subsequent LU factorization of A (P,P), assuming that no numerical
pivoting is required.

Info [CAMD_DMAX]: the maximum number of nonzeros in any column of L,
including the diagonal.

Info [14..19] are not used in the current version, but may be used in

future versions.

- -—- -—- -—- -—- */
direct interface to CAMD */

camd_2 is the primary CAMD ordering routine. It is not meant to be
user-callable because of its restrictive inputs and because it destroys
the user’s input matrix. It does not check its inputs for errors, either.
However, if you can work with these restrictions it can be faster than
camd_order and use less memory (assuming that you can create your own copy
of the matrix for CAMD to destroy). Refer to CAMD/Source/camd_2.c for a
description of each parameter. */

void camd_2

(

int n,
int Pe [],
int Iw [],

13

int Len [],
int iwlen,
int pfree,
int Nv [1,
int Next
int Last
int Head
int Elen
int Degree
int W [],
double Control [1,
double Info [1],
const int C [],
int BucketSet []

L B e T e W |

1,
1,
1,
1,
[

]!

void camd_12

(

/*
/*

/*

* X X X *

SuiteSparse_long n,
SuiteSparse_long Pe [1,
SuiteSparse_long Iw [1,
SuiteSparse_long Len [1,
SuiteSparse_long iwlen,
SuiteSparse_long pfree,
SuiteSparse_long Nv [1],
SuiteSparse_long Next
SuiteSparse_long Last
SuiteSparse_long Head
SuiteSparse_long Elen
SuiteSparse_long Degree
SuiteSparse_long W [],
double Control [1,
double Info [1],

const SuiteSparse_long C [],
SuiteSparse_long BucketSet []

L B e B e W |

1,
1,
1,
1,
[

]’

camd_valid */
- - - - e */

Returns CAMD_OK or CAMD_OK_BUT_JUMBLED if the matrix is valid as input to
camd_order; the latter is returned if the matrix has unsorted and/or
duplicate row indices in one or more columns. Returns CAMD_INVALID if the
matrix cannot be passed to camd_order. For camd_order, the matrix must also
be square. The first two arguments are the number of rows and the number

of columns of the matrix. For its use in CAMD, these must both equal n.

int camd_valid

(

int n_row, /* # of rows */

int n_col, /* # of columns */

const int Ap [], /* column pointers, of size n_col+l */
const int Ai [] /* row indices, of size Ap [n_col] */

SuiteSparse_long camd_l_valid

14

SuiteSparse_long n_row,
SuiteSparse_long n_col,

const SuiteSparse_long Ap [1],
const SuiteSparse_long Ai []

)

/* - -—- -—- -—- */
/* camd_cvalid */

K m e */

/* Returns TRUE if the constraint set is valid as input to camd_order,
* FALSE otherwise. */

int camd_cvalid
(
int n,
const int C []

)

SuiteSparse_long camd_1l_cvalid
(

SuiteSparse_long n,

const SuiteSparse_long C []
)

[K */
/* CAMD memory manager and printf routines */
/* - - - - ———— */

/* The user can redefine these to change the malloc, free, and printf routines
* that CAMD uses. */

#ifndef EXTERN
#define EXTERN extern

#endif

EXTERN void *(*camd_malloc) (size_t) ; /* pointer to malloc */
EXTERN void (*camd_free) (void *) ; /* pointer to free */
EXTERN void *(*camd_realloc) (void *, size_t) ; /* pointer to realloc */
EXTERN void *(*camd_calloc) (size_t, size_t) ; /* pointer to calloc */
EXTERN int (*camd_printf) (const char *, ...) ; /* pointer to printf */

/* - - - - e */
/* CAMD Control and Info arrays */

/% - —- —- —- - */

/* camd_defaults: sets the default control settings */
void camd_defaults (double Control [1) ;
void camd_1_defaults (double Control [1) ;

/* camd_control: prints the control settings */
void camd_control (double Control [1) ;
void camd_l_control (double Control []) ;

/* camd_info: prints the statistics */

void camd_info (double Info [1) ;
void camd_1_info (double Info [1) ;

15

#define CAMD_CONTROL 5 /* size of Control array */
#define CAMD_INFO 20 /* size of Info array */

/* contents of Control x/
#define CAMD_DENSE 0 /* "dense" if degree > Control [0] * sqrt (m) */
#define CAMD_AGGRESSIVE 1 /* do aggressive absorption if Control [1] != 0 x/

/* default Control settings */
#define CAMD_DEFAULT_DENSE 10.0 /* default "dense" degree 10*sqrt(n) */
#define CAMD_DEFAULT_AGGRESSIVE 1 /* do aggressive absorption by default */

/* contents of Info */

#define CAMD_STATUS O /* return value of camd_order and camd_l_order */
#define CAMD_N 1 /* A is n-by-n */

#define CAMD_NZ 2 /* number of nonzeros in A */

#define CAMD_SYMMETRY 3 /* symmetry of pattern (1 is sym., O is unsym.) */
#define CAMD_NZDIAG 4 /* # of entries on diagonal */

#define CAMD_NZ_A_PLUS_AT 5 /#* nz in A+A’> */

#define CAMD_NDENSE 6 /* number of "dense" rows/columns in A */

#define CAMD_MEMORY 7 /* amount of memory used by CAMD */

#define CAMD_NCMPA 8 /* number of garbage collections in CAMD */
#define CAMD_LNZ 9 /* approx. nz in L, excluding the diagonal */
#define CAMD_NDIV 10 /* number of fl. point divides for LU and LDL’ */

#define CAMD_NMULTSUBS_LDL 11 /* number of fl. point (*,-) pairs for LDL’ */
#define CAMD_NMULTSUBS_LU 12 /* number of fl. point (*,-) pairs for LU */

#define CAMD_DMAX 13 /* max nz. in any column of L, incl. diagonal */
/¥ - e -—- —- */
/* return values of CAMD */

[K */
#define CAMD_OK O /* success */

#define CAMD_QUT_OF_MEMORY -1 /* malloc failed, or problem too large */
#define CAMD_INVALID -2 /* input arguments are not valid */

#define CAMD_OK_BUT_JUMBLED 1 /* input matrix is 0K for camd_order, but
* columns were not sorted, and/or duplicate entries were present. CAMD had
* to do extra work before ordering the matrix. This is a warning, not an
* error. */

/* */
/* === CAMD version */
/* */
/*

* As an example, to test if the version you are using is 1.2 or later:

*

* if (CAMD_VERSION >= CAMD_VERSION_CODE (1,2))

*

* This also works during compile-time:

*

* #if (CAMD_VERSION >= CAMD_VERSION_CODE (1,2))

* printf ("This is version 1.2 or later\n") ;

* #else

* printf ("This is an early version\n")

* #endif

*
~

#define CAMD_DATE "Jun 20, 2012"
#define CAMD_VERSION_CODE(main,sub) ((main) * 1000 + (sub))

16

#define CAMD_MAIN_VERSION 2

#define CAMD_SUB_VERSION 3

#define CAMD_SUBSUB_VERSION 1

#define CAMD_VERSION CAMD_VERSION_CODE(CAMD_MAIN_VERSION,CAMD_SUB_VERSION)

#ifdef __cplusplus
}
#endif

#endif

17

References

1]

2]

P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algo-
rithm. SIAM J. Matriz Anal. Applic., 17(4):886-905, 1996.

P. R. Amestoy, T. A. Davis, and I. S. Duff. Algorithm 837: An approximate minimum degree
ordering algorithm. ACM Trans. Math. Softw., 30(3):381-388, 2004.

T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. A column approximate minimum
degree ordering algorithm. ACM Trans. Math. Softw., 30:353-376, 2004.

A. George and J. W. H. Liu. The evolution of the minimum degree ordering algorithm. STAM
Review, 31(1):1-19, 1989.

B. Hendrickson and E. Rothberg. Improving the runtime and quality of nested dissection
ordering. SIAM J. Sci. Comput., 20:468-489, 1999.

HSL. HSL 2002: A collection of Fortran codes for large scale scientific computation, 2002.
www.cse.clrc.ac.uk/nag/hsl.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20:359-392, 1998.

F. Pellegrini, J. Roman, and P. Amestoy. Hybridizing nested dissection and halo approximate
minimum degree for efficient sparse matrix ordering. Concurrency: Practice and Ezxperience,
12:68-84, 2000.

E. Rothberg and S. C. Eisenstat. Node selection strategies for bottom-up sparse matrix or-
derings. SIAM J. Matriz Anal. Applic., 19(3):682-695, 1998.

J. Schulze. Towards a tighter coupling of bottom-up and top-down sparse matrix ordering
methods. BIT, 41(4):800-841, 2001.

18

